PL03-WCY01中文资料

合集下载

全自动钢坯喷码机PLC控制系统设计

全自动钢坯喷码机PLC控制系统设计

全自动钢坯喷码机PLC控制系统设计目录摘要------------------------------------------------------------------------1 英文摘要-----------------------------------------------------------------------1 1 绪论-------------------------------------------------------------------------2 1.1 项目研究的背景-------------------------------------------------------------21.1.1国外打标机的发展-----------------------------------------------------21.1.2我国打号机的发展现状------------------------------------------------4 1.2钢坯打标机在炼钢生产中的作用----------------------------------------------51.3课题的提出及意义-----------------------------------------------------------52 气动回路设计-------------------------------------------------------6 2.1气动回路设计-----------------------------------------------------------------62.1.1气动回路的设计思路--------------------------------------------------62.1.2气动回路图的设计----------------------------------------------------62.2气动回路图各元件型号选择及其性能分析----------------------------------------73 硬件系统设计--------------------------------------------------------13 3.1 PLC型号选择及其性能分析--------------------------------------------------133.1.1可编程控制器的应用和发展-----------------------------------------------133.1.2 PLC的工作原理及其性能分析--------------------------------------------- 17 3.2 PLC中CPU的选择----------------------------------------------------------- 18 3.3电机的选择及其分析-----------------------------------------------------193.3.1步进电机的选用及分析-------------------------------------------------193.3.2三相异步电动机的选用及分析---------------------------------------------- 20 3.4传感器型号选择及其性能分析-------------------------------------------------- 223.4.1激光测距传感器------------------------------------------------------ 223.4.2 透射式电涡流测厚传感器---------------------------------------------- 224 软件设计部分-----------------------------------------------------25 4.1各运行部分之间距离与延时时间的设定--------------------------------------254.1.1各零件距离设定----------------------------------------------------254.1.2各运行速度设定----------------------------------------------------254.1.3其他值的计算------------------------------------------------------25 4.2 PLC控制系统流程的设计--------------------------------------------------264.2.1系统描述----------------------------------------------------------264.2.2 PLC控制系统------------------------------------------------------274.2.3PLC控制系统的扩展配置-------------------------------------------274.2.4程序主流程-------------------------------------------------------28 4.3 PLC的I/O地址分配-----------------------------------------------------31 4.4设计PLC的外部接线图---------------------------------------------------31 4.5电机控制电路主回路-----------------------------------------------------32 4.6设计梯形图程序------------------------------------------------------------334.6.1编写梯形图的软件介绍------------------------------------------------334.6.2用PLC对步进电机的控制方式描述-------------------------------------344.6.3采用多段管线PTO输出控制步进电机-----------------------------------374.6.4 PLC的抗干扰措施----------------------------------------------------465 研究工作的总结----------------------------------------------------476 致谢--------------------------------------------------------------487 参考文献----------------------------------------------------------498 附录--------------------------------------------------------------50附录一:气动回路设计图附录二:PLC编程程序梯形图全自动钢坯喷码机PLC控制系统设计摘要:工业自动化技术在近年来发展十分迅猛,当前工业自动化三大支柱技术之一的PLC技术以其很高的可靠性和抗干扰能力受到广泛的欢迎,在各行各业的技术改造过程中被大量地应用。

PC3SF21YVZB中文资料

PC3SF21YVZB中文资料

NOTICEq The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.q Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.q Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:(i)The devices in this publication are designed for use in general electronic equipment designs such as:--- Personal computers--- Office automation equipment--- Telecommunication equipment [terminal]--- Test and measurement equipment--- Industrial control--- Audio visual equipment--- Consumer electronics(ii)Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:--- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)--- Traffic signals--- Gas leakage sensor breakers--- Alarm equipment--- Various safety devices, etc.(iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:--- Space applications--- Telecommunication equipment [trunk lines]--- Nuclear power control equipment--- Medical and other life support equipment (e.g., scuba).q Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications other than those recommended by SHARP or when it is unclear which category mentioned above controls the intended use.q If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices. q This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.q Contact and consult with a SHARP representative if there are any questions about the contents of this publication.。

