基于网格和密度的模糊C均值聚类初始化方法

合集下载

模糊C均值聚类算法及实现(最新整理)

模糊C均值聚类算法及实现(最新整理)

模糊C均值聚类算法及实现摘要:模糊聚类是一种重要数据分析和建模的无监督方法。

本文对模糊聚类进行了概述,从理论和实验方面研究了模糊c均值聚类算法,并对该算法的优点及存在的问题进行了分析。

该算法设计简单,应用范围广,但仍存在容易陷入局部极值点等问题,还需要进一步研究。

关键词:模糊c均值算法;模糊聚类;聚类分析Fuzzy c-Means Clustering Algorithm and ImplementationAbstract: Fuzzy clustering is a powerful unsupervised method for the analysis of data and construction of models.This paper presents an overview of fuzzy clustering and do some study of fuzzy c-means clustering algorithm in terms of theory and experiment.This algorithm is simple in design,can be widely used,but there are still some problems in it,and therefore,it is necessary to be studied further.Key words: fuzzy c-Mean algorithm;fuzzy clustering;clustering analysis1 引言20世纪90年代以来,随着信息技术和数据库技术的迅猛发展,人们可以非常方便地获取和存储大量的数据。

但是,面对大规模的数据,传统的数据分析工具只能进行一些表层的处理,比如查询、统计等,而不能获得数据之间的内在关系和隐含的信息。

为了摆脱“数据丰富,知识贫乏”的困境,人们迫切需要一种能够智能地、自动地把数据转换成有用信息和知识的技术和工具,这种对强有力数据分析工具的迫切需求使得数据挖掘技术应运而生。

模糊 c 均值算法

模糊 c 均值算法

模糊c 均值算法
模糊c均值算法,也叫Fuzzy C Means算法,是一种无监督的聚类算法。

与传统的聚类算法不同的是,模糊C均值算法允许同一样本点被划分到不同的簇中,而且每个样本点到各个簇的距离(或者说相似度)用模糊数表示,因而能更好地处理样本不清晰或重叠的情况。

模糊c均值算法的步骤如下:
1. 初始化隶属度矩阵U,每个样本到每个簇的隶属度都为0-1之间的一个随机数。

2. 计算质心向量,其中每一项的值是所有样本的对应向量加权后的和,权重由隶属度矩阵决定。

3. 根据计算得到的质心向量计算新的隶属度矩阵,更新每个样本点到每个簇的隶属度。

4. 如果隶属度矩阵的变化小于一个预先设定的阈值或者达到了最大迭代次数,则停止;否则,回到步骤2。

模糊c均值算法是一种迭代算法,需要进行多次迭代,直到满足一定的停止条件。

同时,该算法对于隶属度矩阵的初始值敏感,不同的初始值可能会导致不
同的聚类结果。

关于模糊c均值聚类算法

关于模糊c均值聚类算法

FCM模糊c均值1、原理详解模糊c-均值聚类算法fuzzy c-means algorithm (FCMA)或称(FCM)。

在众多模糊聚类算法中,模糊C-均值(FCM)算法应用最广泛且较成功,它通过优化目标函数得到每个样本点对所有类中心的隶属度,从而决定样本点的类属以达到自动对样本数据进行分类的目的。

聚类的经典例子然后通过机器学习中提到的相关的距离开始进行相关的聚类操作经过一定的处理之后可以得到相关的cluster,而cluster之间的元素或者是矩阵之间的距离相对较小,从而可以知晓其相关性质与参数较为接近C-Means Clustering:固定数量的集群。

每个群集一个质心。

每个数据点属于最接近质心对应的簇。

1.1关于FCM的流程解说其经典状态下的流程图如下所示集群是模糊集合。

一个点的隶属度可以是0到1之间的任何数字。

一个点的所有度数之和必须加起来为1。

1.2关于k均值与模糊c均值的区别k均值聚类:一种硬聚类算法,隶属度只有两个取值0或1,提出的基本根据是“类内误差平方和最小化”准则,进行相关的必要调整优先进行优化看是经典的欧拉距离,同样可以理解成通过对于cluster的类的内部的误差求解误差的平方和来决定是否完成相关的聚类操作;模糊的c均值聚类算法:一种模糊聚类算法,是k均值聚类算法的推广形式,隶属度取值为[0 1]区间内的任何数,提出的基本根据是“类内加权误差平方和最小化”准则;这两个方法都是迭代求取最终的聚类划分,即聚类中心与隶属度值。

