分式(三)(人教版)(含答案)
人教版八年级数学上册分式方程(含答案)

15.3分式方程专题一 解分式方程 1.方程32x 31-x 1+=的解是 . 2.解分式方程:3x 911x 3x 32-=-+.3.解分式方程:32x ++1x =242x x+.专题二 分式方程无解4.关于x 的分式方程211x m x x -=--无解,则m 的值是( )A .1B .0C .2D .–25.若关于x 的方程2222x m x x ++=--无解,则m 的值是______. 6.若关于x 的分式方程2233x m x x -=--无解,则m 的值为__________. 专题三 列分式方程解应用题7.甲、乙两班学生参加植树造林.已知甲班每天比乙班少植2棵树,甲班植60棵树所用天数与乙班植70棵树所用天数相等.若设甲班每天植树x 棵,则根据题意列出方程正确的是( )A .60702x x=+ B .60702x x =+C.60702x x =- D.60702x x =-8.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种1,结果提前4天完成任务.原计划每天种多少棵树?39.某校为了进一步开展“阳光体育”活动,计划用2000元购买乒乓球拍,用2800元购买羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵14元.该校购买的乒乓球拍与羽毛球拍的数量能相同吗?请说明理由.状元笔记【知识要点】1.分式方程分母中含未知数的方程叫做分式方程.2.解分式方程的一般步骤【温馨提示】1.用分式方程中各项的最简公分母乘方程的两边,从而约去分母.但要注意用最简公分母乘方程两边各项时,切勿漏项.2.解分式方程可能产生使分式方程无解的情况,那么检验就是解分式方程的必要步骤.参考答案:1.x=6 解析:去分母,得2x+3=3(x-1),解得x=6,经检验x=6是原方程的解.所以,原分式方程无解.3.解:方程两边乘x(x+2),得3x+x+2=4,解得x=21.经检验:x=21是原方程的解.4.A 解析:方程两边成x -1,得x -2(x -1)=m ,解得x=2-m .∵当x=1时分母为0,方程无解,∴2-m=1,即m=1时,方程无解.故选A .7.B 解析:设甲班每天植树x 棵,则乙班每天植树(x+2)棵,甲班植60棵树所用的天数为x ,乙班植70棵树所用的天数270+x ,可列方程为x 60=270+x .故选B . 8.解:设原计划每天种x 棵树,实际每天种树113x ⎛⎫+⎪⎝⎭棵,根据题意,得 4804804113x x -=⎛⎫+ ⎪⎝⎭.解这个方程,得x=30.经检验x=30是原方程的解且符合题意.答:原计划每天种树30棵.9.解:不能相同.理由如下:设该校购买的乒乓球拍每副x 元,羽毛球拍每副(x +14)元,若购买的乒乓球拍与羽毛球拍的数量相同,则1428002000+=x x ,解得x =35.经检验x =35是原方程的解.但当x =35时,74001428002000=+=x x ,不是整数,不合题意. 所以购买的乒乓球拍与羽毛球拍的数量不能相同.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
人教版 八年级数学上册 竞赛专题分式方程(含答案)

人教版 八年级数学上册 竞赛专题:分式方程(含答案)【例1】 若关于x 的方程22x ax +-=-1的解为正数,则a 的取值范围是______.解题思路:化分式方程为整式方程,注意增根的隐含制约.【例2】 已知()22221111x x A B Cx x x x x +-=++--,其中A ,B ,C 为常数.求A +B +C 的值.解题思路:将右边通分,比较分子,建立A ,B ,C 的等式.【例3】解下列方程: (1)596841922119968x x x x x x x x ----+=+----; (2)222234112283912x x x x x x x x ++-+=+-+; (3)2x +21x x ⎛⎫⎪+⎝⎭=3.解题思路:由于各个方程形式都较复杂,因此不宜于直接去分母.需运用解分式问题、分式方程相关技巧、方法解.【例4】(1)方程18272938x x x x x x x x +++++=+++++的解是___________. (2)方程222111132567124x x x x x x x ++=+++++++的解是________.解题思路:仔细观察分子、分母间的特点,发现联系,寻找解题的突破口.