2.2.1向量数乘运算及其几何意义

合集下载

第二章 2.2.3 向量数乘运算及其几何意义

第二章 2.2.3  向量数乘运算及其几何意义

2.2.3 向量数乘运算及其几何意义学习目标 1.了解向量数乘的概念,并理解这种运算的几何意义.2.理解并掌握向量数乘的运算律,会运用向量数乘运算律进行向量运算.3.理解并掌握两向量共线的性质及其判定方法,并能熟练地运用这些知识处理有关共线向量问题.知识点一 向量数乘的定义实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,其长度与方向规定如下: (1)|λa |=|λ||a |.(2)λa (a ≠0)的方向⎩⎪⎨⎪⎧当λ>0时,与a 方向相同;当λ<0时,与a 方向相反.特别地,当λ=0或a =0时,0a =0或λ0=0. 知识点二 向量数乘的运算律 1.λ(μa )=(λμ)a . 2.(λ+μ)a =λa +μa . 3.λ(a +b )=λa +λb . 知识点三 向量共线定理 1.向量共线定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . 2.向量的线性运算向量的加、减、数乘运算统称为向量的线性运算,对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b . 思考 共线向量定理中为什么规定a ≠0?答案 若将条件a ≠0去掉,即当a =0时,显然a 与b 共线. (1)若b ≠0,则不存在实数λ,使b =λa . (2)若b =0,则对任意实数λ,都有b =λa .1.若向量b 与a 共线,则存在唯一的实数λ使b =λa .( × ) 提示 当b =0,a =0时,实数λ不唯一. 2.若b =λa ,则a 与b 共线.( √ ) 提示 由向量共线定理可知其正确.3.若λa =0,则a =0.( × ) 提示 若λa =0,则a =0或λ=0.题型一 向量的线性运算例1 (1)3(6a +b )-9⎝⎛⎭⎫a +13b =________. 考点 向量的线性运算及应用 题点 向量的线性运算 答案 9a解析 3(6a +b )-9⎝⎛⎭⎫a +13b =18a +3b -9a -3b =9a . (2)若3(x +a )+2(x -2a )-4(x -a +b )=0,则x =______. 考点 向量的线性运算及应用 题点 向量的线性运算 答案 4b -3a解析 由已知得3x +3a +2x -4a -4x +4a -4b =0, 所以x +3a -4b =0,所以x =4b -3a . 反思感悟 向量线性运算的基本方法(1)类比法:向量的数乘运算类似于代数多项式的运算,例如,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是这里的“同类项”、“公因式”是指向量,实数看作是向量的系数.(2)方程法:向量也可以通过列方程来解,把所求向量当作未知数,利用解方程的方法求解,同时在运算过程中多注意观察,恰当的运用运算律,简化运算. 跟踪训练1 计算:(a +b )-3(a -b )-8a . 考点 向量的线性运算及应用 题点 向量的线性运算解 (a +b )-3(a -b )-8a =(a -3a )+(b +3b )-8a =-2a +4b -8a =-10a +4b .题型二 向量共线的判定及应用命题角度1 判定向量共线或三点共线 例2 已知非零向量e 1,e 2不共线.(1)若a =12e 1-13e 2,b =3e 1-2e 2,判断向量a ,b 是否共线.考点 向量共线定理及其应用 题点 利用向量共线定理判定向量共线 解 ∵b =6a ,∴a 与b 共线.(2)若AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A ,B ,D 三点共线. 考点 向量共线定理及其应用 题点 利用向量共线定理判定三点共线证明 ∵AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB →, ∴AB →,BD →共线,且有公共点B , ∴A ,B ,D 三点共线.反思感悟 (1)向量共线的判断(证明)是把两向量用共同的已知向量来表示,进而互相表示,从而判断共线.(2)利用向量共线定理证明三点共线,一般先任取两点构造向量,从而将问题转化为证明两向量共线,需注意的是,在证明三点共线时,不但要利用b =λa (a ≠0),还要说明向量a ,b 有公共点.跟踪训练2 已知非零向量e 1,e 2不共线,如果AB →=e 1+2e 2,BC →=-5e 1+6e 2,CD →=7e 1-2e 2,则共线的三个点是________. 考点 向量共线定理及其应用 题点 利用向量共线定理判定三点共线 答案 A ,B ,D解析 ∵AB →=e 1+2e 2,BD →=BC →+CD → =-5e 1+6e 2+7e 1-2e 2=2(e 1+2e 2)=2AB →, ∴AB →,BD →共线,且有公共点B , ∴A ,B ,D 三点共线.