学生版2018年高二数学(理) 第二学期自主训练7试卷

合集下载

2017-2018学年高二数学下学期期末考试试题理(2)

2017-2018学年高二数学下学期期末考试试题理(2)

数学试卷(理数)时间:120分钟总分:150分一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知为实数,,则的值为A.1B.C.D.2.“”是“直线和直线平行”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件3.下列说法正确的是A.一个命题的逆命题为真,则它的逆否命题一定为真B.“”与“”不等价C.“若,则全为”的逆否命题是“若全不为0,则”D.一个命题的否命题为假,则它的逆命题一定为假4.若,,,,则与的大小关系为A. B. C. D.5.已知命题及其证明:(1)当时,左边,右边,所以等式成立;(2)假设时等式成立,即成立,则当时,,所以时等式也成立.由(1)(2)知,对任意的正整数等式都成立.经判断以上评述A.命题,推理都正确B.命题正确,推理不正确C.命题不正确,推理正确D.命题,推理都不正确6.椭圆的一个焦点是,那么等于A.B.C.D.7.设函数(其中为自然对数的底数),则的值为A. B. C. D.8.直线(为参数)被曲线截得的弦长是A. B. C. D.9.已知函数在上为减函数,则的取值范围是A. B. C. D.10.一机器狗每秒前进或后退一步,程序设计师让机器狗以前进步,然后再后退步的规律移动,如果将此机器狗放在数轴的原点,面向数轴的正方向,以步的距离为个单位长,令表示第秒时机器狗所在位置的坐标.且,那么下列结论中错误的是A. B.C. D.11.已知A、B、C、D四点分别是圆与坐标轴的四个交点,其相对位置如图所示.现将沿轴折起至的位置,使二面角为直二面角,则与所成角的余弦值为A.B.C.D.12.点在双曲线上,、是这条双曲线的两个焦点,,且的三条边长成等差数列,则此双曲线中等于A.3B.4C.5D.6二、填空题(每小5分,满分20分)13.若,则__________.14.在三角形ABC中,若三个顶点坐标分别为,则AB边上的中线CD的长是__________.15.已知F1、F2分别是椭圆的左右焦点,A为椭圆上一点,M为AF1中点,N为AF2中点,O为坐标原点,则的最大值为__________.16.已知函数,过点作函数图象的切线,则切线的方程为。

2017-2018学年高二下期学业质量调研抽测数学(理)试卷

2017-2018学年高二下期学业质量调研抽测数学(理)试卷

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 请将正确答案的代号填涂在答题卡上.1.若1z i =-(i 是虚数单位),则22z z+= A .1i -- B .1i -+ C .1i - D .1i +2.已知随机变量ξ服从正态分布(3,1)N ,且(4)0.1587P ξ>=,则(24)P ξ≤≤=A .0.3174B .0.3413C .0.6826D .0.8413 3.函数3()35f x x x =-+在闭区间[3,0]-上的最大值与最小值的和是A .6B .6-C .8D .8- 4.已知变量,x y 具有线性相关关系,测得一组样本数据如下:若它们的回归直线a x b yˆˆˆ+=的斜率为6.5,则在这些样本点中任取一点,它在回归直线左上方的概率为 A .15 B .25 C .35 D .455.已知定义在区间[0,1]上的曲线2y x =与x 轴及直线1x =围成的封闭图形被直线(01)x t t =<<分成了面积相等的两部分,则t 的值为A .2B .2C .2D .126.甲、乙两人在A 与B 两个项目中随机选择一个项目,在其中有一人选择A 项目的条件下,则另一人也选择A 项目的概率为 A .13 B .23 C .14 D .347.甲、乙、丙、丁四人分别去买了一张体育彩票,恰有一人中奖.他们的对话如下:甲说“我没中奖”;乙说“我也没中奖,丙中奖了”;丙说“我和丁都没中奖”;丁说“乙说的是事实”.已知这四人中有两人说的是真话,另外两人说的是假话,由此可判断中奖的是 A .甲 B .乙 C .丙 D .丁8.3位男生和2位女生共5位同学站成一排,若女生甲不站在两端,3位男生中有且只有2 位男生相邻,则不同排法的种数是A .24B .36C .48D .60 9.已知袋中有6个大小相同的球,其中记上0号的有3个,记上1号的有1个,记上2号的有2个.现从袋中任取一球,随机变量ξ表示所取球的标号,若4a ηξ=+,a 为常数,η的数学期望7()3E η=, 则η的方差()D η为 A .2936 B .56 C .4318 D .29910.已知(1)n a x b y ++展开式中不含x 的项的系数和为64,不含y 的项的系数和为27,则,,a b n 的值可能为 A .3,2,3a b n ===B .2,3,3a b n ===C .2,3,4a b n =-=-=D .3,2,4a b n =-=-=11.已知函数12)(23-+=x ax x f 有且只有两个零点,则实数a 的取值集合为A .{}1,0,1- B.⎧⎪⎨⎪⎪⎩⎭ C.⎧⎪⎨⎪⎪⎩⎭ D.⎧⎪⎨⎪⎪⎩⎭ 12. 已知正实数,,a b c 满足ln ln c b a c c =+,且2a c ≥,e 为自然对数的底数,则ba的最小值为AB. C .e D .22e二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在答题卡相应的位置上. 13.已知2(32)(1)z a a a i =-++-是纯虚数,其中a R ∈,i 为虚数单位,则z 的值为_____.14.若10()a x x-的展开式中4x 的系数为960,则a 的值为__________.15.为了调查甲、乙两厂生产的某种产品质量是否有差异,现在各厂分别随机抽取了50件该产品,得到如下的22⨯列联表,参照附表,则有 以上的把握认为“甲、乙两厂生产的某种产品质量有差异”.附表:22()()()()()n ad bc k a b c d a c b d -=++++16.已知集合12{,,...,}(2)k A a a a k =≥,其中(1,2,...,)i a Z i k ∈=,由A 中的元素构成两个相应的集合:{(,)|,,}S x y x A y A x y A =∈∈+∈,{(,)|,,}T x y x A y A x y A =∈∈-∈,其中(,)x y 是有序数对,若集合S 与T 中的元素个数分别为m 与n ,则m 与n 的大小关系为__________.三、解答题:共70分。

2018级高二数学理科答案 精品

2018级高二数学理科答案 精品

2016—2017学年度第二学期期末七校联考高二数学(理科)答案一、选择题(每小题只有一个选项正确,每小题5分,共60分).1-6 CBAAAC7-12 BDDBDD【12】提示:原式变为'(1)()()0x f x xf x ++>,所以'(1)()()0x x e x f x e xf x ++>,即'(())0x e xf x >,即()()x g x e xf x =单调递增,注意到(0)0g =,则①当0x >时,()(0)0g x g >=,进而()0f x >;②当0x <时,()0g x <,进而()0f x >;③当0x =时,由'(1)()()0x f x xf x ++>,令0x =,可得()0f x >;综上,()0f x >.二、填空题(每小题5分,共20分).13.10x y ++=14.13 15.132 16.34【16】提示: 2'2y ax bx =+,曲线在(,)b ac 处的切线方程为:22(2)()y ab b x b ac =+-+,令32221()[(2)()]3f x ax bx c ab b x b ac =++-+-+,则222'()2(2)f x ax bx ab b =+-+,依题意:()f x 在R 上有且只有一个零点b 。

