工程电磁场第八版课后答案

合集下载

工程电磁场课后习题答案

工程电磁场课后习题答案

E2-9 在中心点位于原点,边长为L的媒质立方体内的极化强度矢量为()0e x y z P P e x e y e z =++,(a) 计算面和体束缚电荷密度; (b) 证明总束缚电荷为零。

解:据题,体束缚电荷密度为:03v e P P ρ=-∇⋅=- (公式y x zE E E E x y z∂∂∂∇⋅=++∂∂∂) 在2L x =的面002s x e L e P P x P ρ=⋅== 在2L x =-的面00()2s x e Le P P x P ρ=-⋅=-= 同理,在2Ly =和2L y =-的面,02s L P ρ=在2L z =和2L z =-的面,02s LP ρ=∴(a )六个面上的面束缚电荷密度均为:0/2P L ρ=s体束缚电荷密度为:03v P ρ=-∴ (b) 总束缚电荷为:23006()302s v LQ Q Q L P P L =+=-=E2-13 半径为a 的球内充满体电荷密度为f ρ的电荷。

已知球内外的电场强度是⎪⎩⎪⎨⎧≥+≤+=-)()()(24523a r rAa a a r Ar r E r求体电荷密度(全部空间的介电常数均为0ε)。

解:0f E ρε∇⋅=(1)在r a ≤的区域内:23221[()]E r r Ar r r∂∇⋅=⋅+∂ 254r Ar =+ 20(54)f r Ar ρε∴=+(2)在r a ≥的区域内:254221[()]E r a Aa r r r-∂∇⋅=⋅⋅+∂ = 0 0f ρ∴=∴体电荷密度为:20(54),(),()f r Ar r a r a ερ⎧+≤=⎨≥⎩E2-17 两媒质分界面为z=0面,已知1223r r εε==和,如果已知区域1中的123(5)x y z E e y e x e z =-++我们能求出区域2中哪些地方的2E 和2D 呢?能求出区域2中任意点的2E 和2D 吗? 解:(1)在两种媒质的分解面z=0上,由于没有电荷的存在,电位移矢量的法线方向连续。

工程电磁场第八版课后答案

工程电磁场第八版课后答案
c) |M||2N|(M + N): |( 10, 4, 8)||(16, 14, 4)|( 2, 11, 10) = (13.4)(21.6)( 2, 11, 10) = ( 580.5, 3193, 2902)
1.2. Vector A extends from the origin to (1,2,3) and vector B from the origin to (2,3,-2). a) Find the unit vector in the direction of (A B): First
A B = (ax + 2ay + 3az) wphose magnitude is |A B| = [( ax 3 3 = 5.20. The unit vector is therefore
(2ax + 3ay 2az) = ( ax ay + 5az)
ay + 5az) · ( ax
ay + 5az)]1/2
CHAPTER 1
1.1. Given the vectors M = 10ax + 4ay 8az and N = 8ax + 7ay 2az, find: a) a unit vector in the direction of M + 2N.
M + 2N = 10ax Thus
4ay + 8az + 16ax + 14ay 4az = (26, 10, 4)
=
(1.5ax
+ 2.5ay
+
0.5az )/2.96
1.3. The vector from the origin to the point A is given as (6, 2, 4), and the unit vector directed from

工程电磁场 (杨宪章 邹玲 樊亚东 著) 中国电力出版社 课后答案 题ch1

工程电磁场 (杨宪章 邹玲 樊亚东 著) 中国电力出版社 课后答案 题ch1

习题1-10解:首先物理概念上分析电场强度为零的点一定是A 点,因为0<q<1,A 离-qp 近,离q 远,则二者即产生的AE v 会抵消,而B 点不行,这是因为离q 近离-pq 远,即产生的E v一大一小无法抵消。

令x 如图,则两点电荷在A 点产生的场强分别为:q: ()r x d q q E rv 2014+=π, -pq: ()r x pq E v v 2024πε−= 令A E v=021=+E E v r ,有()221xp x d =+ ()22x x d p =+ 两边开方取正值:d pp x −=1习题1-11解:分析知,只可能是A 点,Q 12q q >,∴A 点必须离1q 近、离2q 远才行 令x 如图示,据题意有()2231x d x +=,x=1.37d习题1-12解:在直角坐标系中,取棒中心在原点处,棒沿z 轴放置。