命题角度2 利用向量共线求参数值例3 已知非零向量e 1,e 2不共线,欲使k e 1+e 2和e 1+k e 2共线,试确定k 的值. 考点 向量共线定理及其应用 题点 利用向量共线定理求参数 解 ∵k e 1+e 2与e 1+k e 2共线, ∴存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎪⎨⎪⎧k -λ=0,λk -1=0,∴k =±1.反思感悟 利用向量共线定理,即b 与a (a ≠0)共线⇔b =λa ,既可以证明点共线或线共线问题,也可以根据共线求参数的值.跟踪训练3 设两个不共线的向量e 1,e 2,若a =2e 1-3e 2,b =2e 1+3e 2,c =2e 1-9e 2,问是否存在实数λ,μ,使d =λa +μb 与c 共线? 考点 向量共线定理及其应用 题点 利用向量共线定理求参数 解 d =λ(2e 1-3e 2)+μ(2e 1+3e 2) =(2λ+2μ)e 1+(3μ-3λ)e 2,要使d 与c 共线,则存在实数k ,使得d =k c , 即(2λ+2μ)e 1+(-3λ+3μ)e 2=2k e 1-9k e 2. 因为e 1与e 2不共线,所以⎩⎪⎨⎪⎧2λ+2μ=2k ,-3λ+3μ=-9k ,得λ=-2μ.故存在实数λ和μ,使得d 与c 共线,此时λ=-2μ. 题型三 用已知向量表示其他向量例4 在△ABC 中,若点D 满足BD →=2DC →,则AD →等于( ) A.13AC →+23AB → B.53AB →-23AC →C.23AC →-13AB → D.23AC →+13AB → 考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 D解析 示意图如图所示,由题意可得AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →.跟踪训练4 如图所示,四边形OADB 是以向量OA →=a ,OB →=b 为邻边的平行四边形.又BM=13BC ,CN =13CD ,试用a ,b 表示OM →,ON →,MN →.考点 向量共线定理及其应用 题点 用已知向量表示未知向量解 因为BM →=13BC →=16BA →=16(OA →-OB →)=16(a -b ),所以OM →=OB →+BM →=b +16a -16b =16a +56b .因为CN →=13CD →=16OD →,所以ON →=OC →+CN →=12OD →+16OD →=23OD →=23(OA →+OB →)=23(a +b ). MN →=ON →-OM →=23(a +b )-16a -56b =12a -16b .向量的综合应用典例 如图,设O 是△ABC 内一点,且满足OA →+2OB →+3OC →=0,则△ABC 与△AOC 的面积之比为________.答案 3解析 如图所示,分别取BC ,AC 边的中点D ,E ,则OB →+OC →=2OD →,① OA →+OC →=2OE →,② 由①×2+②可得OA →+2OB →+3OC →=2(2OD →+OE →).又因为OA →+2OB →+3OC →=0, 所以2OD →+OE →=0,即OE →=-2OD →, 所以OD →,OE →共线,且|OE →|=2|OD →|.所以S △AOC =2S △COE =2×23S △CDE =2×23×14S △ABC =13S △ABC ,所以S △ABC S △AOC=3.[素养评析] 本题主要考查向量共线条件的应用,解题时需充分利用好几何图形,借助几何直观使问题得解,这正体现了数学中直观想象的核心素养.1.下列各式计算正确的有( ) (1)(-7)6a =-42a ; (2)7(a +b )-8b =7a +15b ; (3)a -2b +a +2b =2a ; (4)4(2a +b )=8a +4b .A .1个B .2个C .3个D .4个 考点 向量的线性运算及应用 题点 向量的线性运算 答案 C解析 (1)(3)(4)正确,(2)错,7(a +b )-8b =7a +7b -8b =7a -b . 2.在△ABC 中,M 是BC 的中点,则AB →+AC →等于( ) A.12AM → B.AM → C .2AM → D.MA → 考点 向量的线性运算及应用 题点 向量的线性运算 答案 C解析 如图,作出平行四边形ABEC ,因为M 是BC 的中点,所以M 也是AE 的中点,由题意知,AB →+AC →=AE →=2AM →,故选C.3.设e 1,e 2是两个不共线的向量,若向量m =-e 1+k e 2 (k ∈R )与向量n =e 2-2e 1共线,则( ) A .k =0B .k =1C .k =2D .k =12考点 向量共线定理及其应用 题点 利用向量共线定理求参数 答案 D解析 当k =12时,m =-e 1+12e 2,n =-2e 1+e 2.