电磁场答案五

合集下载

电磁场与电磁波试题答案

电磁场与电磁波试题答案

《电磁场与电磁波》试题1一、填空题(每小题1分,共10分)1.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B和磁场H满足的方程为: 。

2.设线性各向同性的均匀媒质中,02=∇φ称为 方程。

3.时变电磁场中,数学表达式H E S⨯=称为 。

4.在理想导体的表面, 的切向分量等于零。

5.矢量场)(r A穿过闭合曲面S 的通量的表达式为: 。

6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。

7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 。

8.如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。

9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 关系。

10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表示。

二、简述题 (每小题5分,共20分)11.已知麦克斯韦第二方程为t B E ∂∂-=⨯∇ ,试说明其物理意义,并写出方程的积分形式。

12.试简述唯一性定理,并说明其意义。

13.什么是群速?试写出群速与相速之间的关系式。

14.写出位移电流的表达式,它的提出有何意义?三、计算题 (每小题10分,共30分)15.按要求完成下列题目(1)判断矢量函数y x e xz ey B ˆˆ2+-=是否是某区域的磁通量密度?(2)如果是,求相应的电流分布。

16.矢量z y x e e eA ˆ3ˆˆ2-+=,z y x e e eB ˆˆ3ˆ5--=,求(1)B A+ (2)B A ⋅17.在无源的自由空间中,电场强度复矢量的表达式为()jkz y x e E e E eE --=004ˆ3ˆ(1) 试写出其时间表达式; (2) 说明电磁波的传播方向;四、应用题 (每小题10分,共30分)18.均匀带电导体球,半径为a ,带电量为Q 。

试求 (1) 球内任一点的电场强度 (2) 球外任一点的电位移矢量。

19.设无限长直导线与矩形回路共面,(如图1所示), (1)判断通过矩形回路中的磁感应强度的方向(在图中标出); (2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。

电磁场与电磁波 答案

电磁场与电磁波  答案

23 谐振腔和波导管内的电磁场只能存在或者传播一定的频率的电磁波是由谐振腔和波
导管的边界决定的。
24 写出采用洛伦兹规范和在此规范下的电磁场方程: v v v 1 ∂2Α v 1 ∂ϕ 1 ∂ 2ϕ ρ 2 2 J , = − µ ∇⋅Α+ 2 = 0,∇ Α − 2 ∇ ϕ − =− 。 0 2 2 2 ε0 c ∂t c ∂t c ∂t 25 推迟势的本质是电磁作用具有一定的传播速度。
i 1 1 1v v 41 电磁场张量 Fµν按下列方式构成不变量。 Fµν Fµν = B 2 − 2 E 2 , ε µνλτ Fµν Fλτ = B ⋅ E c 2 8 c 42 静止µ子的寿命只有 2.197×10-6 秒,以接近光速运动时只能穿过 660 米。但实际上很
大部分µ子都能穿过大气层到达底部。在地面上的参考系把这种现象描述为运动µ子 寿命延长的效应。 但在固定于µ子上的参考系把这种现象描述为运动大气层厚度缩小 的效应。
二、填空题
1 电动力学的研究对象是电磁场的基本属性和运动规律,研究电磁场与带电粒子之间
的相互作用。
2 位移电流是由麦克斯韦首先引入的,其实质是电场的变化率。 3 麦克斯韦首先预言了电磁波的存在,并指出光波就是一种电磁波。 4 麦克斯韦方程和洛伦兹力公式正确描述了电磁场的运动规律以及它和带电物质的相
互作用规律。 v v v v 5 各向同性线性介质的极化强度 P 和外加电场 E 之间的关系是 P = χ e ε 0 E ,其中 χ e 是 介质的极化率, ε 0 是真空电容率。 v v ∂B 。 6 变化的磁场产生电场的微分方程为 ∇ × E = − ∂t
时空坐标相互变换。相应地,电磁场的三维矢势和一维标势构成一个统一体,不可 分割,当参考系改变时,矢势和标势相互变换。 (√) (×) 28 时间和空间是两个独立的物理量,不能统一为一个物理量。