OC-3中文资料

OC-3中文资料

OC-3中⽂资料Headquarters :No. 669, Sec. 4 Chung Hsing RoadFeaturesCompliant with 155 Mbps ATM and SONET OC-3SDH STM-1 (S1.1) Industry standard 1×9 footprint SC duplex connector Single power supply 3.3 VDifferential LVPECL inputs and outputsCompatible with solder and aqueous wash processes Class 1 laser product complies with EN 60825-1 DescriptionThe TS3-0155-32S-P1-X transceivers utilizing 1310 nm MQW laser diodes are fully compliance to the 155 Mbps ATM and SONET OC-3 SDH STM-1 standard, anddesigned in industry standard 1×9 package with SC duplex connector. The transmitter section is a class 1 laser which is compliant to International Safety Standard EN 60825-1.Ordering InformationPART NUMBER INPUT/OUTPUTSIGNAL DETECTVOLTAGE TEMPERATURE TS3-0155-32S-P1 DC/DC LVPECL 3.3 V 0°C to 70 °C TS3-0155-32S-P1-E DC/DC LVPECL3.3 V40°C to 85°CAbsolute Maximum RatingsPARAMETER SYMBOL MIN MAX UNITS NOTEStorage Temperature T S ?40 85°CSupply V oltage Vcc ?0.5 6.0 V Input V oltage V IN ?0.5Vcc VOutput Current I o --- 50 mA Operating Current I OP --- 400 mA Soldering Temperature T SOLD--- 260 °C10 seconds on leadsHeadquarters :No. 669, Sec. 4 Chung Hsing RoadOperating EnvironmentPARAMETER SYMBOL MIN MAX UNITS NOTEAmbient Operating Temperature(TS3-0155-32S-P1)T AMB 0 70°C Ambient Operating Temperature (TS3-0155-32S-P1-E) T AMB ?40 85°CSupply V oltageVcc3.1 3.5 VTransmitter Electro-optical Characteristics(Vcc = 3.1 V to 3.5 V , TS3-0155-32S-P1: T A = 0°C to 70°C, TS3-0155-32S-P1-E: T A = ?40°C to 85°C)PARAMETER SYMBOL MIN TYP . MAX UNITS NOTEData RateB 50 155 200 Mb/sOutput Optical Power 9/125 µm fiber Pout ?15---8dBm AverageExtinction Ratio ER8.2 --- --- dB Center Wavelength λC 1261 1310 1360 nm Spectral Width (RMS) ?λ --- --- 4 nm Rise/Fall Time (10?90%) T r , f --- 1 2 nsOutput EyeCompliant with Telcordia GR-253-CORE Issue 3 and ITU-T recommendation G-957Power Supply Current I CC --- --- 140 mA Note 1 Data Input Current-Low I IL ?350--- --- µAData Input Current-HighI IH --- --- 350 µATransmitter Data Input V oltage-High V IH ? V CC ?1.1 --- ?0.74 V Note 2 Transmitter Data Input V oltage-LowV IL ? V CC2.0---1.58V Note 2Transmitter Data Input DifferentialV oltage V DIFF 0.3 --- 1.6 VNote 2Note 1: Not including the terminations.Note 2: These inputs are compatible with 10K, 10KH and 100K ECL and PECL input.Headquarters :No. 669, Sec. 4 Chung Hsing RoadReceiver Electro-optical Characteristics(Vcc = 3.1 V to 3.5 V , TS3-0155-32S-P1: T A = 0°C to 70°C, TS3-0155-32S-P1-E: T A = ?40°C to 85°C)PARAMETER SYMBOLMIN TYP . MAX UNITS NOTE Data RateB 50 155 200 Mb/sOptical Input Power-maximum P IN 0 --- --- dBm Note 1 Optical Input Power-minimum (Sensitivity)P IN--- --- ?34dBm Note 1Operating Center Wavelength λC 1100 --- 1600 nmSignal Detect-Asserted P A --- --- ?34 dBm AverageSignal Detect-Deasserted P D ?47--- --- dBm AverageSignal Detect-Hysteresis P A ? P D 1.0 --- --- dB Signal Detect Assert Time T SD + --- --- 100 µs Signal Detect Desssert Time T SD ? --- --- 100 µsSignal Detect Output voltage-High V OH ? V CC ?1.1 --- ?0.74 V Note 2 Signal Detect Output voltage-Low V OL ? V CC2.0---1.58V Note 2Power Supply CurrentI CC --- --- 100 mA Note 3 Data Output Rise, Fall Time (10?90%) T r, f --- 1 2 nsData Output V oltage-High V OH ? V CC ?1.1 --- ?0.74 V Note 2 Data Output V oltage-LowV OL ? V CC2.0---1.58V Note 2Note 1: The input data is at 155.52 Mbps, 223?1 PRBS data pattern with 72 “1”s and 72 “0”s inserted per the ITU-T