【例5】若关于x 的方程2211k x kx x x x x+-=--只有一个解,试求k 的值与方程的解. 解题思路:化分式方程为整式方程,解题的关键是对原方程“只有一个解”的准确理解,利用增根解题.【例6】求方程11156x y z ++=的正整数解. 解题思路:易知,,x y z 都大于1,不妨设1<x ≤y ≤z ,则111x y z≥≥,将复杂的三元不定方程转化为一元不等式,通过解不等式对某个未知数的取值作出估计.逐步缩小其取值范围,求出结果.能力训练A 级1.若关于x 的方程1101ax x +-=-有增根,则a 的值为________. 2.用换元法解分式方程21221x x x x --=-时,如果设21x x-=y ,并将原方程化为关于y 的整式方程,那么这个整式方程是___________. 3.方程2211340x x x x ⎛⎫+-++= ⎪⎝⎭的解为__________. 4.两个关于x 的方程220x x --=与132x x a=-+有一个解相同,则a =_______.5.已知方程11x a x a+=+的两根分别为a ,1a ,则方程1111x a x a +=+--的根是( ). A .a ,11a - B .11a -,1a - C .1a ,1a - D .a ,1aa -6.关于x 的方程211x mx +=-的解是正数,则m 的取值范围是( ) A .m >-1 B .m >-1且m ≠0C .m <-1D .m <-l 且m ≠-27.关于x 的方程22x c x c +=+的两个解是x 1=c ,x 2=2c ,则关于x 的方程2211x a x a +=+--的两个解是( ) . A .a ,2a B .a -1,21a - C .a ,21a - D .a ,11a a +- 8.解下列方程:(1)()2221160x x x x+++-=; (2)2216104933x x x x ⎛⎫+=-- ⎪⎝⎭.9.已知13x x+=.求x 10+x 5+51011x x +的值.10.若关于x 的方程2211k x kx x x x x+-=--只有一个解(相等的两根算作一个),求k 的值.11.已知关于x 的方程x2+2x +221022m x x m-=+-,其中m 为实数.当m 为何值时,方程恰有三个互不相等的实数根?求出这三个实数根.12.若关于x 的方程()()122112x x ax x x x x ++-=+--+无解,求a 的值.B 级1.方程222211114325671221x x x x x x x x +++=+++++++的解是__________.2.方程222111011828138x x x x x x ++=+-+---的解为__________.3.分式方程()()1112x m x x x -=--+有增根,则m 的值为_________. 4.若关于x 的分式方程22x ax +-=-1的解是正数,则a 的取值范围是______.5.(1)若关于x 的方程2133mx x =---无解,则m =__________. (2)解分式方程225111mx x x +=+--会产生增根,则m =______. 6.方程33116x x x x ⎛⎫+=+ ⎪⎝⎭的解的个数为( ). A .4个 B .6个 C .2个 D .3个7.关于x 的方程11ax =+的解是负数,则a 的取值范围是( ) . A .a <l B .a <1且a ≠0 C .a ≤1 D .a ≤1且a ≠08.某工程,甲队独做所需天数是乙、丙两队合做所需天数的a 倍,乙队独做所需天数是甲、丙两队合做所需天数的b 倍,丙队独做所需天数是甲、乙两队合做所需天数的c 倍,则111111a b c +++++的值是( ).A .1B .2C .3D .49.已知关于x 的方程(a 2-1)()2271011x x a x x ⎛⎫⎛⎫-++= ⎪ ⎪--⎝⎭⎝⎭有实数根.(1)求a 的取值范围;(2)若原方程的两个实数根为x 1,x 2,且121231111x x x x +=--,求a 的值.10.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降. 今年三月份的电脑售价比去年同期每台降价1 000元.如果卖出相同数量的电脑,去年销售额为10万元.今年销售额只有8万元. (1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3 800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元.