电磁场课后答案5

电磁场课后答案5

k1 sin θ B = k 2 sin θ 2

ε 2 k1 cosθ B = ε 1k 2 cosθ 2
cos θ 2 =

= 0, k z2 ε 1 − k z1 ε 2 = 0
ww w
Z 2 − Z 1 ωε 2 = k z2 Z 2 + Z1
− +
ωε 2
.k hd
k z1
对于 TM 模
ωε 1
所以
ε 1 ε 1 μ1 − ε 2 μ 2 2 μ1 ε 12 − ε 2
θ B = arccos
ε 1 ε 1 μ1 − ε 2 μ 2 2 μ1 ε 12 − ε 2
co
m
μ1 μ1ε 1 − μ 2ε 2 2 ε 1 μ12 − μ 2

μ1 = μ 2 ,θ B = arccos
ε1 + ε 2
2 2 μ2 k1 k 2 1 − cos θ B = 1 − 2 12 cos 2 θ B k2 μ1 k 2
两边平方,均整理后得到
cos 2 θ B =
所以
μ1 μ1ε 1 − μ 2ε 2 2 ε 1 μ12 − μ 2
θ B = arccos
k z2 ΓTM =
要使 ΓTM 即 由相位匹配条件: 由(1)
ρs
y =d
=0


ww w
(2) ∇ × E ≠ 0 ,是有旋场,不能用标量函数的负梯度表示
.k hd
aw .
co
⎞ ⎟ ⎟ ⎠
解: (1) ∇ ⋅ E =
∂E x ∂E y ∂E z + + =0 ∂x ∂y ∂z ⎛ ∂E y ∂E x ⎛ ∂E z ∂E y ⎞ ⎛ ∂E x ∂E z ⎞ ∇ × E = x0 ⎜ ⎜ ∂x − ∂y ⎜ ∂y − ∂z ⎟ ⎟ + y 0 ⎜ ∂z − ∂x ⎟ + z 0 ⎜ ⎝ ⎠ ⎝ ⎝ ⎠ π ⎛π ⎞ ⎛π ⎞ = −y 0 jkA sin⎜ y ⎟e j (ωt − kz ) − z 0 A cos⎜ y ⎟e j (ωt −kz ) d ⎝d ⎠ ⎝d ⎠

电磁场课后习题答案

电磁场课后习题答案

电磁场课后习题答案电磁场课后习题答案电磁场是物理学中一个重要的概念,涉及到电荷、电流和磁场的相互作用。

在学习电磁场的过程中,我们经常会遇到一些习题,这些习题旨在帮助我们更好地理解电磁场的基本原理和应用。

本文将给出一些电磁场课后习题的答案,希望能够对大家的学习有所帮助。

1. 一个带电粒子在匀强磁场中作圆周运动,其运动半径与速度之间的关系是什么?答:带电粒子在匀强磁场中作圆周运动时,受到的洛伦兹力与向心力相等。

洛伦兹力的大小为F = qvB,向心力的大小为F = mv²/R,其中q为电荷量,v为速度,B为磁感应强度,m为质量,R为运动半径。

将这两个力相等,可以得到qvB = mv²/R,整理得到v = qBR/m。

因此,速度与运动半径之间的关系是v 与R成正比。

2. 一个长直导线中有一电流I,求其所产生的磁场强度B与距离导线距离r之间的关系。

答:根据安培定律,长直导线所产生的磁场强度与电流和距离的关系为B =μ₀I/2πr,其中B为磁场强度,I为电流,r为距离,μ₀为真空中的磁导率。

可以看出,磁场强度与距离的关系是B与1/r成反比。

3. 一个平面电磁波的电场强度和磁场强度的振幅分别为E₀和B₀,求其能量密度u与E₀和B₀之间的关系。

答:平面电磁波的能量密度与电场强度和磁场强度的关系为u = ε₀E₀²/2 +B₀²/2μ₀,其中u为能量密度,ε₀为真空中的介电常数,μ₀为真空中的磁导率。

可以看出,能量密度与电场强度的振幅的平方和磁场强度的振幅的平方之间存在关系。

4. 一个平行板电容器的电容为C,两板间的距离为d,若电容器中充满了介电常数为ε的介质,请问在电容器中存储的电能与电容、电压和介电常数之间的关系是什么?答:平行板电容器存储的电能与电容、电压和介电常数之间的关系为W =1/2CV²,其中W为存储的电能,C为电容,V为电压。