两者都不能保证找到问题的最优解,都有可能收敛到局部极值,模糊c均值甚至可能是鞍点。

1.2.1关于kmeans详解K-means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。

K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最优分类,使得评价指标J最小。

模糊聚类算法的原理和实现方法

模糊聚类算法的原理和实现方法

模糊聚类算法的原理和实现方法模糊聚类算法是一种数据分类和聚类方法,它在实际问题中有着广泛的应用。

本文将介绍模糊聚类算法的原理和实现方法,包括模糊C均值(FCM)算法和模糊神经网络(FNN)算法。

一、模糊聚类算法的原理模糊聚类算法是基于模糊理论的一种聚类方法,它的原理是通过对数据进行模糊分割,将每个数据点对应到多个聚类中心上,从而得到每个数据点属于各个聚类的置信度。

模糊聚类算法的原理可以用数学公式进行描述。

设有n个数据样本点X={x1, x2, ..., xn},以及m个聚类中心V={v1, v2, ..., vm}。

对于每个数据样本点xi,令uij为其属于第j个聚类中心的置信度,其中j=1,2,..., m,满足0≤uij≤1,且∑uij=1。

根据模糊理论,uij的取值表示了xi属于第j个聚类中心的隶属度。

为了达到聚类的目的,我们需要对聚类中心进行调整,使得目标函数最小化。

目标函数的定义如下:J = ∑∑(uij)^m * d(xi,vj)^2其中,m为模糊度参数,d(xi,vj)为数据点xi与聚类中心vj之间的距离,常用的距离度量方法有欧氏距离和曼哈顿距离。

通过不断调整聚类中心的位置,最小化目标函数J,即可得到模糊聚类的结果。

二、模糊C均值(FCM)算法的实现方法模糊C均值算法是模糊聚类算法中最经典的一种方法。

其具体实现过程如下:1. 初始化聚类中心:随机选取m个数据点作为初始聚类中心。

2. 计算隶属度矩阵:根据当前聚类中心,计算每个数据点属于各个聚类中心的隶属度。

3. 更新聚类中心:根据隶属度矩阵,更新聚类中心的位置。

4. 判断是否收敛:判断聚类中心的变化是否小于设定的阈值,如果是则停止迭代,否则返回第2步。

5. 输出聚类结果:将每个数据点分配到最终确定的聚类中心,得到最终的聚类结果。

三、模糊神经网络(FNN)算法的实现方法模糊神经网络算法是一种基于模糊理论和神经网络的聚类方法。

其实现过程和传统的神经网络类似,主要包括以下几个步骤:1. 网络结构设计:确定模糊神经网络的层数和每层神经元的个数。

matlab模糊c均值聚类算法

matlab模糊c均值聚类算法

matlab模糊c均值聚类算法模糊C均值聚类算法是一种广泛应用于数据挖掘、图像分割等领域的聚类算法。

相比于传统的C均值聚类算法,模糊C均值聚类算法能够更好地处理噪声数据和模糊边界。

模糊C均值聚类算法的基本思想是将样本集合分为K个聚类集合,使得每个样本点属于某个聚类集合的概率最大。

同时,每个聚类集合的中心点被计算为该聚类集合中所有样本的均值。

具体实现中,模糊C均值聚类算法引入了模糊化权重向量来描述每个样本点属于各个聚类集合的程度。

这些权重值在每次迭代中被更新,直至达到预设的收敛精度为止。

模糊C均值聚类算法的目标函数可以表示为:J = ∑i∑j(wij)q||xi-cj||2其中,xi表示样本集合中的第i个样本,cj表示第j个聚类集合的中心点,wij表示第i个样本点属于第j个聚类集合的权重,q是模糊指数,通常取2。

不同于C均值聚类算法,模糊C均值聚类算法对每个样本点都考虑了其属于某个聚类集合的概率,因此能够更好地处理模糊边界和噪声数据。

同时,模糊C均值聚类算法可以自适应地确定聚类的数量,从而避免了事先设定聚类数量所带来的限制。

在MATLAB中,可以使用fcm函数实现模糊C均值聚类算法。

具体来说,fcm函数的使用方法如下:[idx,center] = fcm(data,k,[options]);其中,data表示样本矩阵,k表示聚类数量,options是一个包含算法参数的结构体。

fcm函数的输出包括聚类标签idx和聚类中心center。

MATLAB中的fcm函数还提供了其他参数和选项,例如模糊权重阈值、最大迭代次数和收敛精度等。

可以根据具体应用需求来设置这些参数和选项。

模糊c均值聚类算法的概念

模糊c均值聚类算法的概念

模糊c均值聚类算法的概念
模糊C均值聚类算法(Fuzzy C-means clustering algorithm,简
称FCM)是一种基于模糊理论的聚类算法,用于将数据集划
分为若干个模糊的子集,每个子集代表一个聚类。