要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?参考答案例1 a <2且a ≠-4例2 原式右边=22(1)+B(1)(1Ax x x Cx x x --+-)=2222()()211(1)(1)A C x B A x B x x x x x x ++--+-=-- 得2111A C B A B +=⎧⎪-=⎨⎪-=-⎩∴1011,8.A B C =⎧⎪=⎨⎪=-⎩,∴A +B +C =13.例3 (1)x =12314提示:1155(5)(1)(4)(2)191968x x x x -++=++-----.(2)1,2x =,x 3=-1,x 4=-4 提示:令223.4x xy x x +=+-(3)1,2x =提示222222()().111x x x x x x x +=++++例4 (1)原方程化为11111+111+2+9+3+8x x x x --=-+-,即1111+3+2+9+8x x x x -=-,进一步可化为(x +2) (x +3)=(x +8) (x +9),解得x =-112.(2)原方程化为1111111+1+2+2+3+3+4+4x x x x x x x -+-+-=,即12+14x x =+,解得x =2. 例5 原方程化为kx 2-3kx +2x -1=0①,当k =0时,原方程有唯一解x =12;当k ≠0,Δ=5k 2+4(k -1)2>0.由题意知,方程①必有一根是原方程的曾根,即x =0或x =1,显然0不是①的根,故x =1是方程①的根,代入的k =12.∴当k =0或12时,原方程只有一个解. 例6 11113x x y z x <++≤,即1536x x <≤,因此得x =2或3.当x =2时,111x x y <+=511112623y y y -=≤+=,即1123y y<≤,由此可得y =4或5或6;同理,当x =3时,y =3或4,由此可得当1≤x ≤y ≤z 时,(x ,y ,z )共有(2,4,12),(2,6,6),(3,3,6),(3,4,4)4组;由于x ,y ,z 在方程中地位平等,可得原方程组的解共15组:(2,4,12),(2,12,4), (4,2,12),(4,12,2),(12,2,4),(12,4,2),(2,6,6),(6,2,6),(6,6,2),(3,3,6),(3,6,3),(6,3,3),(3,4,4) ,(4,4,3) ,(4,3,4).A 级1.-1 2.y 2-2y -1=0 3.1 4.-8 5.D 6.D 7.D8.(1)12123x x ==-, (2)1226x x ==-,,3,43x =-±9.15250 提示:由x +13x =得2217.x x +=则2211()()21x x x x ++=,得33118x x+=. 于是221()x x+331()126x x +=,得551123x x +=.进一步得1010115127x x +=.故原式=15250.10.k =0或k =12提示:原方程化为kx 2-3kx +2x -1=0,分类讨论. 11.设x +2x =y ,则原方程可化为y 2-2my +m 2-1=0,解得y 1=m +1,y 2=m -1.∵x 2+2x -m -1=0①,x 2+2x -m +1=0②,从而Δ1=4m +8,Δ2=4m 中应有一个等于零,一个大于零.经讨论,当Δ2=0即m =0时,Δ1>0,原方程有三个实数根.将m =0代入原方程,解得12321211.x x x ⎧=-⎪⎪=--⎨⎪=⎪⎩12 原方程“无解”内涵丰富:可能是化得的整式方程无解,亦可能是求得的整式方程的解为増根,故需全面讨论.原方程化为(a+2)x =-3 ① , ∵原方程无解,∴a+2=0或x -1=0,x+2=0,得B 级1. 3或 - 72. x₁=8 , x₁=-1 , x₁=-8 , x₁=1 提示: 令x ²-8=y3. 3 提示:由有増根可得m=0或 m=3,但当 m=0,化为整式方程时无解4. a<2 且 a ≠-45. ⑴ -2 ⑵ -4 或 -106. A7.8. 设甲单独做需要x 天完成,乙单独做需要y 天完成,丙单独做需要z 天完成则.解 . 当a ≠±1时,则Δ≥0,原方程有实数解.