当电容器中充满了介质后,介质的存在会使电容增加为C' = εC,因此存储的电能也会增加为W' =1/2C'V² = 1/2εCV²。

电磁场理论知到章节答案智慧树2023年齐鲁工业大学

电磁场理论知到章节答案智慧树2023年齐鲁工业大学

电磁场理论知到章节测试答案智慧树2023年最新齐鲁工业大学第一章测试1.下列应用属于电磁场范围的有()。

参考答案:磁悬浮列车;立体电影;北斗导航系统;隐形飞机2.矢量场中某点的旋度是一个矢量,其大小等于该点的,其方向为()参考答案:最大环量密度,取得最大环量的环面的法线方向。

3.某标量场的方向导数为一矢量。

()参考答案:对4.只有大小没有方向的量为标量,电场为标量。

()参考答案:错5.既有大小又有方向的量为矢量,磁场为矢量。

()参考答案:对6.由空间某点处的散度值可以判断该点处通量源的情况。

()参考答案:对7.由空间处的环量可以推断源的分布特性。

()参考答案:错8.赫姆霍兹定理表明任一矢量场都可以表示成一个无散场和一个无旋场之和。

()参考答案:对9.矢量场中每一点处的旋度均为0,则称该矢量场为无旋场。

()参考答案:对10.矢量场中每一点处的散度均为0,则称该矢量场为无散场。

()参考答案:对第二章测试1.为了描述电荷分布在空间流动的状态,定义体积电流密度J,其国际单位为()参考答案:安培/平方米2.电荷只能在分子或原子范围内作微小位移的物质为()参考答案:电介质3.麦克斯韦方程组不包含以下哪种定律()参考答案:牛顿4.在两种理想介质分界面上,磁场的切向分量连续。

()参考答案:对5.在两种理想介质分界面上,电位移矢量的切向分量不连续。

()参考答案:对6.在时变电磁场中,只有传导电流与位移电流之和才是连续的。

()参考答案:对7.位移电流也要产生磁场,与传导电流一样,也是磁场的涡旋源。

()参考答案:对8.麦克斯韦方程组表明电荷要产生电场,是电场的散度源。

()参考答案:对9.电介质中的位移电荷在外电场的作用下产生位移的现象,称为电介质的极化。

()参考答案:错10.当有外磁场作用时,磁介质会产生磁化现象。

()参考答案:对第三章测试1.静态场的位函数满足的方程有()。

参考答案:无源区,满足拉普拉斯方程;有源区,满足泊松方程2.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,它可用()函数的旋度来表示。