FCM算法的目标是最小化数据点与聚类中心之间的模糊距离。

模糊距离所描述的是一个数据点属于每个聚类的可能性,而不仅仅是属于一个特定聚类的二进制标识。

FCM算法的步骤如下:
1. 初始化聚类中心,可以随机选择数据点作为初始中心。

2. 根据初始聚类中心,计算每个数据点对于每个聚类中心的成员关系度(即属于每个聚类的可能性)。

3. 根据成员关系度更新聚类中心,计算每个聚类中心的坐标。

4. 重复步骤2和3,直到聚类中心不再发生变化或达到最大迭
代次数。

在每次迭代中,FCM算法根据每个数据点到聚类中心的距离
计算其模糊隶属度,按照隶属度对数据点进行聚类。

每个数据点隶属于每个聚类的可能性是在0到1之间连续变化的,表示了数据点与每个聚类之间的相似程度。

相比于传统的硬聚类算法,模糊C均值聚类算法允许数据点
属于多个聚类,更好地处理了数据点的模糊性,适用于数据集中存在重叠样本或不确定性较高的场景。

模糊 c 均值聚类算法

模糊 c 均值聚类算法

模糊 c 均值聚类算法模糊 c 均值聚类算法是一种常用的聚类算法,其特点是能够解决数据集中存在重叠现象的问题,适用于多类别分类和图像分割等领域。

本文将从算法原理、应用场景、优缺点等方面分析模糊c 均值聚类算法。

一、算法原理模糊 c 均值聚类算法与传统的聚类算法相似,都是通过对数据集进行聚类,使得同一类的数据样本具有相似的特征,不同类的数据样本具有不同的特征。

但是模糊c 均值聚类算法相对于传统的聚类算法而言,其对于数据集中存在重叠现象具有一定的优越性。

模糊 c 均值聚类算法的主要思想是:通过迭代计算,确定数据集的类别个数,并计算每个数据样本属于不同类别的概率值。

在此基础上,通过计算每个聚类中心的权值,并对每个数据样本属于不同类别的概率进行调整,以达到数据样本的合理分类。

二、应用场景模糊 c 均值聚类算法的应用范围较广,主要包括:1.多类别分类:在多类别分类中,不同的类别往往具有比较明显的特征区别,但是存在一些数据样本的特征存在重叠现象。

此时,模糊 c 均值聚类算法可以对这些数据样本进行合理分类。

2.图像分割:在图像分割过程中,一张图片包含了不同的对象,这些对象的特征往往具有一定的相似性。

模糊 c 均值聚类算法可以通过对这些相似的特征进行分类,实现对于图像的自动分割。

3.市场分析:在市场分析中,需要根据一定的统计规律,对市场中的产品进行分类。

模糊 c 均值聚类算法可以帮助市场研究人员实现对市场中产品的自动分析分类。

三、优缺点分析模糊 c 均值聚类算法相对于传统的聚类算法而言,其对于数据集中存在重叠现象具有一定的优越性,具体优缺点如下所示:1.优点:(1) 能够有效地解决重叠现象问题,在多类别数据分类和图像分割等领域具有比较好的应用前景。

(2) 通过迭代计算,能够实现对数据集的自动分类,自动化程度高。

2.缺点:(1) 算法的时间复杂度比较高,需要进行多次迭代计算,因此在数据量较大时,运算时间比较长。

(2) 模糊 c 均值聚类算法对于初始聚类中心的选择较为敏感,不同的聚类中心初始化可能会导致最终分类效果的不同。

模糊c均值聚类算法

模糊c均值聚类算法

模糊c均值聚类算法
模糊c均值聚类算法(Fuzzy C-Means Algorithm,简称FCM)是一种基于模糊集理论的聚类分析算法,它是由Dubes 和Jain于1973年提出的,也是用于聚类数据最常用的算法之
一。

fcm算法假设数据点属于某个聚类的程度是一个模糊
的值而不是一个确定的值。

模糊C均值聚类算法的基本原理是:将数据划分为k个
类别,每个类别有c个聚类中心,每个类别的聚类中心的模糊程度由模糊矩阵描述。

模糊矩阵是每个样本点与每个聚类中心的距离的倒数,它描述了每个样本点属于每个聚类中心的程度。

模糊C均值聚类算法的步骤如下:
1、初始化模糊矩阵U,其中每一行表示一个样本点,每
一列表示一个聚类中心,每一行的每一列的值表示该样本点属于该聚类中心的程度,U的每一行的和为
1.
2、计算聚类中心。

对每一个聚类中心,根据模糊矩阵U
计算它的坐标,即每一维特征值的均值。

3、更新模糊矩阵U。

根据每一个样本点与该聚类中心的距离,计算每一行的每一列的值,其中值越大,说明该样本点属于该聚类中心的程度就越大。

4、重复步骤2和步骤
3,直到模糊矩阵U不再变化,即收敛为最优解。

模糊C均值聚类算法的优点在于它可以在每一个样本点属于每一类的程度上,提供详细的信息,并且能够处理噪声数据,因此在聚类分析中应用十分广泛。

然而,其缺点在于计算量较大,而且它对初始聚类中心的选取非常敏感。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