由Δ=[-﹙2a+7﹚]²-4﹙a ²-1﹚≥0,解得.21-5,2,21-a 5,-=a 分别别代入①2-= x 1,=x 把 2,-=a 或综上知--==a 0≠1a ∴ 0,≠11 0≠1x 1a 01-a x ∴,111x a: a a x a B 且即且由提示<+-+<⇒<=+=⇒=+1x y +=++a yz yzxz 得⑥⑤④, ⑥11yz x z x y x y ⑤,11yz x z x y x z ④.11yz x z x y yz ∴+++=+++=+++=++c b a 同理可得111111a 1=+++++c b 得,01.01)72(1)t -(a 1,≠,1⑴....9222=-=++-=-a t a t t x x当原方程可化为则设.,?=a , 41-=x 81-=x ∴, 51=1-x 91=1-x 0=1+5-0=1+9-, ?=原方程有实数解时当故或或即或则方程为时即x x t t a 且当综上可知由于解得时但当又,2853-≥,,2853->22±1,22±1=a ,1=t 1,≠t ,2853-≥a a .,22±1≠原方程有实数解时a。
八年级数学上册 分式方程及其应用(习题及答案)(人教版)

分式方程及其应用(习题)例题示范例1:解分式方程:11322x x x-=---. 【过程书写】 1(1)3(2)1136242x x x x x x =----=-+-+==解: 检验:把x =2代入原方程,不成立∴x =2是原分式方程的增根∴原分式方程无解例2:八年级(1)班学生周末乘汽车到游览区游览,游览区距学校120km .一部分学生乘慢车先行,出发0.5h 后,另一部分学生乘快车前往,结果他们同时到达游览区.已知快车的速度是慢车速度的1.2倍,求慢车的速度.【思路分析】列表梳理信息:【过程书写】解:设慢车的速度为x km/h ,则快车的速度为1.2x km/h ,由题意得,1201200.51.2x x =- 解得,x =40经检验:x =40是原方程的解,且符合题意答:慢车的速度是40km/h .巩固练习1. 下列关于x 的方程,其中不属于分式方程的是( )A .1a b a x a ++=B .xa b x b a +=-11 C .b x a a x 1-=+ D .1=-+++-nx m x m x n x2. 解分式方程2236111x x x +=+--分以下四步,其中错误的一步是( ) A .方程两边分式的最简公分母是(1)(1)x x -+B .方程两边都乘以(1)(1)x x -+,得整式方程2(1)3(1)6x x -++=C .解这个整式方程,得1x =D .原方程的解为1x =3. 张老师和李老师同时从学校出发,骑行15千米去县城购买书籍.已知张老师比李老师每小时多走1千米,结果比李老师早到半小时,则两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意可列方程为( )A .1515112x x -=+ B .1515112x x -=+ C .1515112x x -=- D .1515112x x -=-4. 若方程61(1)(1)1m x x x -=+--有增根,则m =_________.5. 如果解关于x 的分式方程1134x m x x +-=-+出现了增根,那么增根是___________.6. 解分式方程:(1)43(1)1x x x x +=--;(2)22(1)23422x x x x +=+--+;(3)23112x x x x -=+--;(4)11222x x x-=---.7. 某服装厂设计了一款新式夏装,想尽快制作8 800件投入市场.已知该服装厂有A ,B 两个制衣车间,A 车间每天加工的数量是B 车间的1.2倍.A ,B 两车间共同完成一半的生产任务后,A 车间因出现故障而停产,剩下的全部由B 车间单独完成,结果前后共用了20天完成全部生产任务.则A ,B 两车间每天分别能加工多少件该款夏装? 【思路分析】列表梳理信息:【过程书写】8.某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求.商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但是单价贵了4元.商厦销售这种衬衫时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这两笔生意中,商厦共盈利多少元?【思路分析】列表梳理信息:【过程书写】【参考答案】 巩固练习1. C2. D3. B4. 35.x=36.(1)x=2(2)43 x(3)无解(4)无解7.A车间每天能加工384件该款夏装B车间每天能加工320件该款夏装8.商厦共盈利90 260元。