电磁场理论习题及答案

电磁场理论习题及答案

电磁场理论习题及答案电磁场理论是电磁学的基础,它描述了电荷和电流产生的电磁场在空间中的分布和演化规律。

在学习电磁场理论时,习题是巩固和深化理解的重要方式。

本文将介绍一些电磁场理论的习题及其答案,帮助读者更好地掌握这一理论。

一、电场和电势1. 问题:一个均匀带电球体,半径为R,总电荷为Q。

求球心处的电场强度。

答案:根据库仑定律,电场强度E与电荷Q和距离r的关系为E = kQ/r^2,其中k为库仑常数。

对于球体内部的点,距离球心的距离r小于半径R,所以电场强度为E = kQ/r^2。

对于球体外部的点,距离球心的距离r大于半径R,所以电场强度为E = kQ/R^3 * r。

2. 问题:一个无限长的均匀带电线,线密度为λ。

求距离线上一点距离为r处的电势。

答案:根据电势公式V = kλ/r,其中k为库仑常数。

所以距离线上一点距离为r处的电势为V = kλ/r。

二、磁场和磁感应强度1. 问题:一根无限长的直导线,电流为I。

求距离导线距离为r处的磁感应强度。

答案:根据安培环路定理,磁感应强度B与电流I和距离r的关系为B =μ0I/2πr,其中μ0为真空中的磁导率。

所以距离导线距离为r处的磁感应强度为B = μ0I/2πr。

2. 问题:一根长为L的直导线,电流为I。

求距离导线距离为r处的磁场强度。

答案:根据比奥萨伐尔定律,磁场强度H与电流I和距离r的关系为H = I/2πr。

所以距离导线距离为r处的磁场强度为H = I/2πr。

三、电磁场的相互作用1. 问题:一个半径为R的导体球,带电量为Q。

求导体球表面的电荷密度。

答案:导体球表面的电荷密度σ等于导体球上的电荷总量Q除以导体球表面的面积A。

导体球表面的面积A等于球的表面积4πR^2。

所以导体球表面的电荷密度为σ = Q/4πR^2。

2. 问题:一个平行板电容器,两个平行金属板之间的距离为d,电介质的介电常数为ε。

一块电介质板插入到电容器中间,使得电容器的电容增加了n倍。

电磁场与电磁波第5版王家礼答案

电磁场与电磁波第5版王家礼答案

电磁场与电磁波第5版王家礼答案电磁场与电磁波第5版王家礼答案第一章电磁场和电磁波的基本概念1.1 什么是电磁场?电磁场是描述电荷运动影响的物理场。

它可以被看作是一种对空间的划分,并且在各个空间区域内具有不同的物理状态。

1.2 电磁场的基本方程式是哪些?电磁场的基本方程式包括:麦克斯韦方程组、库仑定律、法拉第电磁感应定律、安培环路定律等。

1.3 什么是电磁波?电磁波是由振动的电荷和振动的磁场所产生的波动现象。

它具有电场和磁场的相互作用,且在真空和各种介质中都能传播。

第二章静电场和静磁场2.1 什么是静电场?静电场是指当电荷分布不随时间变化、不产生磁场时,所产生的电场。

2.2 静电场的基本定律有哪些?静电场的基本定律包括库仑定律、电场线、电势能和电势。

2.3 什么是静磁场?静磁场是指当电荷分布不随时间变化,但产生了磁场时,所产生的磁场。

2.4 静磁场的基本定律有哪些?静磁场的基本定律包括安培环路定律、比奥萨伐尔定律和洛伦兹力定律。

第三章时变电磁场和电磁波的基本概念3.1 什么是时变电磁场?时变电磁场是指电荷分布随时间变化,且产生了磁场时,所产生的电磁场。

3.2 时变电磁场的基本方程式是哪些?时变电磁场的基本方程式是麦克斯韦方程组,包括麦克斯韦-安培定律、麦克斯韦-法拉第定律、法拉第感应定律和电场定律等。

3.3 什么是电磁波?电磁波是由振动的电荷和振动的磁场所产生的波动现象,它具有电场和磁场的相互作用,可以在真空和各种介质中传播。

3.4 电磁波的基本特征有哪些?电磁波的基本特征包括电场和磁场垂直于传播方向、具有可见光、红外线、紫外线、X射线和γ射线等不同频率和能量等。

第四章电磁波在真空和介质中的传播4.1 电磁波如何在真空中传播?电磁波在真空中传播速度等于光速,即299792458m/s。

4.2 介质是如何影响电磁波传播的?介质对电磁波的传播速度、方向和振动方向都有影响,介质内的电磁波速度取决于介质的介电常数和磁导率。

电磁场原理习题与解答(第5章)

电磁场原理习题与解答(第5章)