次, 对于聚类边界以及交叉数据的处理上 , 基于网格 和密度 的算
0 引 言
模糊 C 均值聚类 是 目前聚类 分析 中最 受欢迎 的算法 之一 。 它把聚类问题归结为一个 非线性规划 问题 , 利用交替 优化策 略
求 解 无 监督 分 类 问题 , 得 令 人 满 意 的 效 果 。然 而研 究 表 明模 取
Ab ta t sr c F z — a s cu t rnga g rt uz y c me n l se i l o hm s o e o he mo twi s r a l se ig a g rt i i n ft s de p e d c u t rn l oihm、 t ro ma c to l pe d n t e Ispef r n e srngy de n s o h
( hn q gIstt o ehtoy C ogig4 0 5 ,hn ) C og i tuefTcrlg , hn q 0 0 0 C i n ni o n a 。 C lg nom t nE gnen , ainU i rt, ain1 62 Lann C i ) ( ol eo fr ai n i r g D l nv sy D l 16 2,io i e fI o ei a ei a g,hn a
iiilp r me es To s l et i o e , n i ii ia in meho o uzy c me n l sei loih b s d o rd a d de iyi r p s d、 n ta a a tr . o v hsprblm a nta z to t d frf z — a s cu trngag rt m a e n g n nst sp o o e l i Grd a d d n i r e o e tac h lse ng c n e fs mp e , n nta ie t e i iilp r me e ff z y c me ns cu trng ag — i n e st a e us d t x r tt e cu tr e tr o a l s a d i ii z h nta a a tr o u z — a l se y i s l s i lo rt ihm. Exp rme ts o h tti eh d i e sbl n ai e i n h wst a h sm t o sf a i e a d v l d. Ke ywo ds r F z y c m e nscuse ng Grd De iy u z — a l tr i i nst
法往往会 耗费大量 时间 。鉴 于此 , 本文将 网格和 密度应用于模 糊C 均值聚类神经 网络参 数初始 化上 , 利用 网格 和密 度对聚类
样本 先进 行 一 个 粗 划 分 , 而 找 到 样 本 的 近似 聚类 中心 , 以此 从 并
来初始化初始聚类 中心 以及样本 分类数 C 。由于我们 应用 网格 和密度对样本 做的仅仅 是粗划分 , 不需要 对分类 的边 界准确处 理 , 以其提取近似聚类 中心 的效 率很高 。将 网格 和密度应用 所 于模 糊 C均 值 聚 类算 法 的初 始 化 , 长 补 短 , 高 整 个算 法 取 提
维普资讯
第2 5卷 第 3期
20 0 ain n f r mp trAp lc to s a d Sot e wa
Vo. 5 No 3 12 . Ma. 0 8 r2 0
基 于 网 格 和 密 度 的 模 糊 C均 值 聚 类 初 始 化 方 法
盛 莉 邹开其 邓冠男
( 庆 工 学 院计 算 机系 重 重 庆 4 05 00 0)
( 大连大学信息工程学院
辽宁 大连 16 2 162)


模糊 c均值聚类算法是 目前聚类分析 中最受欢迎 的算法之一, 但其聚类效果往往受初始 参数的影 响。针对这一 问题 , 提
出一 种 基 于 网 格 和 密度 的模 糊 c均 值 聚 类 初 始 化 方 法 。 以 网格 和 密 度 为 工 具 提 取 聚 类 样 本 的 类 聚 类 中心 , 此 来 初 始 化 模 糊 e均 以 值 聚 类 算 法 的 初 始 参 数 , 而 弥 补 原 算 法 的 不足 。 实验 证 明 方法 是 可行 的 、 效 的 。 从 有
关键词
模糊 c均值聚类 网格 密度
AN NI I I T ALI ATI Z ON ETHOD OR UZZY M EANS CLUS ERI M F F C. T NG ALGoRI THM BAS ED oN CRI AND D DENS TY I
S e g L hn i Z u Kaq o ii De g Gu n a n a nn
方 法是 提前 找 到样 本 的 近 似 聚类 中心 。然 而 , 目前 的 大 部 分 这
1 基本 概 念
定 义 1 通 过输 入 参 数 , , , , 以将 样 本 空 间 J 邑 … 可 S的 每一 维分 别分 成 , , , 个 区 间 , 而将 整 个 空 间 分 成 了有 邑 … 从
效 率。
糊C 均值类型的算法强烈依 赖于参数 的初始状 态 , 因是模 糊 原 聚类 目标 函数是一个非 凸函数 , 存在大量 的局部极值点 , 法容 算 易陷入局部极值点而得不到最优模糊划分。为了改善算法 的聚 类效果 , 人们 研究 对参 数的初始化方法 , 其中最受关 注的初 始化
相关文档
最新文档