注意到'()0f b =,若'()f x 除b 之外还有其它的零点,那么()f x 在R 上不单调,又b 是()f x 的极值点且()0f b =,根据三次函数的图像特征()f x 在R 上除b 之外还有其它的零点,不符合题意。

所以'()f x 除b 之外再无零点,因此222(2)4(2)0b a ab b ∆=++=,解得1a =-,所以323,334b c b c b b b =-+=-≤,当且仅当39,28b c ==-时,等号成立. 三、解答题:解答应写出文字说明、证明过程或演算步骤.【17】 解析:(Ⅰ)由条形图知,所抽取的100人中,优秀等级有75人,故优秀率为.所以所有参赛选手中优秀等级人数约为万人.……………(6分) (Ⅱ)由条形图可知2×2列联表如下………………(10分)∴没有95%的把握认为优秀与文化程度有关.……………(12分)【18】解析:(Ⅰ)令0x =,得01a =;令12x =,得7120270222a a a a ++++=;所以712271222a a a +++=-………………………(5分) (Ⅱ) 7(12)x -展开式的通项为177(2)(2)r r r r r r T C x C x +=-=-,所以7(2)r r r r a C x =-,当3r =时,3337(2)280a C =-=-,当5r =时,5557(2)672a C =-=-,所以()()72112x x --的展开式中5x 的系数为35392a a -=……………………(12分)【19】解析:(Ⅰ)()f x 的定义域为(0,)+∞,112'()2x f x x x -=-=,令'()0f x =,解得12x =,当102x <<时,'()0f x >,当12x >时,'()0f x <,因此当12x =时,()f x 有极大值,其极大值为ln 2-,无极小值………………………(5分)(Ⅱ)令()()'()g x f x f x =-,则2211(21)(1)'()2x x g x x x x+-=-+=-,当01x <<时,'()0g x >,()g x 单调递增;当1x >时,'()0g x <,()g x 单调递减,因此当1x =时,()g x 有最大值,其最大值为0, 所以()0g x ≤,即()'()f x f x ≤………………………(12分)【20】 解析:(Ⅰ)由图知6500.01210n ==⨯,20.0045010x ==⨯,10.040.10.120.560.01810y ----==…………………………………(2分) (II )成绩是合格等级的人数为(10.1)5045-⨯=,抽取的50中成绩是合格等级的人数的频率为910,故从该校学生中任选1人,成绩是合格等级的概率为910,设在该校高一学生中任选3人,至少有1人成绩是合格等级的事件为A ,则0339999()1(1)101000P A C =--=;…………………………(6分) (III )由题意知C 等级的学生人数为0.18509⨯=,A 等级的学生人数为3人,故ξ的取值为0,1,2,3,则333121(0)220C P C ξ===,129331227(1)220C C P C ξ===,219331227(2)55C C P C ξ===,3931221(3)55C P C ξ===,所以ξ的012322022055554E ξ=⨯+⨯+⨯+⨯=………………………………………(12分) 【21】解析:(Ⅰ)()f x 的定义域为(,2)(2,)-∞--+∞, 22'()(2)2x x a x a f x e e x x +-=+=++22(2)2(2)x x a x a e x +-+-+,令2()(2)2g x x a x a =+-+-,22(2)4(2)4a a a ∆=---=-①若02a <≤,则()0g x ≥,'()0f x ≥,所以()f x 在(,2),(2,)-∞--+∞单调递增;②若2a >,则由()0g x =解得1x =2x =,显然 121x x -<<,所以当2x <-或12x x -<<时,()0g x >,'()0f x >,当12x x x <<时,()0g x <,'()0f x <,当2x x >时,()0g x >,'()0f x >,所以()f x 的单调递增区间为(,2)-∞-,(-,)+∞;()f x 的单调递减区间 为,………………………………………… (6分) (Ⅱ)当2a =时,由(1)知,()f x 在(0,)+∞单调递增,且(2)0f =,又12()()0f x f x +=,所以不妨设1202x x <≤≤,则142x -≥,故要证124x x +≤,只需证明214x x ≤-,即证21()(4)f x f x ≤-,也即11()(4)0f x f x +-≥, 构造函数()()(4)F x f x f x =+-,(0,2]x ∈,则'()'()'(4)F x f x f x =--=222224222222(4)(4)8(2)[(2)8]0(2)(6)(2)(6)(2)(6)x x x x x x x x x x x e e e e e x x x x x x -------≤-=≤+-+-+-,所以()F x 在(0,2]单调递减,故()(2)0F x F ≥=,故124x x +≤成立.………………(12分)【22】解析:(Ⅰ)由2sin 2c o s ρθθ=得22sin 2cos ρθρθ=,将cos ,sin x y ρθρθ==代入得22y x =,由122x at y t⎧=+⎪⎨⎪=+⎩得1(2)2x a y =+-,即22410x ay a -+-=,故曲线C 的直角方程为22y x =,直线L 的普通方程为22410x ay a -+-=…………………(4分)(Ⅱ)设111(,2)2A at t ++,221(,2)2B at t++,将直线的参数方程代入抛物线的方程并化简得2(42)30t a t +-+=,由2410a a ∆=-+>得a 的取值范围为2a <2a >+理知1212243t t a t t+=-⎧⎨=⎩ ,又||AB=2t ,1|||PA t =,2|||PB t =,又因为||,||,||PA AB PB 成等差数列,则2||||||AB PA PB =+,代入相关式子并化简得2(24)16a -=,解得0a =或4a =,经检验,0a =或4a =满足题意…………(10分)【23】 解析:(Ⅰ)当2m =时, 3,1()4,123,2x x f x x x x x -≤-⎧⎪=+-<<⎨⎪≥⎩.①当1x ≤-时,由()6f x ≥得36x -≥,解得2x ≤-;②当12x -<<时,由()6f x ≥得46x +≥,解集为空;③当2x ≥时,由()6f x ≥得36x ≥,解得2x ≥;综上,()6f x ≥的解集为(,2][2,)-∞-+∞………………………………(5分)(Ⅱ)方法一:当0m =时,()|2|f x x =-,()3f x ≤不恒成立;当0m >时,易得()3f x ≤不恒成立;当0m <时,去掉绝对值得(1)2,1()(1)2,12(1)2,2m x m x f x m x m x m x m x -++-≤-⎧⎪=-++-<<⎨⎪++-≥⎩,记1()(1)2f x m x m =-++-,2()(1)2f x m x m =-++,3()(1)2f x m x m =++-; ①当1m =-时,max ()33f x =≤成立,故1m =-满足题意;②当10m -<<时,由3()(1)2f x m x m =++-在[2,)+∞上单调递增知,()3f x ≤不恒成立;故10m -<<不满足题意;③当1m <-时,由1()(1)2f x m x m =-++-在(,1]-∞-上单调递增得1max ()33f x =≤;2()(1)2f x m x m =-++在(1,2)-上单调递减得,22()(1)3f x f <-=;3()(1)2f x m x m =++-在[2,)+∞上单调递减,则33()(2)33f x f m ≤=<;综上,m 的取值范围为1m ≤-.………………………………(10分)方法二:①当1x =-时,m R ∈;……………………(2分)②当1x ≠-时,原不等式变为33|||1|11m x x ≤--++,令31t x =+,则(,0)(0,)t ∈-∞+∞,令()|||1|g t t t =--,则1,0()21,011,1t g t t t t -<⎧⎪=-<<⎨⎪≥⎩,则min ()1g t =-,故()1min m g t ≤=-.综上,m 的取值范围为1m ≤-.………………………………(10分)。