recommendation G .958 Appendix 1. The receiver is guaranteed to provide output data with Bit Error Rate (BER) better than or equal to 1×10?10.Note 2: These outputs are compatible with 10K, 10KH and 100K ECL and PECL input. Note 3: The current exclude the output load current.Headquarters :No. 669, Sec. 4 Chung Hsing RoadTransmitter SectionThe transmitter section consists of a 1310 nm InGaAsP laser in an eye safe optical subassembly (OSA) which mates to the fiber cable. The laser OSA is driven by a LD driver IC which converts differential input LVPECL logic signals into an analog laser driving current. Receiver SectionThe receiver utilizes an InGaAs PIN photodiode mounted together with a trans-impedance preamplifier IC in an OSA. This OSA is connected to a circuit providing post-amplification quantization, and optical signal detection. Receiver Signal DetectSignal Detect is a basic fiber failure indicator. This is a single-ended LVPECL output. As the input optical power is decreased, Signal Detect will switch from high to low (deassert point) somewhere between sensitivity and the no light input level. As the input optical power is increased from very low levels, Signal Detect will switch back from low to high (assert point). The assert level will be at least 1.0 dB higher than the deassert level.Headquarters :No. 669, Sec. 4 Chung Hsing RoadEye DiagramTransmitter ReceiverSignal pattern: PRBS 23Signal pattern: PRBS 23 Input Power: ?35 dBmHeadquarters :No. 669, Sec. 4 Chung Hsing RoadPIN SYMBOL DESCRIPTION1 RX GNDReceiver Signal Ground.Directly connect this pin to the receiver ground plane. 2 RD +RD+ is an open-emitter output circuit.Terminate this high-speed differential LVPECL output with standard LVPECL techniques at the follow-on device input pin. (See recommended circuit schematic) 3RD ?RD – is an open-emitter output circuit.Terminate this high-speed differential LVPECL output with standard LVPECL techniques at the follow-on device input pin. (See recommended circuit schematic) 4SDSignal Detect.Normal optical input levels to the receiver result in a logic “1” output, V OH , asserted. Low input optical levels to the receiver result in a fault condition indicated by a logic “0” output V OL , deasserted Signal Detect is a single-ended LVPECL output. SD can be terminated with LVPECL techniques via 50 ?toV CCR ? 2 V. Alternatively, SD can be loaded with a 180 ? resistor to RX GND to conserve electrical power with small compromise to signal quality. If Signal Detect output is not used, leave it open-circuited. This Signal Detect output can be used to drive a LVPECL input on an upstream circuit,such as, Signal Detect input or Loss of Signal-bar. 5 V CCR Receiver Power Supply.Provide +3.3 Vdc via the recommended receiver power supply filter circuit. Locate the power supplyfilter circuit as close as possible to the V CCR pin. 6 V CCT Transmitter Power Supply.Provide +3.3 Vdc via the recommended transmitter power supply filter circuit. Locate the power supplyfilter circuit as close as possible to the V CCT pin. 7 TD ?Transmitter Data In-Bar.Terminate this high-speed differential LVPECL input with standard LVPECL techniques at the transmitter input pin. (See recommended circuit schematic) 8 TD +Transmitter Data In.Terminate this high-speed differential LVPECL input with standard LVPECL techniques at the transmitter input pin. (See recommended circuit schematic) 9TX GND Transmitter Signal Ground.Directly connect this pin to the transmitter signal ground plane. Directly connect this pin to thetransmitter ground plane.Headquarters :No. 669, Sec. 4 Chung Hsing RoadIn order to get proper functionality, a recommended circuit is provided in above recommended circuit schematic. When designing the circuit interface, there are a few fundamental guidelines to follow.