第五章习题答案5-2 如题图所示,一半径为a 的金属圆盘,在垂直方向的均匀磁场B 中以等角速度ω旋转,其轴线与磁场平行。

在轴与圆盘边缘上分别接有一对电刷。

这一装置称为法拉第发电机。

试证明两电刷之间的电压为22ωBa 。

证明:,选圆柱坐标, ρφe vB e B e v B v E z ind=⨯=⨯=其中 φρωe v=22ωρρωρερρa B d B e d e v B l d E aal ind====⎰⎰⎰∙∙∴证毕 5-3解:5-4 一同轴圆柱形电容器,其内、外半径分别为cm r 11=、cm r 42=,长度cm l 5.0=,极板间介质的介电常数为04ε,极板间接交流电源,电压为V t 10026000u πsin =。

求s t 0.1=时极板间任意点的位移电流密度。

解法一:因电源频率较低,为缓变电磁场,可用求静电场方法求解。

忽略边沿效应,电容器中的场为均匀场,选用圆柱坐标,设单位长度上内导体的电荷为τ,外导体电荷为τ-,因题图5-2zvρ此有ρρπετe 2E 0=21r r <<ρ1200222121r r d dl E u r r r r lnπετρρπετ===⎰⎰∙1202r r u ln=∴πετ所以ρρer r u E 12 ln =, ρρεer r u D 12ln=2A/mρρππρερεe t 10010026000r r e tu r r tD J 1212dcos ln ln ⨯=∂∂=∂∂=当s t 1=时2512A/m10816100100260004108584ρρρππρe e J d--⨯=⨯⨯⨯⨯=.cos ln .解法二:用边值问题求解,即⎪⎩⎪⎨⎧=====∇401u 02ρϕρϕϕ 由圆柱坐标系有0)(1=∂∂∂∂ρϕρρρ(1)解式(1)得 21ln c c +=ρϕ由边界条件得: 4u c 1ln -= u c 2=u 4u +-=∴ρϕln ln所以 ρρπϕe 4t10026000Eln sin =-∇=ρρπεεe 4t 100260004E D 0ln sin ==ρπρπεe 1004t 100260004t D J 0D⨯=∂∂=ln cos当s t 1=时)(.25D mAe 10816J ρρ-⨯=5-5由圆形极板构成的平板电容器)(d a >>见题图所示,其中损耗介质的电导率为γ、介电系数为ε、磁导率为μ,外接直流电源并忽略连接线的电阻。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章习题解答5.1 真空中直线长电流I 的磁场中有一等边三角形回路,如题5.1图所示,求三角形回路内的磁通。

解 根据安培环路定理,得到长直导线的电流I 产生的磁场02I r φμπ=B e穿过三角形回路面积的磁通为d S ψ==⎰BS 0002[d ]d d 2d d z ddII zz x x x xμμππ=⎰ 由题5.1图可知,()tan6z x d π=-=,故得到d d d x d x x ψ-==0[)]22I b d μπ+ 5.2 通过电流密度为J 的均匀电流的长圆柱导体中有一平行的圆柱形空腔,如题5.2图所示。

计算各部分的磁感应强度B ,并证明腔内的磁场是均匀的。

解 将空腔中视为同时存在J 和J -的两种电流密度,这样可将原来的电流分布分解为两个均匀的电流分布:一个电流密度为J 、均匀分布在半径为b 的圆柱内,另一个电流密度为J -、均匀分布在半径为a 的圆柱内。

由安培环路定律,分别求出两个均匀分布电流的磁场,然后进行叠加即可得到圆柱内外的磁场。

由安培环路定律0d CI μ⋅=⎰B l ,可得到电流密度为J 、均匀分布在半径为b 的圆柱内的电流产生的磁场为 020222b b b b b b r bb r b r J r B J r μμ⎧⨯<⎪⎪=⎨⨯⎪>⎪⎩ 电流密度为J -、均匀分布在半径为a 的圆柱内的电流产生的磁场为20222a a a a a a r a a r a r J r B J r μμ⎧-⨯<⎪⎪=⎨⨯⎪->⎪⎩这里a r 和b r 分别是点a o 和b o 到场点P 的位置矢量。