∴n =2m ,此时m ,n 共线.4.已知P ,A ,B ,C 是平面内四点,且P A →+PB →+PC →=AC →,则下列向量一定共线的是( ) A.PC →与PB → B.P A →与PB → C.P A →与PC →D.PC →与AB →考点 向量共线定理及其应用 题点 利用向量共线定理判定向量共线 答案 B解析 因为P A →+PB →+PC →=AC →, 所以P A →+PB →+PC →+CA →=0, 即-2P A →=PB →,所以P A →与PB →共线.5.如图所示,已知AP →=43AB →,用OA →,OB →表示OP →.考点 向量共线定理及其应用 题点 用已知向量表示未知向量 解 OP →=OA →+AP →=OA →+43AB →=OA →+43(OB →-OA →)=-13OA →+43OB →.1.实数与向量可以进行数乘运算,但不能进行加减运算,例如λ+a ,λ-a 是没有意义的. 2.λa 的几何意义就是把向量a 沿着a 的方向或反方向扩大或缩小为原来的|λ|倍.向量a|a |表示与向量a 同向的单位向量.3.向量共线定理是证明三点共线的重要工具,即三点共线问题通常转化为向量共线问题.一、选择题1.下列说法中正确的是( ) A .λa 与a 的方向不是相同就是相反 B .若a ,b 共线,则b =λa C .若|b |=2|a |,则b =±2a D .若b =±2a ,则|b |=2|a | 考点 向量数乘的定义及运算 题点 向量数乘的定义及几何意义 答案 D解析 显然当b =±2a 时,必有|b |=2|a |. 2.3(2a -4b )等于( ) A .5a +7b B .5a -7b C .6a +12bD .6a -12b考点 向量的线性运算及应用 题点 向量的线性运算 答案 D解析 利用向量数乘的运算律,可得3(2a -4b )=6a -12b ,故选D.3.已知a ,b 是不共线的向量,AB →=λa +2b ,AC →=a +(λ-1)b ,且A ,B ,C 三点共线,则实数λ的值为( ) A .-1 B .2 C .-2或1D .-1或2考点 向量共线定理及其应用 题点 利用向量共线定理求参数 答案 D解析 因为A ,B ,C 三点共线, 所以存在实数k 使AB →=kAC →. 因为AB →=λa +2b ,AC →=a +(λ-1)b , 所以λa +2b =k [a +(λ-1)b ].因为a 与b 不共线,所以⎩⎪⎨⎪⎧λ=k ,2=k (λ-1),解得λ=2或λ=-1.4.如图,△ABC 中,AB →=a ,AC →=b ,DC →=3BD →,AE →=2EC →,则DE →等于( )A .-13a +34bB.512a -34bC.34a +13b D .-34a +512b考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 D解析 DE →=DC →+CE →=34BC →+⎝⎛⎭⎫-13AC → =34(AC →-AB →)-13AC →=-34AB →+512AC →=-34a +512b ,故选D.5.如图,AB 是⊙O 的直径,点C ,D 是半圆弧AB 上的两个三等分点,AB →=a ,AC →=b ,则AD →等于( )A .a -12bB.12a -b C .a +12bD.12a +b 考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 D解析 连接CD ,OD ,如图所示.∵点C ,D 是半圆弧AB 上的两个三等分点, ∴AC =CD ,∠CAD =∠DAB=12×60°=30°. ∵OA =OD ,∴∠ADO =∠DAO =30°. 由此可得∠CAD =∠ADO =30°,∴AC ∥DO . 由AC =CD ,得∠CDA =∠CAD =30°, ∴∠CDA =∠DAO ,∴CD ∥AO , ∴四边形ACDO 为平行四边形, ∴AD →=AO →+AC →=12AB →+AC →=12a +b .6.已知m ,n 是实数,a ,b 是向量,则下列说法中正确的是( ) ①m (a -b )=m a -m b ;②(m -n )a =m a -n a ; ③若m a =m b ,则a =b ;④若m a =n a ,则m =n . A .②④ B .①② C .①③ D .③④ 考点 向量数乘的定义及运算 题点 向量数乘的运算及运算律 答案 B解析 ①和②属于数乘对向量与实数的分配律,正确;③中,若m =0,则不能推出a =b ,错误;④中,若a =0,则m ,n 没有关系,错误.7.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →等于( ) A.14a +12b B.13a +23b C.12a +14b D.23a +13b 考点 向量共线定理及其应用 题点 用已知向量表示未知向量 答案 D解析 ∵△DEF ∽△BEA , ∴DF AB =DE EB =13,∴DF =13AB , ∴AF →=AD →+DF →=AD →+13AB →.