(1) The differential data lines should be treated as 50 ? Micro strip or strip line transmission lines. This will help to minimize the parasitic inductance and capacitance effects. Locate termination at the received signal end of the transmission line. The length of these lines should be kept short and of equal length.(2) For the high speed signal lines, differential signals should be used, not single-ended signals, and these differential signals need to be loaded symmetrically to prevent unbalanced currents which will cause distortion in the signal.(3) Multi layer plane PCB is best for distribution of V CC , returning ground currents, forming transmission lines and shielding, Also, it is important to suppress noise from influencing the fiber-optic transceiver performance, especially the receiver circuit. (4) A separate proper power supply filter circuits shown in Figure for the transmitter and receiver sections. These filter circuits suppress Vcc noise over a broad frequency range, this prevents receiver sensitivity degradation due to V CC noise. (5) Surface-mount components are recommended. Use ceramic bypass capacitors for the 0.1 µF capacitors and a surface-mount coil inductor for 1 µH inductor. Ferrite beads can be used to replace the coil inductors when using quieter V CC supplies, but a coil inductor is recommended over a ferrite bead. All power supply components need to be placed physically next to the V CC pins of the receiver and transmitter.(6) Use a good, uniform ground plane with a minimum number of holes to provide a low-inductance ground current return for the power supply currents.Headquarters :No. 669, Sec. 4 Chung Hsing Roadmust be completely remove from the module. The transceiver is supplied with a process plug to prevent contamination during wave solder and aqueous rinse as well as during handling, shipping or storage.Solder fluxes should be water-soluble, organic solder fluxes. Recommended cleaning and degreasing chemicals for these transceivers are alcohol’s (methyl, isopropyl, isobutyl), aliphatics (hexane, heptane) and other chemicals, such as soap solution or naphtha. Do not use partially halogenated hydrocarbons for cleaning/degreasing.Headquarters :No. 669, Sec. 4 Chung Hsing RoadHeadquarters :No. 669, Sec. 4 Chung Hsing RoadRegulatory ComplianceFEATURE TEST METHOD PERFORMANCEElectrostatic discharge (ESD) to the electrical pinsMIL-STD-883D Method 3015.7 Class 1(>1 kV) – Human Body Model Electromagnetic interference (EMI)FCC Class B EN55022 Class BThe transceiver is mounded on a circuit card without a chassis enclosure at frequencies up to 1000 MHz. Margins will be dependent on customer’s board and chassis designs.Immunity Variation of IEC801-3 Typically show no measurable effect from a 10 V/mfiled swept from 30 MHz to 1000 MHz applied tothe transceiver without a chassis enclosure.FDA 21 CFR 1040.10 and 1040.11 Class 1FDA Accession Number: 0012715-01Eye safetyEN 60825-1:1994+A11EN 60950: 1992+A1+A2+A3+A4+A11EN 60825-2: 1994+A1TUV certificated Number: R 3-50005227Note : All information contained in this document is subject to change without notice.。