人教版初中八年级数学上册第十五章《分式》知识点(含答案解析)(1)

一、选择题1.使分式21xx -有意义的x 的取值范围是( )A .x ≠1B .x ≠0C .x ≠±1D .x 为任意实数2.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ayy y++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4B .5C .6D .33.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9-B .8-C .7-D .6-4.如果关于x 的分式方程6312233ax x x x--++=--有正整数解,且关于y 的不等式组521510yy a -⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a 的和为( ) A .2 B .3C .6D .115.已知分式34x x -+的值为0,则x 的值是( ) A .3B .0C .-3D .-46.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④7.下列各式中,正确的是( )A .22a a b b =B .11a ab b +=+ C .2233a b a ab b= D .232131a ab b ++=--8.已知2340x x --=,则代数式24xx x --的值是( )A .3B .2C .13D .129.若2x 11x x 1+--的值小于3-,则x 的取值范围为( ) A .x 4>- B .x 4<-C .x 2>D .x 2<10.若分式()22222x y x y a x a yax ay+-÷-+的值等于5,则a 的值是( )A .5B .-5C .15D .15-11.2222x y x y x y x y -+÷+-的结果是( ) A .222()x y x y ++B .222()x y x y +-C .222()x y x y -+D .222()x y x y ++12.020*******)(0.125)8+⨯的结果是( )A B 2C .2D .013.下列各式中,无论x 取何值,分式都有意义的是( ). A .132x - B .213x + C .231x x+ D .21xx + 14.当1x 0-<<时, 1x -,0x ,2x 的大小顺序是( ) A .102x x x -<< B .012x x x -<<C .021x x x -<<D .120x x x -<<15.计算a ba b a÷⨯的结果是() A .aB .2aC .2b aD .21a二、填空题16.已知5a b +=,6ab =,b aa b+=______. 17.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________. 18.已知5,3a b ab -==,则b aa b+的值是__________. 19.新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店抓住商机购进甲、乙、丙三种口罩进行销售.已知销售每件甲种口罩的利润率为30%,每件乙种口罩的利润率为20%,每件丙种口罩的利润率为5%.当售出的甲、乙、丙口罩件数之比为1:3:2时,药店得到的总利润率为20%;当售出的甲、乙、丙口罩件数之比为3:2:2时,药店得到的总利润率为24%.因丙种口罩利润较低,现药店准备只购进甲、乙两种口罩进行销售,若该药店想要获得的总利润率为28%,则该药店应购进甲、乙两种口罩的数量之比是______.20.某班在“世界读书日”当天开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为_________人.21.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg ,甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等.问乙型机器人每小时搬运多少kg 产品? 根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______小惠同学设甲型机器人搬运800kg 所用时间为y 小时,可列方程为____________. (2)乙型机器人每小时搬运产品_______________kg .22.