2018.6.7高二下学期月考考试数学(理)试题

2018.6.7高二下学期月考考试数学(理)试题

临涣中学2017-2018学年第二学期月考考试高二数学(理)试题(考试时间:120分钟满分:150分}注意事项:1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2.答第I 卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如 需攻动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰. 作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚、必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效.第I 卷(满分60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项申,只有一项是符合题目要求的)1.己知i 是虚数单位,则ii-12=( ) (A )-1+i(B)1+i(C)l-i(D)-1-i2.已知集合 A={y|y=x e ,∈x R},B={∈x R|062≤--x x },则A ∩B=( )(A )(0,2) (B)(0,3](C)[-2,3] (D)[2,3]3.执行右边的程序框图,则输出的S 的值为 ( )(A)9(B )19(C)33(D)514.双曲线12222=-by a x 的一条渐近线与直线x +2y-l=O 垂直,则双曲线的离心率为( )(A )25 (B)5 (C)213+ (D)13+5.甲、乙两名射手同时向一目标射击,设事件A :“甲击中目标”,事件B :“乙击中目标”,则事件A 与事件B( )A .相互独立且互斥B .互斥但不相互独立C .相互独立但不互斥D .既不相互独立也不互斥6.在△ABC 中,角A,B,C 对应的边分别为c b a ,,,C=60°,b a 4=,13=c ,则△ABC 的面积为( )(A)3(B)213(C)32 (D)13 7.将A ,B ,C ,D 四个球放入编号为1,2,3的三个盒子中,每个盒子中至少放一个球且A ,B两个球不能放在同一盒子中,则不同的放法有( ) (A)15(B)18(C)30(D)368.已知函数)6sin()(π+ω=x x f 的图象向右平移3π个单位后,所得的图象关于y 轴对称,则ω的最小正值为( ) (A)1(B)2(C)3 (D)49.用数字0,1,2,3,4,组成没有重复数字且大于3000的四位数,这样的四位数有( ) (A)250个(B)249个(C)48个(D)24个10.函数)1)((xx e e y x x --=-的图像大致是( )(A)(B)(C) (D)11.已知0>>b a ,则ba b a a -+++14的最小值为( ) (A)2103(B)4 (C)32 (D)23 12.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.45第Ⅱ卷(非选择题共90分)二、填空题(本题共4小题,每小题5分,共20分)13.命题p :10>x ∃,使得12020<x x -,则p ⌝是__________.14.已知a =)152-t ,(b =)1,1-+t (,若b a b a -=+,则t =_________. 15.5)2(a x -展开式中3x 的系数为720,则a =________. 16.已知函数xaxx x f -=ln )(,若有且仅有一个整数k ,使0)()]([2>k f k f -,则实数a 的取值范围是________.三、解答题(共70分。

简单答案2018年高二数学(理) 第二学期自主训练7试卷

简单答案2018年高二数学(理) 第二学期自主训练7试卷

2018年高二数学(理) 第二学期自主训练(7)试卷一、选择题:1.解: x =-1时,y =1,3;x =0时,y =2,4;x =1时,y =1,3.故选B. 2. 解:由a 、-32、b 成等比数列得ab =34,由(a +bx )6展开式中所有项的系数和为64得(a +b )6=64, ∴⎩⎪⎨⎪⎧b >a >0ab =34(a +b )6=64,∴⎩⎪⎨⎪⎧34a >a >0a +34a =2,∴a =12. 故选B3.解∵z 1·z 2=(cos α+isin α)(cos β+isin β)=cos α·cos β+cos αsin βi +isin αcos β+sin αsin βi 2=cos(α+β)+sin(α+β)i ,∴实部为cos(α+β),选D. 4. 选D .5.解析: a +b 2≥ab ≥2ab a +b ,又1()()2x f x =在R 上是单调减函数,故()2a b f +≤f (ab )≤2()abf a b+.故选 A 6.解由于销售量y 与销售价格x 成负相关,故x 的系数应为负,排除B 、D ;又当x =10时,A 中y =100,C 中y =-300显然C 不合实际,故排除C ,选A. 7.选B8.选D9.解 :选D 已知ξ~B ⎝ ⎛⎭⎪⎫6,13,P (ξ=k )=C k n p k q n -k, 当ξ=2,n =6,p =13时,有P (ξ=2)=C 26⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫1-136-2=80243. 10.解:选A ∵K 2=110×(40×30-20×20)260×50×60×50≈7.8>6.635,∴有99%以上的把握认为“选择过马路的方式与性别有关”. 11.选C 12. 选B 13.答案:2解 15(x 1+x 2+x 3+x 4+x 5)=3,又中位数是3,则必有两数小于3,两数大于3,又x i 是互不相等的正整数,故此五数只能是1,2,3,4,5,∴方差s 2=15[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2.14. 答案 5解 由于2x +3=2(x +2)-1,故(2x +3)3=[2(x +2)-1]3=8(x +2)3-4C 13(x +2)2+2C 23(x +2)-1,故a 3=8,a 2=-12,a 1=6,a 0=-1. 故a 0+a 1+2a 2+3a 3=-1+6-24+24=5. 15.答案:58解 这8个点构成正方体的8个顶点,此题即转化成以正方体的8个顶点中的4个点为顶点的三棱锥一共有多少个,则共有三棱锥C 14C 34+(C 24C 24-2×4-2)+C 34C 14=58个.16. 答案:0.36解 :由正态分布图像的对称性可得:P (a ≤x <4-a )=1-2P (x <a )=0.36. 17.(本小题满分10分)解. (1) 在这16人的样本中,幸福度为“极幸福”的人有4个.至多有1人是“极幸福”的概率是121140 ……………………3分(2) 从该社区(人数很多)任选1人,是“极幸福”的人的概率是14X 服从二项分布1(3,)X B ,其分布列为: ……………………4分E (X )=4, (X)D 16……………………3分18.(本小题满分12分) 解:(1)列联表补充完整如下:(2)因为K 2=8.333>7.879,所以我们有99.5%的把握认为患心肺疾病与性别有关。