①因为求的点在y 轴上,所以棒上下的对称性决定了E r的z 分量被抵消了,只剩了y 分量,而且可只计算一半棒上的电荷在p 点产生的场强,乘2即为所求。

设棒长2L ,显然dz Lqdz dq 2==τ()∫+=Lr z dz L q E 02/32201.041.022πε()()2/122201.01.081.02Lz ZL q +×=πε课后答案网ww w.kh da w .c om=()⎥⎥⎦⎤⎢⎢⎣⎡−+01.01.0*42/1220LLL qεπ 3.0*40πεq=m V /5.5994= y E v r 5.5994=∴②近似计算棒是无限长而保持电场线密度不变,计算结果是:m V q L qr E /9.59971.022200=⋅⋅==πεπτ L 并非无限长,还是取以前的31.0322≈−=L 它与上述的相对误差%0567.0%100*5.59945.59949.5997=−习题1-13解:已知一圆环产生的场强()i x r q qx E v v 232204+=π 此圆环可分为无数半径为r 的细圆环,其上微电荷 rdr dS dq πσσ2⋅==其产生的微元电场 ()i x r x rdr E d vv 2322042+⋅⋅=πεπσ 故r 从1R 到2R 积分即所有圆环产生的场强:()i x r x rdr E R R v v ∫+⋅⋅=212322042πεπσ()()i x r x r d x R R v ∫++=2123222204εσ()i x r x R R v 122122024+−=εσ课后ww w.kh da w .c om()()i x R xR x v ⎥⎥⎦⎤⎢⎢⎣⎡+−+=21222212210112εσ 讨论:1)σ不变,01→R ,得()⎥⎦⎤⎢⎢⎣⎡+−=21222012x R xE εσ 2)又∞→xR 2得 02εσ=E 这相当于∞→2R 比x 快的多,即变成无限大带电平板。

工程电磁场第八版课后答案第02章汇编

工程电磁场第八版课后答案第02章汇编

So
10 9 25 ⇥ ( E=
4⇡✏0
3ax + 4ay (41)1.5
4az )
+
60

(4ax 2ay (45)1.5
+
5az )
= 4.58ax 0.15ay + 5.51az
b) At what point on the y axis is Ex = 0? P3 is now pat (0, y, 0), so R13 = 4ax +p(y + 2)ay 7az and R23 = 3ax + (y 4)ay + 2az. Also, |R13| = 65 + (y + 2)2 and |R23| = 13 + (y 4)2.
[z
1 (d/2)]2
+
[z
+
1 (d/2)]2
az
V/m
(2)
b) find the electric field everywhere on the x axis: We proceed as in part a, except that now r = xax.
Eq. (1) becomes
q ET (x) = 4⇡✏0
2qd az
4⇡✏0 [x2 + (d/2)2]3/2
14
2.7. A 2 µC point charge is located at A(4, 3, 5) in free space. Find E⇢, E , and Ez at P (8, 12, 2). Have
ET (z)
=
q 4⇡✏0
[z
1 (d/2)]2

工程电磁场课后答案

工程电磁场课后答案

电磁兼容性
总结词
电磁兼容性是研究电磁场和电子系统相互作 用的学科。
详细描述
电磁兼容性主要关注电子系统在电磁环境中 的性能表现,包括电磁干扰(EMI)和电磁敏 感度(EMS)等问题。通过学习电磁兼容性,
学生可以了解如何设计和实施有效的电磁屏 蔽、滤波和接地措施,以确保电子系统的可 靠性和稳定性。这对于电子设备和系统的设
磁场能量存储
磁力发电机
利用磁场和导线的相对运动产生感应电动势的原理,将机械能转换为电能进行存 储。
磁性存储器
利用不同磁性材料的不同磁化方向来存储数据,通过改变磁性材料的磁化方向来 读取和写入数据。
电场能量存储
电容
利用电极板之间的电场储存电能,具 有充电和放电的能力,常用于滤波、 去耦和储能等电路中。
总结词
恒定磁场的散度和旋度均为零。
详细描述
由于恒定磁场中电流是恒定的,因此其磁 场强度不会随时间变化,散度和旋度均为 零。
时变电磁场
详细描述
时变电磁场具有以下特性,电场和磁场都 随时间变化,电场和磁场之间存在相互耦
合,电磁波可以传播。
A 总结词
时变电磁场是指电磁场随时间变化 的电磁场。
B
C
D
详细描述
总结词
静电场的散度和旋度分别为零 和不为零。
详细描述
由于静电场中电荷是静止的, 因此其电场线不会随时间变化 ,散度和旋度均为零。
恒定磁场
总结词
详细描述
恒定磁场是由恒定电流产生的磁场,其磁 场强度不随时间变化。
恒定磁场具有以下特性,磁场强度与电流 密度成正比,磁感应线是闭合曲线且无旋 、无源,磁场强度与磁势梯度成正比。
高频电磁波在医疗领域的应用

