雷电对风力发电机组的危害及防御对策
风力发电系统防雷技术改进措施分析

风力发电系统防雷技术改进措施分析发布时间:2021-04-12T10:08:18.187Z 来源:《科学与技术》2020年36期作者:刘涛[导读] 风电行业是一个正处于高速发展的行业,近年来雷击事件屡刘涛广东粤电湛江风力发电有限公司广东湛江 524000摘要:风电行业是一个正处于高速发展的行业,近年来雷击事件屡有发生,致使风电机组无法使用。
本文主要讨论风力发电系统防雷问题,经过对风电机组中的防雷性能以及防雷技术进行分析,相应地提出有针对性的防雷措施,保证风电场的安全性。
关键词:风力发电系统;防雷技术;改进措施引言雷电灾害是影响风力发电综合效率的重要原因,一直都是重点研究对象,需要在前期设计阶段做好可靠的防雷保护处理,通过多种保护措施的相互配合,将雷击灾害产生的影响控制到最小,为风力发电系统的可靠运行提供可靠保障。
虽然现在可以选择的防雷保护技术越来越多,但是为满足风力发电实际需求,还需要在现有基础上持续研究。
一、雷电的来源及雷电对风力发电机的危害1.1 雷电的来源雷电是直接产生于大气中的,在整个大气环境中含有大量的气体离子,包括正离子和负离子。
这些正、负离子在大气中携带微弱的导电性,进而造成大气电场、电流以及雷电的产生。
一般雷电现象会比较频繁地发生在较高建筑物、沿海及山地区域。
风力发电机为了更多地利用风能,也是布置在山地和海边这些比较空旷的地区,因此风力发电机容易受到雷电的袭击。
1.2 雷电的危害针对风力发电系统来讲,因为需要以风力资源作为生产根本,必须要建设在野外空旷区域,并且叶片均保持较高高度,这样就决定了其更容易受到雷击影响。
叶片为雷击的主要对象一般情况下雷击损害主要集中在叶尖部位,很少会造成整个叶片损坏,其成本非常高,被损坏需要花费较多费用进行维修甚至换新。
当叶片遭受雷击后,会释放出大量的能量,过大雷电流会促使叶尖结构内部温度急剧升高,水分受热汽化膨胀,产生较大的机械力,而导致叶尖结构破裂损坏,部分情况下甚至会造成整个叶片开裂。
对风力发电机组直击雷防护措施的探讨46

对风力发电机组直击雷防护措施的探讨摘要:本文探讨了风力发电机组的防雷技术,从直击雷对风力发电机组的危害的后果分析,探讨了其对应的防雷措施。
关键字:风力发电机组;直击雷;措施1.直击雷对风力发电机组的危害作用在遭受直接雷击时,强大的雷电流从雷击点流入被击物体,产生的热量能够在雷击点范围内及电流通路附近引起很高的温度,可以造成金属物体熔化或非金属物体的烧毁,这就是雷击热效应危害的典型表现。
一直以来风力发电机组的直击雷的防护都是利用机组的金属部分接闪,通过转动和非转动系统部件间的放电间隙过渡,流经引下线,然后通过良好的接地装置迅速而安全地引入大地。
机组上,桨叶、轴承和机舱特别容易遭受直击雷,下面就这三个部位进行相应的分析。
2.桨叶的防雷措施传统的桨叶防雷装置,主要由接闪器和引下导体组成。
通常将接闪器做成盘形状,将其嵌装在桨叶的叶尖部,盘面与叶面平齐。
当桨叶叶尖受到雷击时,雷电流由接闪器导入引下导体,叶片根部通过截面积不小于70mm2的铜芯电缆连接到轮毂,通过放电间隙把雷电流从叶根部轮毂引至机舱主机架和塔筒等,最终通过引下线泄入大地。
现在的大型风机使用的叶片,从结构上可分为两大类型:定浆距失速型风机和变桨距风机,前者广泛使用的是有叶尖阻尼器结构的叶片,后者则采用无叶尖阻尼器的叶片。
(1)无叶尖阻尼器的叶片防雷结构对于无叶尖阻尼器的叶片,一般是在叶尖部分的玻璃纤维外表面预置金属化物作为接闪器,并与埋置于叶片内的铜导体相连(50mm2铜导体与叶根处的金属法兰连接)。
外表面金属化物可以采用网状或箔状结构。
雷击可能会对这样的表面造成局部熔化或灼蚀损伤,但不会影响叶片的强度或结构。
(2)有叶尖阻尼器的叶片防雷结构在有叶尖阻尼器的叶片,通常是在叶尖部分的玻璃纤维中预置金属导体作为接闪器,通过碳纤维轴与用于兼作引下导体的刹车控制线(缆)连接,这种结构可以耐受200KA的冲击电流实验而叶片却不会损伤。
虽然这种叶片是金属结构组成的,雷击概率比绝缘材料制成的叶片高,只要要求导电结构有足够的强度和横截面积安全的将雷电流引入大地就可以了。
风力发电系统防雷技术分析与改进