高二第二学期月考数学试卷理科及答案

高二第二学期月考数学试卷理科及答案

高二第二学期月考数学试卷(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.设集合A={1,2,3},B={4,5},M={x |x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )A.3B.4C.5D.62.已知i 是虚数单位,则复数z = 2−i4+3i 在复平面内对应的点所在的象限为( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.曲线y = x 2+3x 在点A (2,10)处的切线的斜率k 是( ) A.7 B.6 C.5 D.44.(√x −1x )9展开式中的常数项是( ) A.-36 B.36 C.-84 D.845.已知命题p :∃a 0∈(0,+∞),a 02-2a 0-3>0,那么命题p 的否定是( ) A.∃a 0∈(0,+∞),a 02 - 2a 0 -3≤0 B.∃a 0∈(-∞,0),a 02 - 2a 0 -3≤0 C.∀a ∈(0,+∞),a 2 - 2a -3≤0 D.∀a ∈(-∞,0),a 2 - 2a -3≤06.已知F 1,F 2是双曲线12222=-bx a y(a >0,b >0)的下、上焦点,点F 2关于渐近线的对称点恰好落在以F 1为圆心,|OF 1|为半径的圆上,则双曲线的离心率为( ) A.√2 B.2 C.√3 D.37.某餐厅的原料费支出x 与销售额y (单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出y 与x 的线性回归方程为∧y=8.5x +7.5,则表中的m 的值为( )A.50B.55C.60D.658.若f (x )=x 2 - 2x - 4lnx ,则)('x f <0的解集( )A.(0,+∞)B.(0,2)C.(0,2)∪(-∞,-1)D.(2,+∞)9.设△ABC 的三内角A 、B 、C 成等差数列,sin A 、sin B 、sin C 成等比数列,则这个三角形的形状是( )A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形10.设等差数列{a n }的前n 项和为S n ,若a 1 = - 11,a 4 + a 6= - 6,则当S n 取最小值时,n 等于( ) A.6 B.7 C.8 D.911.由曲线y =√x ,直线y = x - 2及y 轴所围成的图形的面积为( ) A.103 B.4 C.163 D.612.定义在R 上的函数f (x )满足:f (x )+)('x f >1,f (0)= 4,则不等式e xf (x )>e x +3(其中e 为自然对数的底数)的解集为( ) A.(0,+∞) B.(-∞,0)∪(3,+∞) C.(-∞,0)∪(0,+∞) D.(3,+∞)二、填空题(本大题共4小题,共20.0分)13.设随机变量X ~N (μ,σ2),且P (X <1)=12, P (X >2)=p ,则P (0<X <1)= ______ . 14.已知函数f (x )=13x 3+ax 2+x +1有两个极值点,则实数a 的取值范围是 ______ . 15.已知函数xx f x f sin cos )4()('+=π,则f (π4)= ______ .16.观察下列一组等式:①sin 230°+cos 260°+sin 30°cos 60° = 34,②sin 215°+cos 245°+sin 15°cos 45° = 34,③sin 245°+cos 275°+sin 45°cos 75° = 34,…,那么,类比推广上述结果,可以得到的一般结果是: ______ .三、解答题(本大题共6小题,共72.0分)17.已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,√3sin C cos C - cos 2C = 12,且c =3 (1)求角C(2)若向量m⃗⃗ =(1,sin A )与n⃗ =(2,sin B )共线,求a 、b 的值.18.已知正数数列 {a n } 的前n 项和为S n ,且对任意的正整数n 满足2√S n =a n +1. (Ⅰ)求数列 {a n } 的通项公式; (Ⅱ)设11+⋅=n n n a a b ,求数列{b n } 的前n 项和B n .19.学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (Ⅰ)求在1次游戏中获奖的概率;(Ⅱ)求在2次游戏中获奖次数X 的分布列及数学期望E (X ).20.如图,在直三棱柱ABC-A 1B 1C 1中,∠BAC=90°,AC=2√3,AA 1=√3,AB=2,点D 在棱B 1C 1上,且B 1C 1=4B 1D(Ⅰ)求证:BD ⊥A 1C(Ⅱ)求二面角B-A 1D-C 的大小.21.已知椭圆C :x 2a 2+y 2b 2=1的左焦点F 1的坐标为(-√3,0),F 2是它的右焦点,点M 是椭圆C 上一点,△MF 1F 2的周长等于4+2√3. (1)求椭圆C 的方程;(2)过定点P (0,2)作直线l 与椭圆C 交于不同的两点A ,B ,且OA ⊥OB (其中O 为坐标原点),求直线l 的方程.22.已知函f (x )= ax 2 - e x (a ∈R ).(Ⅰ)a =1时,试判断f (x )的单调性并给予证明; (Ⅱ)若f (x )有两个极值点x 1,x 2(x 1<x 2). (i ) 求实数a 的取值范围; (ii )证明:1)(21-<<-x f e(注:e 是自然对数的底数)【解析】1. 解:因为集合A={1,2,3},B={4,5},M={x |x =a +b ,a ∈A ,b ∈B},所以a +b 的值可能为:1+4=5、1+5=6、2+4=6、2+5=7、3+4=7、3+5=8, 所以M 中元素只有:5,6,7,8.共4个. 故选B .利用已知条件,直接求出a +b ,利用集合元素互异求出M 中元素的个数即可. 本题考查集合中元素个数的最值,集合中元素的互异性的应用,考查计算能力. 2. 解:复数z =2−i4+3i =(2−i)(4−3i)(4+3i)(4−3i)=5−10i 25=15−25i 在复平面内对应的点(15,−25)所在的象限为第四象限. 故选:D .利用复数的运算法则及其几何意义即可得出.本题考查了复数的运算法则及其几何意义,属于基础题. 3. 解:由题意知,y =x 2+3x ,则y ′=2x +3, ∴在点A (2,10)处的切线的斜率k =4+3=7, 故选:A .根据求导公式求出y ′,由导数的几何意义求出在点A (2,10)处的切线的斜率k .本题考查求导公式和法则,以及导数的几何意义,属于基础题.4. 解:(√x −1x )9展开式的通项公式为T r +1=C 9r•(-1)r •x9−3r2,令9−3r 2=0,求得r =3,可得(√x −1x )9展开式中的常数项是-C 93=-84,故选:C .先求出二项式展开式的通项公式,再令x 的幂指数等于0,求得r 的值,即可求得展开式中的常数项的值.本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题. 5. 解:根据特称命题的否定是全称命题,得; 命题p :∃a 0∈(0,+∞),a 02-2a 0-3>0, 那么命题p 的否定是:∀a ∈(0,+∞),a 2-2a -3≤0. 故选:C .根据特称命题的否定是全称命题,写出命题p 的否定命题¬p 即可. 本题考查了特称命题与全称命题的应用问题,是基础题目.6. 解:由题意,F 1(0,-c ),F 2(0,c ),一条渐近线方程为y =ab x ,则F 2到渐近线的距离为√a 2+b 2=b .设F 2关于渐近线的对称点为M ,F 2M 与渐近线交于A ,∴|MF 2|=2b ,A 为F 2M 的中点, 又0是F 1F 2的中点,∴OA ∥F 1M ,∴∠F 1MF 2为直角, ∴△MF 1F 2为直角三角形, ∴由勾股定理得4c 2=c 2+4b 2 ∴3c 2=4(c 2-a 2),∴c 2=4a 2, ∴c =2a ,∴e =2. 故选:B .首先求出F 2到渐近线的距离,利用F 2关于渐近线的对称点恰落在以F 1为圆心,|OF 1|为半径的圆上,可得直角三角形,即可求出双曲线的离心率.本题主要考查了双曲线的几何性质以及有关离心率和渐近线,考查勾股定理的运用,考查学生的计算能力,属于中档题. 7. 解:由题意,x .=2+4+5+6+85=5,y .=25+35+m+55+755=38+m5,∵y 关于x 的线性回归方程为y ^=8.5x +7.5, 根据线性回归方程必过样本的中心, ∴38+m5=8.5×5+7.5,∴m =60. 故选:C .计算样本中心点,根据线性回归方程恒过样本中心点,列出方程,求解即可得到结论. 本题考查线性回归方程的运用,解题的关键是利用线性回归方程恒过样本中心点,这是线性回归方程中最常考的知识点.属于基础题.8. 解:函数f (x )=x 2-2x -4lnx 的定义域为{x |x >0}, 则f '(x )=2x -2-4x =2x 2−2x−4x,由f '(x )=2x 2−2x−4x <0,得x 2-x -2<0,解得-1<x <2,∵x >0,∴不等式的解为0<x <2, 故选:B .求函数的定义域,然后求函数导数,由导函数小于0求解不等式即可得到答案.本题主要考查导数的计算以及导数不等式的解法,注意要先求函数定义域,是基础题. 9. 解:∵△ABC 的三内角A 、B 、C 成等差数列, ∴∠B=60°,∠A+∠C=120°①; 又sin A 、sin B 、sin C 成等比数列, ∴sin 2B=sin A •sin C=34,②由①②得:sin A •sin (120°-A )=sin A •(sin 120°cos A-cos 120°sin A )=√34sin 2A+12•1−cos2A2=√34sin 2A-14cos 2A+14 =12sin (2A-30°)+14 =34,∴sin (2A-30°)=1,又0°<∠A <120° ∴∠A=60°. 故选D .先由△ABC 的三内角A 、B 、C 成等差数列,求得∠B=60°,∠A+∠C=120°①;再由sin A 、sin B 、sin C 成等比数列,得sin 2B=sin A •sin C ,②,①②结合即可判断这个三角形的形状.本题考查数列与三角函数的综合,关键在于求得∠B=60°,∠A+∠C=120°,再利用三角公式转化,着重考查分析与转化的能力,属于中档题.10. 解:设该数列的公差为d ,则a 4+a 6=2a 1+8d =2×(-11)+8d =-6,解得d =2, 所以S n =−11n +n(n−1)2×2=n 2−12n =(n −6)2−36,所以当n =6时,S n 取最小值.故选A .条件已提供了首项,故用“a 1,d ”法,再转化为关于n 的二次函数解得. 本题考查等差数列的通项公式以及前n 项和公式的应用,考查二次函数最值的求法及计算能力.11. 解:联立方程{y =x −2y=√x得到两曲线的交点(4,2),因此曲线y =√x ,直线y =x -2及y 轴所围成的图形的面积为:S=∫(40√x −x +2)dx =(23x 32−12x 2+2x)|04=163.故选C .