∵AC →=AB →+AD →=a ,BD →=AD →-AB →=b , 联立得AB →=12(a -b ),AD →=12(a +b ),∴AF →=12(a +b )+16(a -b )=23a +13b .二、填空题8.(a +9b -2c )+(b +2c )=________.考点 向量的线性运算及应用题点 向量的线性运算答案 a +10b9.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________.考点 向量共线定理及其应用题点 利用向量共线定理求参数答案 12解析 ∵向量a ,b 不平行,∴a +2b ≠0,又∵向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12. 10.在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →=________.(用a ,b表示)考点 向量共线定理及其应用题点 用已知向量表示未知向量答案 14b -14a 解析 如图,MN →=MB →+BA →+AN →=-12b -a +34AC → =-12b -a +34(a +b )=14b -14a . 11.若非零向量a 与b 不共线,k a +2b 与3a +k b 共线,则实数k 的值为________. 考点 向量共线定理及其应用题点 利用向量共线定理求参数答案 ±6解析 ∵k a +2b 与3a +k b 共线,∴存在实数λ,使得k a +2b =λ(3a +k b ),∴(k -3λ)a +(2-λk )b =0,∴(k -3λ)a =(λk -2)b .∵a 与b 不共线,∴⎩⎪⎨⎪⎧k -3λ=0,λk -2=0,∴k =±6. 12.如图,在△ABC 中,延长CB 到D ,使BD =BC ,当点E 在线段AD 上移动时,若AE →=λAB→+μAC →,则t =λ-μ的最大值是________.考点 向量共线定理及其应用题点 向量共线定理在平面几何中的应用答案 3解析 设AE →=kAD →,0≤k ≤1,则AE →=k (AC →+2CB →)=k [AC →+2(AB →-AC →)]=2kAB →-kAC →,∵AE →=λAB →+μAC →,且AB →与AC →不共线,∴⎩⎪⎨⎪⎧λ=2k ,μ=-k ,∴t =λ-μ=3k . 又0≤k ≤1,∴当k =1时,t 取最大值3.故t =λ-μ的最大值为3.三、解答题13.计算:(1)6(3a -2b )+9(-2a +b );(2)12⎣⎡⎦⎤(3a +2b )-23a -b -76⎣⎡⎦⎤12a +37⎝⎛⎭⎫b +76a ; (3)6(a -b +c )-4(a -2b +c )-2(-2a +c ).考点 向量的线性运算及应用题点 向量的线性运算解 (1)原式=18a -12b -18a +9b =-3b .(2)原式=12⎝⎛⎭⎫3a -23a +2b -b -76⎝⎛⎭⎫12a +12a +37b =12⎝⎛⎭⎫73a +b -76⎝⎛⎭⎫a +37b =76a +12b -76a -12b =0. (3)原式=6a -6b +6c -4a +8b -4c +4a -2c=(6a -4a +4a )+(8b -6b )+(6c -4c -2c )=6a +2b .14.在平行四边形ABCD 中,M ,N 分别是DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d 表示AB →和AD →.考点 向量的线性运算及应用题点 用已知向量表示未知向量解 如图,设AB →=a ,AD →=b .∵M ,N 分别是DC ,BC 的中点,∴BN →=12b ,DM →=12a . ∵在△ADM 和△ABN 中,⎩⎪⎨⎪⎧AD →+DM →=AM →,AB →+BN →=AN →, 即⎩⎨⎧ b +12a =c ,①a +12b =d . ②①×2-②,得b =23(2c -d ), ②×2-①,得a =23(2d -c ). ∴AB →=43d -23c ,AD →=43c -23d .15.已知在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,求证:四边形ABCD为梯形.考点 向量共线定理及其应用题点 向量共线定理在平面几何中的应用证明 如图所示.∵AD →=AB →+BC →+CD →=(a +2b )+(-4a -b )+(-5a -3b )=-8a -2b =2(-4a -b ),∴AD →=2BC →.∴AD →与BC →共线,且|AD →|=2|BC →|.又∵这两个向量所在的直线不重合,∴AD ∥BC ,且AD =2BC .∴四边形ABCD 是以AD ,BC 为两条底边的梯形.。