风力发电系统防雷技术分析与改进摘要:风电行业是一个正处于高速发展的行业,近年来雷击事件屡有发生,致使风电机组无法使用。
本文主要讨论风力发电系统防雷问题,经过对风电机组中的防雷性能以及防雷技术进行分析,相应地提出有针对性的防雷措施,保证风电场的安全性。
关键词:风力发电;防雷技术;改进引言关于风力发电系统中的雷击过电压的分析与治理,涉及方面较广泛,问题也较多,概括起来主要由风力发电机组、架空输电线路、风力发电场升压变压站以及风电场接地系统的防雷设计4个方面组成。
由于风力发电场所处的地理位置、升压变压站的布置、风机本身结构等具有其特殊性,故风力发电系统防雷接地也具有其自己的特点。
1雷电的来源及雷电对风力发电机的危害大气中总是含有大量气体正、负离子,使大气具有微弱导电性、产生大气电场、电流、导致大气中雷电的产生。
雷电放电现象多出现在较高建筑物和山地,沿海区域也常见。
而风力发电机又多分布在山地,海边,因此安置在恶劣环境下及自身高度较高的风力发电系统遭受雷击的可能性大大增加。
通过对部分雷击案例例如浙江苍南风电场,本溪某风电场等分析发现雷击造成风机控制系统损坏率最高,其次是电气系统和发电机,而叶片损失造成损失电量最多,修理费用最大。
2风力发电系统的防雷措施2.1外部系统防雷2.1.1叶片、机航、塔架防雷雷电击中叶片时,外部温度会急剧升高,造成湿气体体积瞬间膨胀,压力上升进而引发叶片爆裂,设备烧毁,甚至会借助轮毂的作用影响其他叶片。
因此可在叶尖处布置排水孔。
另外并不是叶片导电性越小被雷击的概率就越小,雷电导致损害的范围取决于叶片的形式。
在叶尖装设接闪器用来捕捉雷电,再通过叶片腔导引线使雷电引入大地,约束雷电,以避免雷电直击叶片本体而致使叶片损害。
在机舱顶端加装避雷针保护风速计和风标免受雷击。
专设的引下线连接机舱和塔架,雷击发生时不会被电流损坏,进而将雷电中的电流经过所用引下线顺利引入大地。
2.1.2接地网接地系统的好坏直接关系到雷电泄放的效率。
风力发电机组防雷技术分析

风力发电机组的特点是整机全部由大部件的钢构材料组成,如塔筒、发电机、齿轮箱、轴承等,当机组遭到直击雷时,整机电位瞬态抬升,雷电流通过叶片变桨轴承、轮毂、主轴到偏航齿轮、塔筒、基础环向大地泄放电荷,这时作为整机参考地面积最大的塔筒上将产生几千伏甚至上万伏的瞬态电压,如果整机中某部分的等电位工艺所采用接地线的阻抗不一致,则有可能造成阻抗较低端因高电位反击击穿造成设备损坏。
2.转移电荷。物体遭受雷击时,大多数的电荷转移都发生在持续时间较长而幅值相对较低的雷电流过程中。这些持续时间较长的电流将在被击物表面产生局部金属熔化和灼蚀斑点。在雷电流路径上一旦形成电弧就会在发生电弧的地方出现灼蚀斑点,如果雷电流足够大还可能导致金属熔化。这是威胁风电机组轴承安全的一个潜在因素,因为在轴承的接触面上非常容易产生电弧,它就有可能将轴承熔焊在一起。即使不出现轴承熔焊现象,轴承中的灼蚀斑点也会加速其磨损,降低其使用寿命。
风力发电机组防雷技术分析
摘要:本文作者介绍了雷击造成的电力危害,从雷电发生的机理和雷击过程入手,对风电机组的防雷技术进行阐述分析。关键词:风力发电机组设计浅析
风力发电机组是整个风力发电厂的核心装置,对我国电力系统的正常运行有着重要的影响。发电厂在制定生产计划时要注重发电机组控制器的防雷设计,从内部、外部等角度去综合考虑防雷结构安排,为发电机组创造良好的运行环境。雷电事故的处理效率对发电厂的经济效益、生产秩序、设备运行都有着很大的影响。
五、结束语
由于雷电现象具有非常大的随机性,因此不可能完全避免风电机组遭受雷击,只能在风电机组的设计、制造和安装过程中,采取防雷措施,使雷击造成的损失减到最小。
参考文献:
[1]叶启明.大型风力发电机组系统结构与特点[J].大众用电,2009,(7).
风电场雷击事故原因分析与改进建议