将a B 和b B 叠加,可得到空间各区域的磁场为圆柱外:22222b a ba b a r r B J r r μ⎛⎫=⨯- ⎪⎝⎭ ()b r b > 圆柱内的空腔外:2022b a a a r B J r r μ⎛⎫=⨯- ⎪⎝⎭ (,)b a r b r a <>空腔内: ()0022b a B J r r J d μμ=⨯-=⨯ ()a r a <I题 5.1 图题5.2图式中d 是点和b o 到点a o 的位置矢量。

由此可见,空腔内的磁场是均匀的。

5.3 下面的矢量函数中哪些可能是磁场?如果是,求其源变量J 。

(1) 0,r ar H e B H μ== (圆柱坐标)(2) 0(),x y ay ax H e e B H μ=-+= (3) 0,x y ax ay H e e B H μ=-=(4) 0,ar H e B H φμ==(球坐标系)解 根据恒定磁场的基本性质,满足0B ∇⋅=的矢量函数才可能是磁场的场矢量,否则,不是磁场的场矢量。

若是磁场的场矢量,则可由J H =∇⨯求出源分布。

(1)在圆柱坐标中 211()()20r rB ar a r r r rB ∂∂∇⋅===≠∂∂该矢量不是磁场的场矢量。

(2) ()()0a y a x x yB ∂∂∇⋅=-+=∂∂ 该矢量是磁场的矢量,其源分布为 20x y zza x y z a y a x e e e J H e ∂∂∂=∇⨯==∂∂∂- (3) ()()0a x a y x yB ∂∂∇⋅=+-=∂∂ 该矢量是磁场的场矢量,其源分布为 00x y z x y z a x a y e e e J H ∂∂∂=∇⨯==∂∂∂-(4) 在球坐标系中 11()0sin sin B ar r r B φθφθφ∂∂∇⋅===∂∂该矢量是磁场的场矢量,其源分布为 22sin 1ctag 2sin 00sin rr r r a a r rar e e e J H e e θφθθθθθφθ∂∂∂=∇⨯==-∂∂∂5.4 由矢量位的表示式()()d 4Rτμτπ''=⎰J r A r 证明磁感应强度的积分公式 03()()d 4Rτμτπ'⨯'=⎰J r RB r 并证明0B ∇⋅=解: 0()()()d 4R τμτπ''=∇⨯=∇⨯=⎰J r B r A r 0()d 4Rτμτπ''∇⨯=⎰J r01()()d 4R τμτπ''-⨯∇=⎰J r03()()d 4R τμτπ''-⨯-=⎰RJ r 03()d 4Rτμτπ'⨯'⎰J r R [()]0∇⋅=∇⋅∇⨯=B A r5.5 有一电流分布0()()z rJ r a J r e =≤,求矢量位()A r 和磁感应强度()B r 。

解 由于电流只有z e 分量,且仅为r 的函数,故()A r 也只有z e 分量,且仅为r 的函数,即()()z z A r A r e =。

在圆柱坐标系中,由)(r A z 满足的一维微分方程和边界条件,即可求解出)(r A ,然后由()()r B A r =∇⨯可求出()B r 。

记a r ≤和a r ≥的矢量位分别为1()A r 和2()A r 。

由于在a r ≥时电流为零,所以211001()()z z A A r r J r r r r μ∂∂∇==-∂∂ (a r ≤) 2221()()0z z A A r r r r r∂∂∇==∂∂ (a r ≥)由此可解得3100111()ln 9z A r J r C r D μ=-++222ln )(D r C r A z +=)(1r A z 和)(2r A z 满足的边界条件为 ① 0→r 时,)(1r A z 为有限值② a r =时,)()(21a A a A z z =,a r z a r z rAr A ==∂∂=∂∂21由条件①、②,有 01=C ,300221ln 9J a C a D μ-=+,2002113J a C aμ-=由此可解得 320013C J a μ=-,320011(ln )33D J a a μ=--故310011()9z A r J r D μ=-+ (a r ≤)3320000111()ln (ln )333z A r J a r J a a μμ=--- (a r ≥)式中常数1D 由参考点确定,若令0=r 时,0)(1=r A z ,则有01=D 。