利用定积分知识求解该区域面积是解决本题的关键,要确定出曲线y =√x ,直线y =x -2的交点,确定出积分区间和被积函数,利用导数和积分的关系完成本题的求解.本题考查曲边图形面积的计算问题,考查学生分析问题解决问题的能力和意识,考查学生的转化与化归能力和运算能力,考查学生对定积分与导数的联系的认识,求定积分关键要找准被积函数的原函数,属于定积分的简单应用问题.12. 解:设g(x)=e x f(x)-e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)-e x=e x[f(x)+f′(x)-1],∵f(x)+f′(x)>1,∴f(x)+f′(x)-1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>e x+3,∴g(x)>3,又∵g(0)═e0f(0)-e0=4-1=3,∴g(x)>g(0),∴x>0故选:A.构造函数g(x)=e x f(x)-e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.13. 解:随机变量X~N(μ,σ2),可知随机变量服从正态分布,X=μ,是图象的对称轴,可知P(X<1)=12,P(X>2)=p,P(X<0)=p,则P(0<X<1)=12−p.故答案为:12−p.直接利用正态分布的性质求解即可.本题考查正态分布的简单性质的应用,基本知识的考查.14. 解:函数f(x)=13x3+ax2+x+1的导数f′(x)=x2+2ax+1由于函数f(x)有两个极值点,则方程f′(x)=0有两个不相等的实数根,即有△=4a2-4>0,解得,a>1或a<-1.故答案为:(-∞,-1)∪(1,+∞)求出函数的导数,令导数为0,由题意可得,判别式大于0,解不等式即可得到.本题考查导数的运用:求极值,考查二次方程实根的分布,考查运算能力,属于基础题.15. 解:由f(x)=f′(π4)cosx+sinx,得f′(x)=-f′(π4)sinx+cosx,所以f′(π4)=-f′(π4)sinπ4+cosπ4,f′(π4)=-√22f′(π4)+√22.解得f′(π4)=√2-1.所以f(x)=(√2-1)cosx+sinx则f(π4)=(√2-1)cosπ4+sinπ4=√22(√2−1)+√22=1.故答案为:1.由已知得f′(π4)=-f′(π4)sinπ4+cosπ4,从而f(x)=(√2-1)cosx+sinx,由此能求出f(π4).本题考查函数值的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.16. 解:观察下列一组等式:①sin230°+cos260°+sin30°cos60°=34,②sin215°+cos245°+sin15°cos45°=34,③sin245°+cos275°+sin45°cos75°=34,…,照此规律,可以得到的一般结果应该是sin2x+sinx)cos(30°+x)+cos2(30°+x),右边的式子:34,∴sin2x+sinxcos(30°+x)+cos2(30°+x)=34.证明:sin2x+sinx(√32cosx−12sinx)+(√32cosx−12sinx)2=sin2x+√32sinxcosx-12sin2x+34cos2x-√32sinxcosx+14sin2x=3 4sin2x+34cos2x=34.故答案为:sin2x+sinxcos(30°+x)+cos2(30°+x)=34.观察所给的等式,等号左边是sin230°+cos260°+sin30°cos60°,3sin215°+cos245°+sin15°cos45°…规律应该是sin2x+sinxcos(30°+x)+cos2(30°+x),右边的式子:34,写出结果.本题考查类比推理,考查对于所给的式子的理解,从所给式子出发,通过观察、类比、猜想出一般规律,不需要证明结论,该题着重考查了类比的能力.答案和解析【答案】1.B2.D3.A4.C5.C6.B7.C8.B9.D 10.A 11.C 12.A13.12−p14.(-∞,-1)∪(1,+∞)15.116.sin2(30°+x)+sin(30°+x)cos(30°-x)+cos2(30°-x)=3417.解:(1)∵√3sinCcosC−cos2C=12,∴√32sin2C−1+cos2C2=12∴sin(2C-30°)=1∵0°<C<180°∴C=60°(2)由(1)可得A+B=120°∵m ⃗⃗⃗ =(1,sinA)与n ⃗ =(2,sinB)共线, ∴sin B-2sin A=0∴sin (120°-A )=2sin A 整理可得,cosA =√3sinA 即tan A=√33∴A=30°,B=90° ∵c =3.∴a =√3,b =2√3 18.解:(Ⅰ)由2√S n =a n +1,n =1代入得a 1=1, 两边平方得4S n =(a n +1)2(1),(1)式中n 用n -1代入得4S n−1=(a n−1+1)2&(n ≥2)(2), (1)-(2),得4a n =(a n +1)2-(a n -1+1)2,0=(a n -1)2-(a n -1+1)2,(3分) [(a n -1)+(a n -1+1)]•[(a n -1)-(a n -1+1)]=0, 由正数数列{a n },得a n -a n -1=2,所以数列{a n }是以1为首项,2为公差的等差数列,有a n =2n -1.(7分) (Ⅱ)b n =1an ⋅a n+1=1(2n−1)(2n+1)=12(12n−1−12n+1),裂项相消得B n =n2n+1.(14分)19.(I )解:设“在X 次游戏中摸出i 个白球”为事件A i (i =,0,1,2,3),“在1次游戏中获奖”为事件B ,则B=A 2∪A 3, 又P (A 3)=C 32C 21C 52C 32=15,P (A 2)=C 32C 22+C 31C 21C 21C 52C 32=12,且A 2,A 3互斥,所以P (B )=P (A 2)+P (A 3)=12+15=710; (II )解:由题意可知X 的所有可能取值为0,1,2.X ~B(2,710) 所以X 的分布列是 X 012P9100215049100X 的数学期望E (X )=0×9100+1×2150+2×49100=75. 20.(Ⅰ)证明:分别以AB 、AC 、AA 1所在直线为x 、y 、z 轴建立空间直角坐标系,∵AC=2√3,AA 1=√3,AB=2,点D 在棱B 1C 1上,且B 1C 1=4B 1D , ∴B (2,0,0),C (0,2√3,0),A 1(0,0,√3),D (32,√32,√3).则BD⃗⃗⃗⃗⃗⃗ =(−12,√32,√3),A 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,−√3), ∴BD ⃗⃗⃗⃗⃗⃗ ⋅A 1C ⃗⃗⃗⃗⃗⃗⃗ =−12×0+√32×2√3−√3×√3=0. ∴BD ⊥A 1C ;(Ⅱ)解:设平面BDA 1的一个法向量为m ⃗⃗⃗ =(x ,y ,z),BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(−2,0,√3),BD ⃗⃗⃗⃗⃗⃗ =(−12,√32,√3),∴{m ⃗⃗⃗ ⋅BD⃗⃗⃗⃗⃗⃗ =−12x +√32y +√3z =0m ⃗⃗⃗ ⋅BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =−2x+√3z=0,取z =2,则m ⃗⃗⃗ =(√3,−3,2);设平面A 1DC 的一个法向量为n ⃗ =(x ,y ,z),DC ⃗⃗⃗⃗⃗ =(−32,3√32,−√3),CA 1⃗⃗⃗⃗⃗⃗⃗=(0,−2√3,√3),∴{n ⃗ ⋅CA 1⃗⃗⃗⃗⃗⃗⃗ =−2√3y +√3z =0n⃗⃗ ⋅DC ⃗⃗⃗⃗⃗⃗ =−32x+3√32y−√3z=0,取y =1,得n ⃗ =(−√3,1,2).∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m⃗⃗⃗ ||n ⃗⃗ |=4×2√2=−√28.∴二面角B-A 1D-C 的大小为arccos √28.21.解:(1)∵椭圆C :x 2a 2+y 2b 2=1的左焦点F 1的坐标为(-√3,0), F 2是它的右焦点,点M 是椭圆C 上一点,△MF 1F 2的周长等于4+2√3, ∴{c =√32a +2c =4+2√3a 2=b 2+c 2,解得a =2,b =1, ∴椭圆C 的方程为x 24+y 2=1.(2)当直线l 的斜率不存在时,不满足题意.当直线l 的斜率存在时,设直线l 的方程为y =kx -2,A (x 1,y 1),B (x 2,y 2), 联立{x 24+y 2=1y =kx −2,得(1+4k 2)x 2-16kx +12=0,△=(-16k )2-48(1+4k 2)>0,由根与系数关系得x 1+x 2=16k1+4k 2,x 1•x 2=121+4k 2, ∵y 1=kx 1-2,y 2=kx 2-2,∴y 1y 2=k 2x 1•x 2-2k (x 1+x 2)+4. ∵OA ⊥OB ,∴x 1x 2+y 1y 2=0,∴(1+k 2)x 1x 2-2k (x 1+x 2)+4=0, ∴12(1+k 2)1+4k 2-32k 21+4k 2+4=0,解得k =±2,∴直线l 的方程是y =2x -2或y =-2x -2. 22.解:(Ⅰ)当a =1时,f (x )=x 2-e x ,f (x )在R 上单调递减.事实上,要证f ′(x )=x 2-e x 在R 上为减函数,只要证明f ′(x )≤0对∀x ∈R 恒成立即可,设g (x )=f ′(x )=2x -e x ,则g ′(x )=2-e x ,当x =ln 2时,g ′(x )=0,当x ∈(-∞,ln 2)时,g ′(x )>0,当x ∈(ln 2,+∞)时,g ′(x )<0. ∴函数g (x )在(-∞,ln 2)上为增函数,在(ln 2,+∞)上为减函数. ∴f ′(x )max =g (x )max =g (ln 2)=2ln 2-2<0,故f ′(x )<0恒成立 所以f (x )在R 上单调递减; (Ⅱ)(i )由f (x )=ax 2-e x ,所以,f ′(x )=2ax -e x .若f (x )有两个极值点x 1,x 2,则x 1,x 2是方程f ′(x )=0的两个根,故方程2ax-e x=0有两个根x1,x2,又因为x=0显然不是该方程的根,所以方程2a=e xx有两个根,设ℎ(x)=e xx ,得ℎ′(x)=e x(x−1)x2.若x<0时,h(x)<0且h′(x)<0,h(x)单调递减.若x>0时,h(x)>0.当0<x<1时h′(x)<0,h(x)单调递减,当x>1时h′(x)>0,h(x)单调递增.要使方程2a=e xx 有两个根,需2a>h(1)=e,故a>e2且0<x1<1<x2.故a的取值范围为(e2,+∞).(ii)证明:由f′(x1)=0,得:2ax1−e x1=0,故a=e x12x1,x1∈(0,1)f(x1)=ax12−e x1=e x1 2x1⋅x12−e x1=e x1(x12−1),x1∈(0,1)设s(t)=e t(t2−1)(0<t<1),则s′(t)=e t(t−12)<0,s(t)在(0,1)上单调递减故s(1)<s(t)<s(0),即−e2<f(x1)<−1.。