计算:2120192-⎛⎫-= ⎪⎝⎭______. 23.如图,将形状大小完全相同的“□”按照一定规律摆成下列图形,第1幅图中“□”的个数为1a ,第2幅图中“□”的个数为2a ,第3幅图中“□”的个数为3a ,……,以此类推,若123201922222020n a a a a +++⋅⋅⋅+=(n 为正整数),则(1)5a =________;(2)n 的值为________.24.已知(3)1a a -=,则整数a 的值为______. 25.方程11212x x =+-的解是x =_____. 26.方程22020(1)1x x x ++-=的整数解的个数是_____.三、解答题27.雪梨是石家庄市某地的特色时令水果.雪梨上市后,水果店的老板用2400元购进一批雪梨,很快售完;老板又用3750元购进第二批雪梨,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)求第一批雪梨每件进价是多少元?(2)老板以每件225元的价格销售第二批雪梨,售出80%后,为了尽快售完,剩下的决定打折促销,要使得第二批雪梨的销售利润为2460元,剩余的雪梨每件售价应该打几折?(利润=售价-进价) 28.计算:(1)化简:()()22n m n m n -++;(2)解分式方程:2132163x x x -=---. 29.分式计算与解方程:(1)21211a a a a ----; (2)121221xx x +=-+. 30.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中5x =.。
数学六年级上册数学书人教版答案2022

数学六年级上册数学书人教版答案2022第一章概念1.数的概念:(1)数定义:数是用来表示一些计数的对象的标记。
(2)数的种类:有自然数、整数、分数、小数、百分数等。
2.运算:(1)加法运算:两个或多个数相加,所得结果称为和。
(2)减法运算:将一个大数减去一个小数,所得结果称为差。
(3)乘法运算:两个或多个数相乘,所得结果称为积。
(4)除法运算:将一个大数除以一个小数,所得结果称为商。
3.等式及不等式:(1)等式:两边的数量完全相等,可以用等号表示,称为等式。
(2)不等式:表示两个不等数量的运算,可以用不等号“>”,“<”,“≥”,“≤”等表示,称为不等式。
第二章因式分解1.因式分解的定义:因式分解是把一个多项式拆分成几个数的乘积的过程,将一个多项式拆分成以单项式组成的乘积,称为因式分解。
2.因式分解的步骤:(1)将多项式的最高次幂的系数分解为两个或多个质因数的乘积;(2)把每一个因数放在括号中,形成一个因式;(3)把每一个因式相乘,得到所要求的答案。
第三章分式1.分式的定义:分式是两个不同的术语定义的数,由分子和分母组成。
2.分式的运算:(1)加法:把分子相加,把分母相同,称为加法运算。
(2)减法:把分子相减,把分母相同,称为减法运算。
(3)乘法:把分子相乘,把分母相乘,称为乘法运算。
(4)除法:把分子相除,把分母相乘,称为除法运算。
第四章有理数1.有理数的定义:有理数是指由一组有效的整数加减乘除而得到的数,包括整数、分数、小数和百分数等。
2.有理数的运算:(1)有理数加法运算:将两个或多个有理数相加,所得结果叫做有理数和。
(2)有理数减法运算:两个有理数相减,所得结果叫做有理数差。
(3)有理数乘法运算:两个有理数相乘,所得结果叫做有理数积。
(4)有理数除法运算:将一个有理数除以另一个有理数,所得结果叫做有理数商。
第五章解方程1.方程的定义:方程是由一个或多个未知数和常数组成的等式,要求求解未知数使等式成立。
最新人教版八年级数学上册《15.1.2 分式的基本性质》优质教学课件

x 1
4 x3
解:(3)最简公分母是 12x 3 .
x 1 (x 1) 6 x
6 x(x 1)
,
2
2
3
2 x
2 x 6 x
12 x
4
4 ( 4 x 2) 16 x 2
,
2
3
3x
3 x ( 4 x ) 12 x
x 1 (x 1)( 3) (
(2)所乘(或除以)的必须是同一个整式;
(3)所乘(或除以)的整式应该不等于零.
探究新知
素养考点 1
分式的基本性质的应用
例 下列等式成立吗?右边是怎样从左边得到的?
解: (1)成立.
(2) 成立.
因为
因为
所以
所以
巩固练习
下列变形是否正确?如果正确,说出是如何变形的?如
果不正确,说明理由.
x
1
(1)
分式的分子与分母乘(或除以)同一个不等于0的整
式,分式的值不变.
探究新知
追问1 如何用式子表示分式的基本性质?