空间的磁感应强度为题5.6图211001()()3r r J r φμ=∇⨯=B A e (r a <) 30022()()3J a r r rφμ=∇⨯=B A e (r a >)5.6 如题5.6图所示,边长分别为a 和b 、载有电流I 的小矩形回路。

(1)求远处的任一点),,(z y x P 的矢量位()A r ,并证明它可以写成 03()4m rp rA r μπ⨯=。

其中m z Iab p e =;(2)由A 求磁感应强度B ,并证明B 可以写成0()4I B d μΩπ=-∇ 式中2z r ab r e e d Ω⋅=场点对小电流回路所张的立体角。

解 (1)电流回路的矢量位为 01()d 4CIRμπ'=⎰A r l 式中:22212[()()]R x x y y z ''=-+-+=22212[2sin (cos sin )]r r x y x y θφφ''''-+++根据矢量积分公式d d C S l S ψψ=⨯∇⎰⎰,有 11d d ()C SR R '''=⨯∇⎰⎰l S而 11()()R R '∇=-∇所以 01()d ()4S I Rμπ'=-⨯∇⎰A r S对于远区场,y r x r '>>'>>,,所以r R ≈,故01()d ()4S I r μπ'=-⨯∇=⎰A r S 01[d ]()4S I r μπ'-⨯∇=⎰S 01()()4z Iab r μπ-⨯∇=e 03()4m rμπ-⨯-=rp 034m r p r μπ⨯(2)由于 03()()4m z r p r r A e μπ=-⨯-02s i n 4m p re φμθπ=故11(sin )()sin r A rA r r rB A e e φθφθθθ∂∂=∇⨯=-=∂∂03(2c o s s i n )4m r p r e e θμθθπ+ 又由于 3322cos 2cos sin ()()z r r r r r r e e e e θθθθ⋅+=-∇=-∇ 故 00022()()(d )444m z r z r p I I ab r r e e e e B μμμΩπππ⋅⋅=-∇=-∇=-∇5.7 半径为a 磁介质球,具有磁化强度为2()z Az B M e =+其中A 和B 为常数,求磁化电流和等效磁荷。

解 磁介质球内的磁化电流体密度为 2()20m z z z Az B Az =∇⨯=-⨯∇+=-⨯=J M e e e 等效磁荷体密度为 2()2m A z B A z zρ∂=-∇⋅=-+=-∂M 磁介质球表面的磁化电流面密度为22(cos )mS r az r Aa B θ==⨯=⨯+=J M ne e 22(cos )sin Aa B φθθ+e等效磁荷面密度为 22(cos )m r ar z Aa B σθ==⋅=⋅+=n Me e22(cos )cos Aa B θθ+5.8 如题5.8所示图,无限长直线电流I 垂直于磁导率分别为1μ和2μ的两种磁介质的分界面,试求:(1)两种磁介质中的磁感应强度1B 和2B ;(2)磁化电流分布。

解 (1)由安培环路定理,可得 2I rφπ=H e所以得到 0102I r φμμπ==B H e22I rφμμπ==B H e(2)磁介质在的磁化强度0200()12I r φμμμπμ-=-=M B H e 则磁化电流体密度00()1d 1d 1()()0d 2d m z z I rM r r r r r φμμπμ-=∇⨯==⋅=J M e e在0=r 处,2B 具有奇异性,所以在磁介质中0=r 处存在磁化线电流m I 。

以z 轴为中心、r 为半径作一个圆形回路C ,由安培环路定理,有 01d m C I I μ+=⋅=⎰B l 0I μμ 故得到 =m I 0(1)I μμ-在磁介质的表面上,磁化电流面密度为0mS z z ==?J M e 00()2rIre μμπμ- 5.9 已知一个平面电流回路在真空中产生的磁场强度为0H ,若此平面电流回路位于磁导率分别为1μ和2μ的两种均匀磁介质的分界平面上,试求两种磁介质中的磁场强度1H 和2H 。

相关文档
最新文档