工程电磁场第八版课后答案第10章

工程电磁场第八版课后答案第10章

find:
p
a) C: Use Z0 = L/C, or
C
=
L Z02
=
5 ⇥ 10 (72)2
7
= 9.6 ⇥ 10
11 F/m = 96 pF/m
vp:
vp
=
p1 LC
=p (5 ⇥ 10
1 7)(9.6 ⇥ 10
= 1.44 ⇥ 108 m/s 11)
c) if f = 80 MHz:
p
2⇡ ⇥ 80 ⇥ 106
rs
s
Z0 =
Z= Y
R + j!L = G + j!C
17 + j2.1 ⇥ 102 75 ⇥ 10 6 + j2.4 ⇥ 10
2
= 93.6
j3.64 ⌦
10.2. A sinusoidal wave on a transmission line is specified by voltage and current in phasor form:
ej!t
=
2V0 Z0
sin(
z) sin(!t)
181
10.5. Two characteristics of a certain lossless transmission line are Z0 = 50 ⌦ and = 0+j0.2⇡ m 1
at f = 60 MHz.
p
p
a) Find L and C for the line: We have = 0.2⇡ = ! LC and Z0 = 50 = L/C. Thus
In phasor form, the forward and backward waves are:

工程电磁场第八版课后答案第01章

工程电磁场第八版课后答案第01章
c) |M||2N|(M + N): |( 10, 4, 8)||(16, 14, 4)|( 2, 11, 10) = (13.4)(21.6)( 2, 11, 10) = ( 580.5, 3193, 2902)
1.2. Vector A extends from the origin to (1,2,3) and vector B from the origin to (2,3,-2). a) Find the unit vector in the direction of (A B): First
=
(1.5ax
+ 2.5ay
+
0.5az )/2.96
1.3. The vector from the origin to the point A is given as (6, 2, 4), and the unit vector directed from
the origin toward point B is (2, 2, 1)/3. If points A and B are ten units apart, find the coordinates
positive or negative. This apparent sign ambiguity is not the real problem, however, as we
really wapnt thpe mpagnitude of the angle anyway. Choosing the positive sign, we are left with sin ✓ = 7 5/( 29 9) = 0.969. Two values of ✓ (75.7 and 104.3 ) satisfy this equation, and

工程电磁场 课后答案 王泽忠 全玉生 卢斌先 著 清华大学出版社课后题解

工程电磁场 课后答案 王泽忠 全玉生 卢斌先 著 清华大学出版社课后题解

解 极板间的电场强度为均匀的,各极板位于等位面上。
1)各极板间距相同,因此 U AC = U CD = U DB = U / 3 , 在 C、D 两金属片的两面均匀分布有电量相同的正、负面电荷,σ = ε 0U / d 各极板间的电场强度相同, E = U / d
2)将 C 和 D 两金属片用导线联接,则U CD = 0 ,ECD = 0 ,由于 A、B 极板上的电荷不变,
E1
=
ρr1r1 2ε 0
孔洞内充满充满体密度为 − ρ 的电荷时,由 − ρ 在场点处产生
的场强为
E2
=

ρr2 r2 2ε 0
则所求场点的电场强度为
( ) E
=
E1
+
E2
=
ρ
r1r1 − r2 r2 2ε 0
= ρdrab 2ε 0
式中 rab 为两圆柱轴线间距 d 的单位矢量,方向为从大圆柱体的轴心指向小圆柱体的轴心。
∫ ∫ ∫ E(2l,0)
=
2
α 0
dE
=
2e x
α τdy cosθ 0 4πε 0r 2
= τex 4πε 0l
α
cosθdθ
0
= τex sinα =
4πε 0l
4
τe x 5πε 0l
∫ ∫ ϕ(2l,0) =
2
α

=
τ
0
4πε 0
α dθ 0 cosθ
=
τ 2πε 0
lntan
1 2
tan −1
=
1 r2
∂ r 2 ∂r
∂ϕ ∂r
=
1 r2
∂ ∂r
r
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b) the region in which Ey = Ez: This occurs when 2zy sin 2x = y2 sin 2x, or on the plane 2z = y, with |x| < 2, |y| < 2, |z| < 1.
c) the region in which E = 0: We would have Ex = Ey = Ez = 0, or zy2 cos 2x = zy sin 2x = y2 sin 2x = 0. This condition is met on the plane y = 0, with |x| < 2, |z| < 2.
p
p
a) the dot productp: First, A · B = p2 3 + 6 = 5 = AB cos ✓, where A = 22 + 12 + 32 = 14,
and where B = 12 + 32 + 22 = 14. Therefore cos ✓ = 5/14, so that ✓ = 69.1 .
( 48, 72, 162) aG = |( 48, 72, 162)| = ( 0.26, 0.39, 0.88)
c) a unit vector directed from Q toward P :
aQP
=
P |P
Q Q|
=
(3,p 1, 4) 26
=
(0.59, 0.20,
0.78)
d) the equation of the surface on which |G| = 60: We write 60 = |(24xy, 12(x2 + 2), 18z2)|, or 10 = |(4xy, 2x2 + 4, 3z2)|, so the equation is
We use the relation A ⇥ B = |A||B| sin ✓n. With the given vectors we find
A