2017-2018学年度第二学期期末高二数学(理)试题

2017-2018学年度第二学期期末高二数学(理)试题

2017-2018学年度第二学期期末高二数学(理)试题时间:120分钟 分值:150分一、选择题:本大题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}A |43x x x Z =-<<∈,{}|1B x x =≥则A B ⋂= ( ) A .{}1 B.{}1,2 C. {}01,2, D. {}1,23,2.设集合{}2A |60x x x =+-< {}2|1B x x =≤ ,则 A B ⋂= ( )A. []1,1-B. (]3,1-C.()1,2-D. [)1,2-3.下列命题中真命题的个数是 ( ) ① 42,x R x x ∀∈>② 若p q ∧ 是假命题,则,p q 都是假命题③ 命题“32,240x R x x ∀∈++≤”的否定为“32000,240x R x x ∃∈++>” A .0 B .1 C .2 D .34.5x >的一个必要不充分条件是 ( ) A.6x >B.3x >C.6x <D.10x >5.把一枚硬币任意掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则P (B/A )= ( ) A.14 B.13 C.12 D.236.方程12x x +=根的个数为 ( ) A.0 B.1 C.2 D.37.在82x ⎛ ⎝的展开式中,常数项是 ( )A.7B.-7C.28D.-288.设 12log 3a = , 0.213b ⎛⎫= ⎪⎝⎭, 12c =,则 ( )A.a b c <<B.c b a <<C.c a b <<D.b a c <<9. 函数与在同一直角坐标系下的图象大致是( )图所示的长方形区域内任取一个点(),M x y ,则点M 取自阴影部分的概率为 ( ) A.12 B.14 C.13 D.2311.若函数()y f x =图像与()log 322a y x =-+图像关于直线y x =对称,则函数()y f x =必过定点 ( )A.(1,2)B.(2,2)C.(2,3)D.(2,1) 12.定义在R 上的偶函数满足,且当时,()12xf x ⎛⎫= ⎪⎝⎭, 则等于 ( )A.3B.18C.-2D.2 二、填空题:本大题共4小题,每小题5分,共20分13.将3个不同的小球放入4个盒子中,有 ______种不同的放法14.已知随机变量X 服从正态分布N(3,1),且(2X 4)0.6826P ≤≤=,则(X 4)P >= ______ 15.已知()()()220210{xx x x x f x ≤-+>=在[]()1,2a a ->上最大值与最小值之差为4,则a =______16.为方便游客出行,某旅游点有50辆自行车供租赁使用。