向量数乘运算及几何意义

向量数乘运算及几何意义
向量数乘在几何上表示对向量进行缩放和旋转。 当标量为正时,向量的长度和方向都会按照标量 的大小进行放大;当标量为负时,向量的长度和 方向都会按照标量的大小进行缩小。
总结向量数乘的应用
向量数乘在物理学、工程学、计算机图形学等领 域有着广泛的应用,例如在物理中描述速度和加 速度的变化,在工程中实现机器人的运动控制等 。
向量数乘运算及几何 意义
目录
CONTENTS
• 引言 • 向量数乘运算的定义和性质 • 向量数乘运算的几何意义 • 向量数乘运算的应用 • 结论
目录
CONTENTS
• 引言 • 向量数乘运算的定义和性质 • 向量数乘运算的几何意义 • 向量数乘运算的应用 • 结论
01
引言
01
引言
主题简介
向量数乘运算
机器人学
在机器人学中,向量数乘运算用于描述机器人的运动轨迹 和姿态。例如,通过标量积运算可以计算机器人的关节角 度和速度。
图形处理
在计算机图形学中,向量数乘运算用于描述图像的变换和 旋转。例如,通过将像素坐标向量进行数乘运算,可以实 现图像的缩放、旋转和平移等操作。
在工程中的应用
控制系统分析
在工程控制系统中,向量数乘运算用于分析系统的动态特 性。例如,通过标量积运算可以计算系统的传递函数和稳 定性。
其中u、v是向量。
零向量与任意向量数乘结果 仍为零向量,即0 * v = 0。
标量乘法的单位元是1,即1 * v = v。
03
向量数乘运算的几 何意义
03
向量数乘运算的几 何意义
向量数乘的几何表示
标量与向量的点乘
标量与向量点乘的结果是一个标量,表示向量在标量作用下的伸缩倍数。
标量与向量的叉乘

向量数乘运算及其几何意义教案

向量数乘运算及其几何意义教案

1 2.2.3向量数乘运算及其几何意义一.教学目标1.知识与技能: 通过实例,掌握向量数乘运算,理解其几何意义,理解向量共线定理。

熟练 运用定义、运算律进行有关计算,能够运用定理解决向量共线、三点共线、直线 平行等问题。

2.过程与方法:理解掌握向量共线定理及其证明过程,会根据向量共线定理判断两个向量是 否共线。

3.态度情感与价值观:通过由实例到概念,由具体到抽象,培养学生自主探究知识形成的过程的能 力,合作释疑过程中合作交流的能力。

激发学生学习数学的兴趣和积极性,陶冶 学生的情感,培养学生实事求是的科学态度,勇于创新的精神。

二.教学重难点重点:掌握实数与向量的积的定义、运算律,理解向量共线定理。

难点:向量共线定理的探究及其应用。

三.教学过程(一)复习回顾问题1:向量加法的运算法则?问题2:向量减法的运算法则?(二)新课讲解1.向量数量积的定义【探究1】 已知非零向量a ,作出a a a ++和()()()a a a -+-+-,你能说出他们的几何意义 吗?问题1:相加后,和的长度和方向有什么变化?问题2:这些变化与哪些因素有关?练一练:P 90 第1题,第2题.22.向量数乘的运算律【探究2】 问题一:求作向量)2(3a 和a 6(a 为非零向量),并进行比较。

问题二:已知向量a 、b ,求作向量)(2b a +和b a 22+,并进行比较。

类比实数乘法的运算律得向量数乘的运算律:对于任意向量a 、b 及任意实数λ、μ,恒有b a b a 2121)(λμλμμμλ±=±. 例5:计算(口答) (1) a 4)3(⨯-(2) a b a b a ---+)(2)(3(3) )23()32(c b a c b a +---+练一练:P 90 第5题.3、向量共线定理 【探究3】问题1:如果 a b λ=(0≠a ), 那么,向量a 与b 是否共线?问题2: b 与非零向量a 共线, 那么,a b λ= ?思考:1. a 为什么要是非零向量? 2. b 可以是零向量吗?例6.已知任意两非零向量a 、b ,试作b a OA +=, b a OB 2+=,b a OC 3+=。

向量数乘运算及其几何意义新

向量数乘运算及其几何意义新

解释力和力矩的方向
在分析力学中,向量数乘可以用来解释力和力矩的 方向,以及它们对物体运动状态的影响。
描述磁场和电场的变化
在电磁学中,向量数乘可以用来描述磁场和 电场的变化,以及它们对电荷和电流的作用 。
在数学中的应用
描述向量的缩放
向量数乘可以用来描述向量的缩 放,即改变向量的长度而不改变 其方向。
实例分析
标量与向量的数乘实例
在二维平面中,假设有一个向量$overset{longrightarrow}{a} = (1,2)$,当标量为 $k = 2$时,数乘后的向量为$overset{longrightarrow}{b} = (2,4)$;当标量为$k = -3$时,数乘后的向量为$overset{longrightarrow}{c} = (-3,-6)$。
详细描述
向量数乘在数学中可以丰富数学理论体系,例如在解析几 何中,通过向量数乘运算可以描述平面几何图形的旋转和 缩放,从而丰富了平面几何的理论基础。
总结词
促进数学与其他学科的交叉融合
总结词
解决数学难题
详细描述
向量数乘在数学与其他学科的交叉融合中也有着重要的应 用,例如在生物力学中,通过向量数乘运算可以描述肌肉 收缩和骨骼运动的关系,从而促进了生物学和力学的交叉 融合。
在物理建模过程中,向量数乘运算可以简化复杂的物理模 型,例如在力学中,通过向量数乘运算可以描述力的合成 与分解,从而简化了对物体运动轨迹的分析。
详细描述
向量数乘在物理中有着广泛的应用,例如在电磁学中,通 过向量数乘运算可以描述电荷的运动轨迹和电场线的分布 ,从而揭示电磁现象的本质。
总结词
提高物理实验的精度
案例三:向量数乘在工程中的运用