电力线_PL_载波通信芯片组SS_省略_P300_SSCP111及其应用_邓海洋

电力线_PL_载波通信芯片组SS_省略_P300_SSCP111及其应用_邓海洋
2 .SSC P111 技术性能 、引脚功能及工 作原理
SSC P 111 媒介接口芯片的主要性能如下 : ○将功率放大器和三态功能集合为 C EBus 的 电力线(P L)物理接口 ; ○可替代 30 多个分立元件 , 节省了印制电路板 50 %以上空间 , 提高了可靠性 ; ○提供了高驱动能力的输出功率放大器 (10Ψ 负载下 , 峰 -峰电压为 6V), 增强了低阻抗条件下的 性能 ; ○提供了内部过温保护电路以确保系统的可靠 性。 SSC P 111 采用 16 脚 SOIC 封装 。如图 3 所示 , 引脚功能如下 : 1 脚 、3 脚及 5 脚(VSS):模拟信号地 ; 2 脚 、 6 脚及 10 脚 (VDD):模拟信号电源 , 接 10V DC ; 4 脚(T XO):功率信号放大输出 , T S =0 , 发送 使能 ; 7 脚(T P 0):测试端点 0 , 接 V DD ; 8 脚(T S):三态输出 , T T L 电平 , 信号由收发器 驱动 , T S =1, 功放处于三态模式 ; 9 脚(T XI):功率信号放大器输入 ; 11 脚(BIAS):BIAS 输入 , 与 75k Ψ相连接地 ; 12 脚 , 14 脚及 16 脚(NC):悬空保留 ;
发送时 , 将要发送的数据包通过主机送 到内部数据链路层(DL L)微处理器 , DL L 将 数据送到数字信号处理单元块 , 该功能块通 过存储 ROM 上的 300 个点的查找图产生扩 频载波的高低状态 , 再经过一个八位的数模 转换器 D/A 将数字信号转换为模拟形式的 chi rp 波送到缓冲器 , 当三态信号 T S 为低时 , 信号从 SO 脚发送出去 。
电力线(P L)载波通信芯片组 SSC P 300/SSC P 111 及其应用

PLY300使用说明书(打印版)

PLY300使用说明书(打印版)

目录一、概述 (2)二、技术规格 (2)三、控制器前面板说明 (3)四、控制器后面板说明 (4)五、控制器配置设定 (6)六、控制器校称操作 (7)七、控制器定值设定 (9)八、控制器测试功能的操作 (9)九、常见故障处理 (10)十、控制器尺寸 (11)十一、配件清单 (12)一、概述1、简介PLY300 是由单片微机控制,集称重、控制于一体的智能仪表。

独特的抗干扰措施,使该控制器能在恶劣的现场环境中可靠的使用。

该控制器的关键零部件采用国内外的专业生产厂家设计制造,可靠性高。

如:AD转换器采用美国ADI公司的AD7798;变压器采用宏伟变压器厂的DB-57。

该控制器能适应建筑、冶金、包装、饲料等各种行业自动配料的需要。

仪表设计执行标准:GB/T 7724-2008 电子称重仪表依据检定规程:JJG 649-1990。

2、主要功能* 集称重显示器与称重控制器为一体;* 提供完整的干粉砂浆罐控制功能;* 提供两种显示方式:料重与料位;* 搅拌时间控制功能;* 自动破拱振动功能,振动时间易于调整;* 提供GPRS无线通讯功能,易于设备的远程监控与维护;* 提供GPS卫星定位接口,易于控制设备的定位;* 免砝码标定功能;* 使用软件全数字式调校功能;* 独特的测试功能,便于现场调试。