◎陈珊珊风电场雷击事故原因分析与改进建议一、雷击对风机影响概述从世界范围来看,各国风力发电系统都存在一定的雷灾问题。
随着风电单机容量和风电场建设规模的的逐年增加,风机的安全稳定性问题尤为突出,影响风机安全稳定运行的原因众多,其中雷电是风机最为重要的影响因素之一。
一方面,风电场所处的自然环境通常比较空旷也极其恶劣,比如风能资源充足的山区,近海和戈壁,这种自然环境可能存在高温、高盐雾程度、高湿度等问题。
与此同时该种环境中风机的接地条件很复杂,风电场场址的土壤电阻率普遍很高,通过一般的接地设计很难将风机的接地电阻控制在安全标准范围内。
其次,风机自身结构高大,现今世界范围内新装设的风机,主用机型的容量通常在2.0-5.0MW 之间,大部分新装风机高度已达100~160m,加之风电机组在运行时桨叶的旋转作用,使得风机易被雷击。
再次,风机叶片、发电机、电控系统等各部分构造复杂,元器件灵敏度高,易受感应过电压的危害,由于内部空间有限,与建筑物防雷类别,设备的安装难以达到建筑物中所规定的最低的雷电安全距离,这对风机内部电子设备的防雷提出了更高的要求。
关于雷击导致的风电机组损坏问题,不同的机构发布的数据略有差异,但是都表明雷电是导致风电机组损坏的主要原因之一,统计数据表明雷击事故占风电场自然事故中的3/5以上,严重威胁风电场的安全稳定运行。
1995年,国际电工委员会就制定了IEC-61662标准。
2006年,国际电工委员会重新修订颁布雷电灾害风险评估标准,更名为IEC-62305。
其主要内容包括建筑物与服务设施的分类、雷电灾害与雷电损失、雷灾风险、防护措施的选择以及建筑物与服务设施防护的基本标准等。
同时IEC/TR-61400-24中也给出了防雷需要考虑的因素,主要内容包括风力发电系统的雷击灾害资料统计、雷击灾害风险评估、风电设施和人员安全的雷电防护、风机接地系统等内容。
二、直击雷对的风机结构的危害风电机组遭受雷击的过程实际上就是带电雷云与风电机组间的放电过程。
风力发电机组防雷接地的探讨

风力发电机组防雷接地的探讨摘要:随着风力发电技术的不断发展,越来越多的风力发电机组被建设起来,但是由于其高耸的塔身和叶片,容易成为雷击的对象,给设备带来损坏和安全隐患。
因此,风力发电机组的防雷接地问题备受关注。
基于此,文章首先阐述风电机组的雷电危害,然后综合分析其防雷接地措施。
关键词:风力发电机组;防雷接地;措施引言风力发电机组的防雷接地是指在雷电天气下,通过合理地设计和布置接地装置,将雷电能量释放到地面,保护设备和人员的安全。
一、风电机组的雷电危害风电机组在运行过程中可能会受到雷击,从而产生雷电危害。
首先当雷电直接击中风电机组时,可能会损坏机组的设备或者导致机组停机。
同时,由于风电机组往往建造在山顶等高地区,所以直接雷击还可能导致山火等附带危害。
其次当雷电在附近地区击中时,会产生电磁场,从而感应出电流来。
这些电流可能会对风电机组的电气设备造成损坏。
此外当雷电击中地面时,会产生接地电流。
如果接地电流通过风电机组的接地系统流过去,可能会导致接地系统受损或者引发火灾等危险。
为了减少这些危害,风电机组需要采取一些保护措施,如安装避雷针、接地系统等。
同时,在风电机组的设计和建造中,也需要考虑雷电危害因素,从而尽可能地减少潜在的危害。
二、风电机组的防雷接地措施(一)叶片防雷风电机组的叶片是一个主要的防雷目标,因为在风电机组运行过程中,叶片处于高处,容易受到雷击。
因此,为了保护叶片,需要采取一些防雷接地措施。
首先在叶片上安装一根或多根雷电接地线,将叶片与地面接地,以减少雷击对叶片的影响。
同时也可以在叶片上安装避雷针,可以有效地将雷电引到避雷针上,从而保护叶片不受雷击。
此外可以在叶片表面涂上一层防雷涂层,可以减少雷击对叶片的影响,从而保护叶片。
与此同时可以在叶片表面安装一层接地网格,将叶片与地面连接起来,以减少雷击对叶片的影响。
需要注意的是,不同的叶片防雷措施适用于不同的情况,需要根据具体情况进行选择。
同时,为了确保叶片防雷措施的有效性,需要进行定期检查和维护,及时更换损坏的部件,以保障风电机组的正常运行。
风力发电机的防雷与接地