向量的数乘定义-概述说明以及解释

向量的数乘定义-概述说明以及解释

向量的数乘定义-概述说明以及解释1.引言1.1 概述概述:向量的数乘是线性代数中的重要概念之一,它是描述向量进行数量放缩的操作。

通过数乘,我们可以对向量进行拉伸或压缩,使得向量的长度或方向发生变化。

本文将深入探讨向量的数乘定义、数乘的性质以及数乘的应用,并对未来可能的研究方向进行展望。

通过对向量的数乘进行详细的讨论,我们可以更好地理解和应用向量的数学概念,为进一步的数学学习和应用奠定坚实的基础。

1.2 文章结构本文包括引言、正文和结论三个部分。

在引言部分,我们将概述向量的基本概念,介绍本文的结构以及论述本文的目的。

在正文部分,我们将详细阐述向量的基本概念,探讨向量的数乘定义以及数乘的性质。

在结论部分,我们将总结向量的数乘定义,探讨数乘在实际应用中的意义,以及展望未来向量研究的方向。

整个文章结构清晰,逻辑严谨,旨在帮助读者全面了解和掌握向量的数乘概念和性质。

1.3 目的本文的目的在于介绍向量的数乘定义及其性质,通过对向量的数乘进行深入分析,以便读者更加全面地了解数乘的概念和作用。

同时,也旨在探讨数乘在实际生活中的应用,并展望未来对向量数乘的研究方向,为相关领域的学术研究提供借鉴和参考。

通过本文的阐述,希望读者能够对向量的数乘有一个清晰的认识,并对其在数学和实际问题中的应用有更深入的了解。

2.正文2.1 向量的基本概念向量是在数学和物理学中经常使用的重要概念。

在几何学中,向量通常用来表示具有大小和方向的量。

在代数学中,向量可以表示为一个有序的数字序列。

向量在现实生活中也有着广泛的应用,比如力的大小和方向、速度、位移等。

在数学中,向量通常表示为一个有序的数对或数组。

比如,可以用(x, y) 表示一个二维向量,用(x, y, z) 表示一个三维向量。

向量的大小通常称为模或长度,用v 表示。

而向量的方向通常用角度或单位向量来表示。

向量可以进行加法和数乘运算。

对于两个向量u 和v,它们的加法运算定义为(u1 + v1, u2 + v2, ..., un + vn),其中ui 和vi 分别表示向量u 和v 的第i 个分量。

数学(2.2.3向量数乘运算及其几何意义)

数学(2.2.3向量数乘运算及其几何意义)

运算规则
总结词
向量数乘运算的规则包括与标量乘法类似,但需要注意向量的方向性。
详细描述
向量数乘运算的规则与标量乘法类似,实数与向量的每个分量相乘,得到的结果仍为一个向量。但需要注意的是, 向量的方向性在数乘运算中会发生变化。当实数为正时,向量的方向保持不变;当实数为负时,向量的方向会反 向;当实数为零时,向量的长度为零,方向任意。
性质
总结词
向量数乘运算具有分配律和结合律。
详细描述
向量数乘运算具有分配律,即对于任意实数$k$和$l$, 以及任意向量$overset{longrightarrow}{a}$和 $overset{longrightarrow}{b}$,有$(k + l)overset{longrightarrow}{a} = koverset{longrightarrow}{a} + loverset{longrightarrow}{a}$。同时,向量数乘运算也 具有结合律,即对于任意实数$k$、$l$和向量 $overset{longrightarrow}{a}$、 $overset{longrightarrow}{b}$、 $overset{longrightarrow}{c}$,有 $(kl)overset{longrightarrow}{a} = k(loverset{longrightarrow}{a})$。
向量的长度和方向的变化
长度变化
标量数乘会导致向量的长度发生变化。设$k > 0$,则$koverset{longrightarrow}{a}$ 的长度是$overset{longrightarrow}{a}$长度的$|k|$倍;设$k < 0$,则
$koverset{longrightarrow}{a}$的长度是$overset{longrightarrow}{a}$长度的 $frac{1}{|k|}$倍。

向量数乘运算及其几何意义

向量数乘运算及其几何意义

2023向量数乘运算及其几何意义contents •向量数乘运算的基本概念•向量数乘运算的几何意义•向量数乘运算在物理中的应用•向量数乘运算在数学中的拓展应用•向量数乘运算的实践应用案例目录01向量数乘运算的基本概念向量的定义零向量零向量记作0,是一个长度为0的向量,其所有分量都是0。