3、工作原理PLY300为传感器提供精密桥源,并接受传感器的输出信号,经内部采集处理后计算并显示出称量斗内物料的重量值。

在连接GPRS模块的情况下,可以通过GPRS接口远程连接服务器,达到远程监控与远程维护的目的。

在PLY300启动运行后,通过对计量斗内物料的重量值与流量设定值的比较,自动实现干粉砂浆罐的破拱振动控制,在搅拌时间到达后,自动停止运行。

二、技术规格1、计量特性参数1.1 准确度等级:1.2 最大检定分度数:2000。

1.3 工作温度范围:0~40℃。

1.4 误差分配系数pi:0.5。

2、一般规格2.1 电源:交流220V±10%15%,50Hz±2%。

芯片手册

芯片手册
3) 载波通信 ............................................................... 26
功能简述 ............................................................................ 26 编程指南 ............................................................................ 26 载波通信的工作步骤 .................................................................. 27 寄存器 .............................................................................. 28
9) ISO7816 功能 ........................................................... 41
功能简述 ............................................................................ 41 编程指南 ............................................................................ 41 寄存器 .............................................................................. 42
4) LCD/LED显示驱动 ........................................................ 32

Avionics Systems L-3 Communications产品手册说明书

Avionics Systems L-3 Communications产品手册说明书

ATA
Revision
Number Level
7100
165E6496-00
03
7100 CVDR
7200
CVDR
FA2100
FA2200
FA2300
FA5000
RDI
RIU
RAU
165E1696-02
03
RI
ROC
ROC/5
ROC/6
ROSE
RAU
165E1696-04
01
ROC/7
ROSE
Revision Date
905E5389-22
1
TP-344
22-00-01 C1
0040-34002-01
H
5/13/2015 4/19/2013
9/16/2015
LearJet Updates CVR AUTOMATED TEST STATION/ RECORDER INTERFACE UNIT (CATS/RIU) Accident Investigation Procedure
1/25/2015 ACCIDENT INVESTIGATION PROCEDURE
11/4/2010 Maintenance Manual with IPL 6/26/2017 GH-3900 Aircraft Configuration Module Tool
Avionics Systems L-3 Communications
Document Index
Last Updated: 8/15/2022 9:11:46 AM
Model Number
Publication Number
ATA Number