2018-2019学年高二数学学生暑期自主学习调查试题(含解析)

2018-2019学年高二数学学生暑期自主学习调查试题(含解析)

2018-2019学年高二数学学生暑期自主学习调查试题(含解析)一、选择题(本大题共12小题)若集合A={x|x>-1},B={x|-3<x<1},则A∪B=()A. B. C. D.半径为2的扇形OAB中,已知弦AB的长为2,则的长为()A. B. C. D.过点A (1,-1)、B (-1,1)且圆心在直线x+y-2=0上的圆的方程是()A. B.C. D.为了弘扬我国优秀传统文化,某中学广播站在中国传统节日:春节元宵节清明节、端午节、中秋节这五个节日中随机选取3个节日来讲解其文化内涵,那么春节被选中的概率是()A. B. C. D.已知sinα+cosα=,则sin2(-α)=()A. B. C. D.设b、c表示两条直线,α,β表示两个平面,则下列命题是真命题的是()A. 若,,则B. 若,,则C. 若,,则D. 若,,则已知函数y=f(x)的部分图象如图所示,则该函数的解析式可能是()A.B.C.D.在△ABC中,已知D是BC延长线上一点,点E为线段AD的中点,若=2,且=λ+,则λ=()A. B. C. D.设θ为锐角,则直线xsin2θ+ycos2θ-2=0与两坐标轴围成的三角形面积的最小值是()A. 10B. 8C. 4D. 2已知单位向量,,满足•=0.若点C在∠AOB内,且∠AOC=60°,(m,n∈R),则下列式子定成立的是()A. B. C. D.在△ABC中,已知AB=2,AC=1,∠A的平分线AD=1,则△ABC的面积()A. B. C. D.已知函数f(x)=sinx|cosx|,x∈[],有以下结论:①f(x)的图象关于直线y轴对称;②f(x)在区间[]上单调递减;③f(x)的一个对称中心是(,0);④f(x)的最大值为.其中正确的序号为()A. B. C. D.二、填空题(本大题共4小题)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图(如图所示).为了分析居民的收入与年龄、学历、职业等方面的关系,在从这10000人中再用分层抽样方法抽出100人作进一步调查,则在(2500,3500元/月)收入段应抽出______人.已知=(5,4),=(3,2),则与2-3同向的单位向量为______.已知正三棱锥的底面边长为,侧棱长均等于2,则其外接球的体积为______.设f(x),g(x)是定义在R上的两个函数,f(x)=k(x-1),g(x)的周期为3,当x∈(-1,2]时,g(x)=若在区间(0,+∞)上,关于x的方程f(x)=g(x)有3个不同的实数根,则实数k的取值范围是______.三、解答题(本大题共6小题)已知集合A=,B={x|m+1<x<2m-1},且满足B⊆A,求实数m 的取值范围..某公司的销售部门共有10名员工,他们某年的收入如表:(1)从该销售部门中年薪高于6万元的人中任取2人,求此2人年薪高于7万元的概率;(2)已知员工年薪与工作年限呈正线性相关关系,若某员工工作第-年至第四年的年薪分别为3万元,4.2万元,5.6万元,7.2万元,预测该员工第七年的年薪为多少?(附:线性回归方程=bx+a中,b=,其中,为样本平均数)在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.(1)求四棱锥O-ABCD的体积;(2)求异面直线OC与MD所成角的正切值的大小.如图在四边形ABCD中,∠ABC=,AB⊥AD,AB=.(1)若AC=,求△ABC的面积;(2)若∠ADC=,CD=4,求AD的长.如图,已知动直线l过点,且与圆O:x2+y2=1交于A、B两点.(1)若直线l的斜率为,求△OAB的面积;(2)若直线l的斜率为0,点C是圆O上任意一点,求CA2+CB2的取值范围;(3)是否存在一个定点Q(不同于点P),对于任意不与y 轴重合的直线l,都有PQ平分∠AQB,若存在,求出定点Q的坐标;若不存在,请说明理由.设A=[-1,1],B=[],函数f(x)=2x2+mx-1.(1)设不等式f(x)≤0的解集为C,当C⊆(A∪B)时,求实数m的取值范围;(2)若对任意的实数m,总存在x∈[1,2],使得不等式|f (x)|≥tx,求实数t的取值范围.2018-2019学年高二数学学生暑期自主学习调查试题(含解析)一、选择题(本大题共12小题)若集合A={x|x>-1},B={x|-3<x<1},则A∪B=()A. B. C. D.半径为2的扇形OAB中,已知弦AB的长为2,则的长为()A. B. C. D.过点A (1,-1)、B (-1,1)且圆心在直线x+y-2=0上的圆的方程是()A. B.C. D.为了弘扬我国优秀传统文化,某中学广播站在中国传统节日:春节元宵节清明节、端午节、中秋节这五个节日中随机选取3个节日来讲解其文化内涵,那么春节被选中的概率是()A. B. C. D.已知sinα+cosα=,则sin2(-α)=()A. B. C. D.设b、c表示两条直线,α,β表示两个平面,则下列命题是真命题的是()A. 若,,则B. 若,,则C. 若,,则D. 若,,则已知函数y=f(x)的部分图象如图所示,则该函数的解析式可能是()A.B.C.D.在△ABC中,已知D是BC延长线上一点,点E为线段AD的中点,若=2,且=λ+,则λ=()A. B. C. D.设θ为锐角,则直线xsin2θ+ycos2θ-2=0与两坐标轴围成的三角形面积的最小值是()A. 10B. 8C. 4D. 2已知单位向量,,满足•=0.若点C在∠AOB内,且∠AOC=60°,(m,n∈R),则下列式子定成立的是()A. B. C. D.在△ABC中,已知AB=2,AC=1,∠A的平分线AD=1,则△ABC的面积()A. B. C. D.已知函数f(x)=sinx|cosx|,x∈[],有以下结论:①f(x)的图象关于直线y轴对称;②f(x)在区间[]上单调递减;③f(x)的一个对称中心是(,0);④f(x)的最大值为.其中正确的序号为()A. B. C. D.二、填空题(本大题共4小题)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图(如图所示).为了分析居民的收入与年龄、学历、职业等方面的关系,在从这10000人中再用分层抽样方法抽出100人作进一步调查,则在(2500,3500元/月)收入段应抽出______人.已知=(5,4),=(3,2),则与2-3同向的单位向量为______.已知正三棱锥的底面边长为,侧棱长均等于2,则其外接球的体积为______.设f(x),g(x)是定义在R上的两个函数,f(x)=k(x-1),g(x)的周期为3,当x∈(-1,2]时,g(x)=若在区间(0,+∞)上,关于x的方程f(x)=g(x)有3个不同的实数根,则实数k的取值范围是______.三、解答题(本大题共6小题)已知集合A=,B={x|m+1<x<2m-1},且满足B⊆A,求实数m的取值范围..某公司的销售部门共有10名员工,他们某年的收入如表:(1)从该销售部门中年薪高于6万元的人中任取2人,求此2人年薪高于7万元的概率;(2)已知员工年薪与工作年限呈正线性相关关系,若某员工工作第-年至第四年的年薪分别为3万元,4.2万元,5.6万元,7.2万元,预测该员工第七年的年薪为多少?(附:线性回归方程=bx+a中,b=,其中,为样本平均数)在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA 的中点.(1)求四棱锥O-ABCD的体积;(2)求异面直线OC与MD所成角的正切值的大小.如图在四边形ABCD中,∠ABC=,AB⊥AD,AB=.(1)若AC=,求△ABC的面积;(2)若∠ADC=,CD=4,求AD的长.如图,已知动直线l过点,且与圆O:x2+y2=1交于A、B两点.(1)若直线l的斜率为,求△OAB的面积;(2)若直线l的斜率为0,点C是圆O上任意一点,求CA2+CB2的取值范围;(3)是否存在一个定点Q(不同于点P),对于任意不与y轴重合的直线l,都有PQ平分∠AQB,若存在,求出定点Q的坐标;若不存在,请说明理由.设A=[-1,1],B=[],函数f(x)=2x2+mx-1.(1)设不等式f(x)≤0的解集为C,当C⊆(A∪B)时,求实数m的取值范围;(2)若对任意的实数m,总存在x∈[1,2],使得不等式|f(x)|≥tx,求实数t的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高二数学(理) 第二学期自主训练(7)试卷
(公式K 2
=n (ad -bc )(a +b )(c +d )(a +c )(b +d )
,其中n =a +b +c +d )
一、选择题:(本大题共12小题;每小题5分,共60分,在每小题给出的四
个选项中,只有一项是最符合题目要求的).
1.定义整数集合A 与B 的运算A *B 如下:A *B ={(x ,y )|x ∈A ,y ∈B ,且x +y 为偶数},若A ={-1,0,1},B ={1,2,3,4},则集合A *B 中的元素个数为( ) A .12
B .6
C .4
D .2
2. 已知a 、b 为常数,b >a >0,且a 、-3
2、b 成等比数列,(a +bx )6的展开式中 所有项的系数和为64,则a 等于( ) A .-1
2
B.1
2 C .-1
D.32
3.已知复数z 1=cos α+isin α和复数z 2=cos β+isin β,则复数z 1·z 2的实部是( )
A .sin(α-β)
B .sin(α+β)
C .cos(α-β)
D .cos(α+β)
4.某校在模块考试中约有1000人参加考试,其数学考试成绩X ~N (90,a 2)(a >0,试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约
为总人数的3
5,则此次数学考试成绩不低于110分的学生人数约为( ) A .600 B .400 C .300 D .200
5.已知函数1()()2x f x =,a ,b 为正实数,A =()2a b f +,B =f ,C =2(
)ab
f a b +,则A ,B ,C 的大小关系为( )
A .A ≤
B ≤
C B .A ≤C ≤B C .B ≤C ≤A
D .C ≤B ≤A
6.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是 ( )
A.y ^=-10x +200
B.y ^=10x +200
C.y ^=-10x -200
D.y ^=10x -200 7.已知f(x)=⎩⎨⎧1+x ,x ∈R ,
(1-i )x ,x ∉R ,
则f [f (1+i)]=( )
A .3+i
B .3
C .0
D .-3
8.要证a 2+b 2-1-a 2b 2≤0,只要证明( )
A .2ab -1-a 2b 2≤0
B .a 2+b 2-1-a 4+b
42≤0
C.(a +b )22
-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥0
9.已知随机变量ξ服从二项分布ξ~B ⎝ ⎛