向量的模向量v的模记作|v|,定义为v的分量值的平方和的平方根。

向量的分量一个n维向量v可以表示为一个有序数组v = [v1, v2, ..., vn],其中每个vi称为向量v的分量。

010203•向量数乘的定义:对于一个标量a和一个向量v,a数乘v的结果是一个向量,其每个分量是v的分量乘以a。

即,如果v = [v1, v2, ..., vn],则av = [av1, av2, ..., avn]。

向量数乘的定义1向量数乘的运算性质23a(v + w) = av + aw,其中a是标量,v和w是向量。

标量与向量的数乘满足分配律a(bw) = (ab)vw,其中a和b是标量,v和w是向量。

向量数乘满足结合律av = (ab)v,其中a和b是标量,v是向量。

向量数乘满足交换律02向量数乘运算的几何意义向量的方向向量的方向与数乘的顺序有关向量数乘运算的结果与数乘的顺序有关,不同的顺序可能得到不同的结果。

例如,对于两个向量a和b,如果先对a进行数乘,再对结果进行加法运算,得到的结果与先进行加法运算,再对结果进行数乘是不同的。

数乘可以改变向量的方向如果一个向量与一个正数相乘,那么它的方向将与原向量相同;如果与一个负数相乘,那么它的方向将与原向量相反。

例如,对于两个向量a和b,如果a与正数k相乘,那么a的方向将与k的方向相同;如果a与负数k相乘,那么a的方向将与k的方向相反。

如果一个向量与一个正数相乘,那么它的长度将变为原向量的k倍;如果与一个负数相乘,那么它的长度将变为原向量的k分之一。

例如,对于两个向量a和b,如果a与正数k相乘,那么a的长度将变为原向量的k倍;如果a与负数k相乘,那么a的长度将变为原向量的k分之一。

向量的数乘及几何意义

向量的数乘及几何意义

向量的数乘及几何意义数乘是指将一个向量与一个标量相乘。

数乘运算可以用来改变向量的大小和方向,并且在几何上具有重要的意义。

首先,考虑一个向量v,并将其数乘一个正数k。

当k>1时,数乘会使得向量v的大小增大,但方向不变。

当k=1时,数乘不会改变向量v的大小和方向。

当0<k<1时,数乘会使向量v的大小减小,同时方向保持不变。

当k=0时,结果是一个零向量,其大小为零。

当k<0时,向量v被反向,并且大小也被取绝对值后增大。

因此,数乘可以使向量扩大、缩小、翻转。

在几何中,数乘具有以下几何意义:1.缩放:数乘可以用来缩放一个向量。

当数乘的绝对值大于1时,向量的大小会增大,而当绝对值小于1时,向量的大小会减小,但方向保持不变。

这意味着数乘可以用来缩放一个对象。

2.平行:当数乘为正数时,数乘后的向量与原向量的方向是相同的,它们是平行的。

当数乘为负数时,数乘后的向量与原向量的方向是相反的,它们也是平行的。

这意味着数乘可以用来判断两个向量是否平行。

3.方向:当数乘为负数时,数乘会将向量反转,即改变向量的方向。

这意味着数乘可以用来改变向量的方向。

4.零向量:当数乘为零时,结果是一个零向量,其大小为零。

这意味着数乘可以用来判断向量是否为零向量。

5.反向:当数乘为负数时,数乘会将向量反转,并且大小也会取绝对值后增大。

这意味着数乘可以用来使向量翻转。

6.平面的法向量:考虑一个向量v,它在x轴和y轴上的分量分别为vₓ和vᵧ。

如果将一个向量与一个数乘后的向量相加,结果为零向量,则这个数乘后的向量是由vₓ和vᵧ的相反数构成的。

这表明数乘后的向量是平面上法向量的一种表示方法。

总而言之,数乘在几何中具有重要的意义,它可以用来缩放、改变方向、判断平行性和零向量,以及使向量翻转。

这些几何意义使数乘成为向量运算中的一个重要操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.3向量数乘运算及其几何意义 姓名:
自主学习
自主学习课本87—89页内容,思考:
1、什么是向量的数乘?结果是什么?
2、向量的数乘怎么进行?
3、向量的数乘有什么运算律?
合作探究
探究:向量数乘运算与几何意义 问题1:已知非零向量a ,作出:①a a a ++ ;②()()()a a a -+-+- .通过作出图形,同学们能否说明它们的几何意义?
1、一般地,我们规定___________________是一个向量,这种运算称做向量的数乘记作a λ
,它的长度与方向规定如下: (1)||a λ
=___________________________________; (2)当_________时,a λ 的方向与a 的方向相同;当_______时,a λ 的方向与a
方向相反,当_________时,a λ =O。