(整理)常见机床资料缩写

(整理)常见机床资料缩写

常见机床资料缩写AC 交流电AMP 安培APC 自动托盘交换装置APL 自动部件装载机ASCII 美国信息交换标准法规ATC 自动刀具交换装置ATC FWD 自动刀具交换装置前进ATC REV 自动刀具交换装置后退AWG 美国线规BHCS 圆头帽螺钉CAD 计算机辅助设计CAM 计算机辅助制造(辅助加工)CB 断路开关CC 立方厘米CCW 逆时针CFM 每分钟立方英尺CNC 计算机数控CNCR SPINDLE 与轴运动同步的芯轴CRC 循环冗余码校验数字CRT 阴极射线管CTS 清除发送CW 顺时针DB 牵引杆DC 直流电DGNOS 诊断DHCP 动态主机配置协议DIR 目录DNC 直接数字控制DOS 磁盘操作系统DTE 数据终端设备ENA CNVR 启动输送机EOB 块结束EOF 文件结束EPROM 可擦可编程只读存储器E-STOP 紧急停机FADAL 其他人FHCS 平头帽螺钉FT 英尺FU 保险丝FWD 前进GA 量规HAAS 正确的刀具HHB 六角头螺钉HP 马力HS 卧式系列加工中心ID 内径IGBT 隔离栅双极晶体管IN 英寸IOPCB 输入输出印刷电路板LAN 局域网LB 磅LED 发光二极管LO CLNT 冷却剂低压LOW AIR PR 低气压LVPS 低电压电源MB 兆字节(1百万)MCD RLY BRD M-代码继电器盘MDI 手动数据输入MEM 存储器M-FIN M-代码完成MM 毫米MOCON 电动机控制器MOTIF 电动机接口MSG 信息MSHCP 公制插座帽螺钉NC 数字控制NC 常闭合NO 常开OD 外径OPER 操作员P 袋PARAM 参数PCB 印制电路板PGM 程序POR 通电复位POSIT 位置PROG 程序PSI 每平方英寸磅PWM 脉冲宽度调制RAM 随机存取存储器REPT RIG TAP 围盘轧制刚性螺丝攻RET 返回,回车REV CNVR 回动输送机RJH 遥控摇柄RPDBDN 旋转式托盘拉杆放下RPDBUP 旋转式托盘拉杆提起RPM 每分钟转数RIS 请求输送RXD 接收数据S 芯轴转速SDIST 伺服机构分配印制电路板SFM 每分钟平方英尺SHCS 套筒扳手头帽螺钉SIO 串行输入/输出SKBIF 串行键盘接口印制电路板SMTC 侧挂式刀具交换装置SP 芯轴T 刀具编号TC 刀具交换装置TIR 总指示偏转TNC 刀尖偏差TRP 刀具释放活塞IS 尾架ISC 通过芯轴的冷却剂TXD 发送数据VDI 德国工程师协会VF 立式铣床(第一台)VF-E 立式铣床-扩展型VMC 立式加工中心WAN 广域网红色骑警游民积分: 85 发帖数: 55主题:润滑油脂专业术语润滑油脂专业术语一、密度与相对密度密度是批在规定温度下,单位体积内所含物质的质量数,以g/cm3或g/mL表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(nm) 700 635 567 567 585 610 635 (nm) 700 635 567 567 585 610 635
Deg
Typ Max Typ Max 2.1 2.1 2.1 2.1 2.1 2.1 2.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 1.8 1.8 1.8 1.8 1.8 2.2 2.2 2.2 2.2 2.2
ቤተ መጻሕፍቲ ባይዱ
Electrical & Optical Characteristics at TA = 25 °C
Emitting Color Peak View Wave Angle Length 2θ ½ Forward Voltage @20mA (V) Standard Low Current (2mA) 5V Integrated 12V Integrated Resistor Resistor Typ 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Typ 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Max 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Max 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Typ 12.0 12.0 12.0 12.0 12.0 12.0 12.0 Typ 12.0 12.0 12.0 12.0 12.0 12.0 12.0 Max 15.0 15.0 15.0 15.0 15.0 15.0 15.0 Max 15.0 15.0 15.0 15.0 15.0 15.0 15.0 Luminous Intensity @20mA (mcd) Min 1.6 9.3 8.0 10.4 6.6 9.3 9.3 Min 5.5 31.7 27.0 35.1 22.6 31.7 31.7 Typ 2.7 15.5 13.3 17.3 11.0 15.5 15.5 Typ 9.2 52.9 45.0 58.5 37.6 52.9 52.9
Features
* Standard, Bi-Color and
Low Current available *High Light Output *Flanged *Available in Color (CD), White Diffused (WD), Color Transparent (CT) and Water Clear (WC) *Available in PL301-03, PL30903, PL312, PL313 Right Angle Holder
元器件交易网
sales@ Tel: Fax: (719) 589 3122 (719) 589 3592
PL03 Series 3mm (T1) LED
Features
* Standard, Bi-Color and
Low Current available *High Light Output *Flanged *Available in Color (CD), White Diffused (WD), Color Transparent (CT) and Water Clear (WC) *Available in PL301-03, PL30903, PL312, PL313 Right Angle Holder
Absolute Maximum Ratings at TA = 25 °C
Reverse Voltage (<100 µA)..…………………...…………………………………………......……...5.0V Max Forward Current…………..………………..………………………………………….……20mA Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)….……………………………………....100mA Operating Temperature Range………………………………………………………..-25°C to + 85°C Storage Temperature Range..………….……………………………………………...-25°C to +100°C Soldering Temperature (1.6mm below body)……………………………………………………....260° for 5 seconds