B
=
14ay
+
7az
=
p 75
2ayp+
| {z5
az
}
=
p 9
+
4
+
p 16 4
+
1
+
4
sin

n
±n
where n is identified as shown; we see that n can be positive or negative, as sin ✓ can be
1
1.4. A circle, centered at the origin with a radius of 2 units, lies in the xy plane. Determinepthe unit vector in rectangular components that lies in the xy plane, is tangent to the circle at ( 3, 1, 0), and is in the general direction of increasing values of y:
hence the real ambiguity.
p
In using the dpot product, we find A · B = 6 2 8 = 4 = |A||B| cos ✓ = 3 29 cos ✓, or
cos ✓ = 4/(3 29) = 0.248 ) ✓ = 75.7 . Again, the minus sign is not important, as we
CHAPTER 1
1.1. Given the vectors M = 10ax + 4ay 8az and N = 8ax + 7ay 2az, find: a) a unit vector in the direction of M + 2N.
M + 2N = 10ax Thus
4ay + 8az + 16ax + 14ay 4az = (26, 10, 4)
care only about the angle magnitude. The main point is that only one ✓ value results when
using the dot product, so no ambiguity.
1.9. A field is given as
of point B.
With A = (6, 2,
|(6
2 3
B
)ax
(2
4) and
2 3
B)ay
B= (4
+13 B13(B2,)az2|,=1)1, 0we
use
the
fact
that
|B
A| = 10, or
Expanding, obtain
36
8B
+
4 9
B2
+
4
8 3
B
+
4 9
B
2
+
16
=
p 1 + 1 + 25
=
aAB = ( ax ay + 5az)/5.20
b) find the unit vector in the direction of the line extending from the origin to the midpoint of the line joining the ends of A and B:
A unit vector tangent to this circle in the general increasing y direction is t = a . Itspx and y components are tx = a · ax = sin , and ty = a ·pay = cos . At the point ( 3, 1),
b) the cross product: Begin with
ax ay az A ⇥ B = 2 1 3 = 11ax ay 7az
1 32
p
p
p
and find
then |A ✓ = sin

1
Bp| = 112 + 12 + 171/14 = 69.1
72
=
171. So now, with |A ⇥ B| = AB sin ✓ =
100 = 16x2y2 + 4x4 + 16x2 + 16 + 9z4
1.6. Find the acute angle between the two vectors A = 2ax + ay + 3az and B = ax 3ay + 2az by using
the definition of:
= 150 , and so t = sin 150 ax cos 150 ay = 0.5(ax + 3ay).
1.5. A vector field is specified as G = 24xyax + 12(x2 + 2)ay + 18z2az. Given two points, P (1, 2, 1) and Q( 2, 1, 3), find: a) G at P : G(1, 2, 1) = (48, 36, 18) b) a unit vector in the direction of G at Q: G( 2, 1, 3) = ( 48, 72, 162), so
p
+
8 3
B
+
1 9
B
2
=
100
or B2
8B
44 = 0. Thus B = 8±
64 2
176 = 11.75 (taking positive option) and so
B
=
2 3
(11.75)ax
2 3
(11.75)ay
+
1 3
(11.75)az
=
7.83ax
7.83ay + 3.92az
2
1.8. Demonstrate the ambiguity that results when the cross product is used to find the angle between two vectors by finding the angle between A = 3ax 2ay + 4az and B = 2ax + ay 2az. Does this ambiguity exist when the dot product is used?
The midpoint is located at
Pmp = [1 + (2 1)/2, 2 + (3 2)/2, 3 + ( 2 3)/2)] = (1.5, 2.5, 0.5)
The unit vector is then
amp
=
p(1.5ax + 2.5ay + 0.5az) (1.5)2 + (2.5)2 + (0.5)2
positive or negative. This apparent sign ambiguity is not the real problem, however, as we
really wapnt thpe mpagnitude of the angle anyway. Choosing the positive sign, we are left with sin ✓ = 7 5/( 29 9) = 0.969. Two values of ✓ (75.7 and 104.3 ) satisfy this equation, and
相关文档
最新文档