问题2:向量的加、减、数乘运算统称为向量的线性运算.请同学们解释它们的几何意义.
2、向量数乘运算律,设,λμ为实数。

(1)()a λμ= _______; (2)()a λμ+= _________; (3)()a b λ+=
_________; (4)=-)(λ________=___________; (5)()a b λ-=
______________; (6)对于任意向量a ,b ,任意实数12λμμ、、恒有2a b λμμ 1(+)=_______________。

问题3:引入向量数乘运算后,你能发现数乘向量与原向量之间有什么位置关系? 3、两个向量共线(平行)的等价条件:如果(0)a a b ≠ 与共线,那么_____________。

例题分析:
例1、计算: ⑴()76a -⨯ ; ⑵()()438a b a b a +--- ; ⑶
()()54232a b c a b c -+--+ .
例2、如图,平行四边形ABCD 的两条对角线相交于点M ,且AB a = ,AD b =
,你能用a 、b 表示AM 、BM 、CM 、DM 吗?
例3、已知两个两个向量1e 和2e 不共线,
12AB e e =- ,1228BC e e =- ,1233CD e e =+ ,求证:A 、B 、D 三点共线.
课堂练习: 1、8()7()a c a c c ++-- =___________。

(92)(2)a b c b c +-++ =________ _。

()2a a b a ⎡⎤---⎣⎦ = ; 11(2)8(42)32a b a b ⎡⎤+--⎢⎥⎣⎦ =______ ___。

2、在ABC ∆中,E 、F 分别是AB 、AC 的中点,若AB a = ,AC b = ,则EF 等于
( ) A.()12a b + B.()12a b - C.()12b a - D.()12a b -+ 3、点C 在线段AB 上,且35AC AB = ,则________AC CB = 。

4、设12,e e 是两个不共线向量,若12b e e λ=+ ,与122a e e =- 共线,则实数λ的值
为 .
【小结】: (1)λ与a 的积还是向量,λa 与a 是共线的;
(2)向量平行的充要条件的内容和证明思路,也是应用该结论解决问题的思路。

该结论主要用于证明点共线、求系数、证直线平行等题型问题;
(3)运算律暗示我们,化简向量代数式就像计算多项式一样去合并同类项。

【作业】:
1、课本90页练习题。

2.课本91页习题2.2A 组第9、10题。

2.3.1平面向量的基本定理 姓名:
教学过程:
【自主学习】学习内容:(一)复习回顾 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa =
2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa .
(二)阅读教材,自主学习
1.平面向量基本定理:
2. (1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的 ;
(2) 基底不惟一,关键是 ;
(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;
(4) 基底给定时,分解形式 . 即λ1,λ2是被a ,1e ,2e 唯一确定的数量
【合作探究】
探究任务:阅读教材,提出疑惑:
如何通过向量的线性运算来表示出平面内的任意向量?
探究:(1)给定平面内两个不共线的向量1e ,2e ,请你作出向量31e +22e ,1e -22e ,
(2)同一平面内的任一向量是否都可以用形如λ11e +λ22e 的向量表示?
【精讲释疑】1.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e .
2. (1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;
(2) 基底不惟一,关键是不共线;
(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;
(4) 基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量
例题分析:例1 已知向量1e ,2e 求作向量 2.51e +32e .
例2、M ,且=a ,=b ,用a ,b 表示,
课堂练习:
1.设e 1、e 2是同一平面内的两个向量,则有( )
A.e 1、e 2一定平行
B .e 1、e 2的模相等
C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R )
D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R )
2.已知向量a = e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系
A.不共线 B .共线 C.相等 D.无法确定
3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于( )
A.3 B .-3 C.0 D.2
4.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1= .
5.已知λ1>0,λ2>0,e 1、e 2是一组基底,且a =λ1e 1+λ2e 2,则a 与e 1_____,a 与e 2_________(填共线或不共线).
【小结】:1. 学习了平面向量基本定理;2. 理解平面里的任何一个向量都可以用两个不共线的向量来表示
【作业】:1.已知 的两条对角线AC 与BD 交于E ,O 是任意一点,求证:+++=4
2.(1)如图,,不共线,=t (t ∈R)
用,表示.
(2)设OA 、OB 不共线,点P 在O 、A 、B 所在的平面内,且(1)()OP t OA tOB t R =-+∈ .求证:A 、B 、P 三点共线.
3. 已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存
在这样的实数,d a b λμλμ=+ 、使与c 共线.。

相关文档
最新文档