⎪⎫6,13,即P (ξ=2)等于( )
A.316
B.1243
C.13243
D.80
243
10.通过随机询问110名性别不同的行人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如下的列联表,下列结论正确是( )
A .有99%
B .有99%以上的把握认为“选择过马路的方式与性别无关”
C .在犯错概率不超过0.1%的前提下,认为“选择过马路的方式与性别有关”
D .在犯错概率不超过0.1%的前提下,认为“选择过马路的方式与性别无关”
11.已知椭圆22
221(0)x y a b a b
+=>>1的直
线l 与椭圆相交,截得的弦长为正整数的直线l 恰有3条,则b 的值为()
C.
D.
12. 过双曲线)0,0(1:22
22>>=-b a b
y a x C 的一个焦点F 作双曲线C 的一条渐近线
的垂线,若垂足恰好在线段OF 的垂直平分线上,则双曲线C 的离心率为( )
A . 2
B . 2
C . 54
D .7
4
二、填空题(本大题共3小题,每小题5分,共15分,把答案填在题中横线上)
13.已知数据x 1、x 2、x 3、x 4、x 5是互不相等的正整数........,且x -
=3,中位数是3, 则这组数据的方差是________.
14.若(2x +3)3=a 0+a 1(x +2)+a 2(x +2)2+a 3(x +2)3,则a 0+a 1+2a 2+3a 3=___ 15.在空间直角坐标系O -xyz 中有8个点:P 1(1,1,1)、P 2(-1,1,1)、………、 P 7(-1,-1,-1)、P 8(1,-1,-1)(每个点的横、纵、竖坐标都是1或-1),
以其中4个点为顶点的三棱锥一共有_______个(用数字作答).
16.已知随机变量x服从正态分布x~N(2,s2),若P(x<a)=0.32,则P(a≤x<4-a)=________.
三.解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)
17.(本小题满分10分) 某网站用“10分制”调查一社区人们的幸福度.现从调
查人群中随机抽取16名,茎叶图(如下图所示)记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):
(1).若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人
中随机选取3人,至多有1人是“极幸福”的概率;
(2)以这16人的样本数据来估计整个社区的总体数据,若从该社区任选3
人,记X表示“极幸福”的人数,求X的分布列及数学期望和方差.18.(本小题满分12分)近年空气质量逐步恶化,雾霾天气现象出现增多,大
气污染危害加重.大气污染可引起呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问卷调查,得到
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为3 5.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
(3)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为X,求X的分布列,数学期望以及方差.
19. (本小题满分12分)已知数列{}n a 满足()1
1141,221
n n n a a a n a --==≥+.
(1)求数列{}n a 的通项公式; (2)证明不等式:1232
2
n n a a a -+++>
.
20. (本小题满分12分)已知抛物线2 4C y x =: 的焦点为F .
(1)点 A P 、
满足2AP FA =-.当点A 在抛物线C 上运动时,求动点P 的轨迹方程; (2)在x 轴上是否存在点Q ,使得点Q 关于直线2y x =的对称点在抛物线C 上?如果存在,求所有满足条件的点Q 的坐标;如果不存在,请说明理由.。

相关文档
最新文档