Absolute Maximum Ratings at TA = 25 °C
Reverse Voltage (<100 µA)..…………………...…………………………………………......……..4.0V Max Forward Current…………..………………..………………………………………….……20mA Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)….……………………………………....100mA Operating Temperature Range………………………………………………………..-25°C to + 85°C Storage Temperature Range..………….……………………………………………...-25°C to +100°C Soldering Temperature (1.6mm below body)……………………………………………………....260° for 5 seconds
White Diffused PL03-WDR24 PL03-WDR12 PL03-WDG13 PL03-WDG14 PL03-WDY01 PL03-WDA02 PL03-WDO12 Water Clear PL03-WCR24 PL03-WCR12 PL03-WCG13 PL03-WCG14 PL03-WCY01 PL03-WCA02 PL03-WCO12 Bright Red Hi-Eff Red Green HI-Eff Green Yellow Amber Orange GaP GaAsP on GaP GaP GaP GaAsP on GaP GaAsP on GaP GaAsP on GaP Bright Red Hi-Eff Red Green HI-Eff Green Yellow Amber Orange GaP GaAsP on GaP GaP GaP GaAsP on GaP GaAsP on GaP GaAsP on GaP
56°
Deg
36°
All Dimensions are in Millimeters. Tolerance is ±0.25 mm unless otherwise specified. An epoxy meniscus may extend about 1 mm down the leads.
5.1
Part Number
Material
Color Diffused PL03-CDR24 PL03-CDR12 PL03-CDG13 PL03-CDG14 PL03-CDY01 PL03-CDA02 PL03-CDO12 Color Transparent PL03-CTR24 PL03-CTR12 PL03-CTG13 PL03-CTG14 PL03-CTY01 PL03-CTA02 PL03-CTO12
0.5±0.5 1.0 1.5typ.
0.5 Square
元器件交易网
sales@ Tel: Fax: (719) 589 3122 (719) 589 3592
PL03 Series 5 Volt 3mm (T1) LED
56°
Deg
Typ Max Typ Max 2.1 2.1 2.1 2.1 2.1 2.1 2.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 1.8 1.8 1.8 1.8 1.8 2.2 2.2 2.2 2.2 2.2
36°
5.1
24.0Min.
3.0
2.54±0.1
4.1
Anode
24.0Min.
3.0
2.54±0.1
4.1
Anode
0.5±0.5 1.0 1.5typ.
0.5 Square
元器件交易网
sales@ Tel: Fax: (719) 589 3122 (719) 589 3592
PL03 Series 12 Volt 3mm (T1) LED
Electrical & Optical Characteristics at TA = 25 °C
Part Number Color Diffused PL03-CDR24-5V PL03-CDR12-5V PL03-CDG13-5V PL03-CDG14-5V PL03-CDY01-5V PL03-CDA02-5V PL03-CDO12-5V Color Transparent PL03-CTR24-5V PL03-CTR12-5V PL03-CTG13-5V PL03-CTG14-5V PL03-CTY01-5V PL03-CTA02-5V PL03-CTO12-5V White Diffused PL03-WDR24-5V PL03-WDR12-5V PL03-WDG13-5V PL03-WDG14-5V PL03-WDY01-5V PL03-WDA02-5V PL03-WDO12-5V Water Clear PL03-WCR24-5V PL03-WCR12-5V PL03-WCG13-5V PL03-WCG14-5V PL03-WCY01-5V PL03-WCA02-5V PL03-WCO12-5V Bright Red Hi-Eff Red Green HI-Eff Green Yellow Amber Orange GaP GaAsP on GaP GaP GaP GaAsP on GaP GaAsP on GaP GaAsP on GaP Bright Red Hi-Eff Red Green HI-Eff Green Yellow Amber Orange GaP GaAsP on GaP GaP GaP GaAsP on GaP GaAsP on GaP GaAsP on GaP Emitting Color Material Peak Wave Length (nm) 700 635 567 567 585 610 635 (nm) 700 635 567 567 585 610 635 View Angle 2θ ½ Deg Forward Voltage @20mA (V) Typ 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Typ 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Max 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Max 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Luminous Intensity @20mA (mcd) Min 1.6 9.3 8.0 10.4 6.6 9.3 9.3 Min 5.5 31.7 27.0 35.1 22.6 31.7 31.7 Typ 2.7 15.5 13.3 17.3 11.0 15.5 15.5 Typ 9.2 52.9 45.0 58.5 37.6 52.9 52.9
相关文档
最新文档