风力发电机的防雷与接地
塔架的防雷保护
专设的引下线连接机舱与塔架,减轻电压降,跨越偏航环, 机舱和偏航刹车盘通过接地线连接,因此,雷击时将不受到 伤害,通过引下线将雷电顺利的引入大地.
风力发电机的防雷与接地
塔架的防雷保护
由于塔筒法兰面之间涂有 密封胶,加大了塔筒之间的 连接电阻,所以必须要降低 这部分的阻抗,现在采取的 方法一般是用铜编织电缆 或铜导线把两端塔筒连接 起来.
知识回顾 Knowledge Review
叶片防雷系统的主要目标 是避免雷电直击叶片本体, 而导致叶片本身发热膨胀、 迸裂损害.
风力发电机的防雷与接地
机舱的防雷保护
现代大多数风力机的机舱罩是用金属板制成,本身就有良 好的防雷保护作用.机舱主机架除了与叶片相连,在机舱罩 顶上后部设置一个〔数目可多于一个高于风速、风向仪的 接闪杆,保护风速计和风向仪免受雷击.
➢ TT系统,前一个T:系统接地是直接接大地;后一个T: 用电设备外壳的保护接地是经PE线接单独的接地板直 接接大地,与电源中的N线线路和系统接地点毫无关连.
风力发电机的防雷与接地
风机的接地
➢ 风机接地系统应包括一个围绕风机基础的环状导体,此环 状导体埋设在距风机基础一米远的地面下一米处,采用 50mm²铜导体或直径更大些的铜导体;每隔一定距离打入 地下镀铜接地棒,作为铜导电环的补充;铜导电环连接到 塔架2个相反位置,地面的控制器连接到连接点之一.有的 设计在铜环导体与塔基中间加上两个环导体,使跨步电压 更加改善.如果风机放置在接地电阻率高的区域,要延伸接 地网以保证接地电阻达到规范要求.若测得接地网电阻值 大于要求的值,则必须采取降阻措施,直至达到标准要求.
风力发电机的防雷与接地
风力发电机组的综合防雷技术措施

风力发电机组的综合防雷技术措施发布时间:2022-08-17T07:32:52.208Z 来源:《福光技术》2022年17期作者:傅永安[导读] 风能作为一种清洁无污染的能源,其利用风力发电所产生的能源成为现阶段我国发展过程中的重要一部分。
而风力发电则需要使用到风力发电机组,风力发电机组的使用过程中却容易受到雷电的危害。
作为风力发电厂的核心装置,对于风力发电机组的保护十分重要。
发电厂在进行生产计划制定的过程中必须要加强风力发电机组的综合防雷,由此来为风力发电机组创造较好的运行环境,避免雷电事故的出现影响到发电厂的整体经济效益以及生产秩序。
傅永安国华(哈密)新能源有限公司新疆哈密 839000摘要:风能作为一种清洁无污染的能源,其利用风力发电所产生的能源成为现阶段我国发展过程中的重要一部分。
而风力发电则需要使用到风力发电机组,风力发电机组的使用过程中却容易受到雷电的危害。
作为风力发电厂的核心装置,对于风力发电机组的保护十分重要。
发电厂在进行生产计划制定的过程中必须要加强风力发电机组的综合防雷,由此来为风力发电机组创造较好的运行环境,避免雷电事故的出现影响到发电厂的整体经济效益以及生产秩序。
关键词:风力发电机组;综合防雷技术措施1雷击所造成的电力危害以及雷击损坏的机理 1.1雷击所造成的电力危害雷击所造的危害是多方面的,其电力方面的危害主要体现在以下几方面,分别是降低效益、损坏设备以及影响供电等方面。
在降低效益方面,主要是从电力行业发展的整体状况而言,雷击会给风力发电机组带来安全生产方面的危害,一旦发生雷击,往往会造成人员安全以及设备安全方面的问题,这就在一定程度上降低了电力企业的经济效益,增加了风力发电的成本。
损坏设备一般指的是严重性的损坏,一般雷击的电流较小时只会对发电机组的表面造成损坏,但雷击电流过大时便会损坏到风力发电机组的内部线路连接,这就很大程度上阻碍了机组的正常运行,也破坏了电力系统的性能。