A
A C A
A C
,
(C 0)
.
B
B C B
B C
其中A,B,C 是整式.
探究新知
追问2 应用分式的基本性质时需要注意什么?
(1)分子、分母应同时做乘、除法中的同一种运算;
,
B. 3a 2b3 与 3a 2b 2c 通分后为 2 3
3a b c 3a 2 b 3 c
1
C. m +n 与
1
m–n
的最简公分母为m2-n2
分式运算(逐项通分、裂项相消、换元法)(人教版)(含答案)

学生做题前请先回答以下问题问题1:分式运算的基础是什么?问题2:对于复杂的分式运算要通过恰当的变形,转化成简单的熟悉的分式运算来进行,通常的策略有_______、________等.问题3:解分式方程要注意什么?问题4:为什么解分式方程要检验?以下是问题及答案,请对比参考:问题1:分式运算的基础是什么?答:分式运算的基础是分式的基本性质和分式的运算法则.问题2:对于复杂的分式运算要通过恰当的变形,转化成简单的熟悉的分式运算来进行,通常的策略有、等.答:逐项通分和列项相消.问题3:解分式方程要注意什么?答:解分式方程要检验.问题4:为什么解分式方程要检验?答:解分式方程时,去分母后所得整式方程的解可能使原方程中分母为0,因此要检验.分式运算(逐项通分、裂项相消、换元法)(人教版)一、单选题(共9道,每道11分)1.( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:逐项通分2.( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:逐项通分3.( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:裂项相消4.( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:裂项相消5.已知,则( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:裂项相消6.方程的解是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:换元法7.方程的解是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:换元法8.方程的解是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:换元法9.若实数x满足,则的值为( )A.2B.3C.-1或2D.-2或3答案:C解题思路:试题难度:三颗星知识点:换元法。
八年级上册数学人教版课时练《3 分式方程》 试题试卷 含答案解析(1)

《15.3分式方程》课时练一、选择题(共9小题,满分36分)1.在下列各式①x2﹣x+;②﹣3=a+4;③+5x=6;④+=1中,是分式方程的有()A.1个B.2个C.3个D.4个2.方程解是()A.x=B.x=4C.x=3D.x=﹣43.已知实数x满足+(x2+3x)=4,则x2+3x的值为()A.1或3B.1C.3D.﹣1或﹣3 4.用换元法解方程+=时,如果设=y,则原方程可化为()A.y+=B.2y2﹣5y+2=0C.6y2+5y+2=0D.3y+=5.关于x的方程=2+有增根,则k的值为()A.±3B.3C.﹣3D.26.若分式方程有增根,则a的值是()A.﹣3B.3C.1D.07.已知关于x的方程的解是正整数,且k为整数,则k的值是()A.0B.﹣2C.0或6D.﹣2或68.定义a⊗b=2a+,则方程3⊗x=4⊗2的解为()A.x=B.x=C.x=D.x=9.若数a使得关于x的不等式组,有且仅有四个整数解,且使关于y的分式方程﹣=1有整数解,则所有满足条件的整数a的值之和是()A.3B.2C.﹣2D.﹣3二、填空题(共8小题,满分40分)10.分式方程=的解为.11.方程如果有增根,那么增根一定是.12.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的正整数a的值为.13.某园林公司增加了人数和挖坑机进行园林绿化,现在平均每天比原计划多植树30棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,则根据题意列出的方程是.14.关于x的分式方程的解为正数,则m的取值范围是.15.若分式方程式无解,则m的值为.16.已知关于x的分式方程=a有解,则a的取值范围是.17.关于x的分式方程=的解不小于1,则m的取值范围是.三、解答题(共6小题,满分44分)18.解方程:.19.若方程有增根,求m的值.20.某林场计划植树1200棵,后来由于天气原因要提前完成任务,于是将效率提高到原来的倍,这样种完相同的棵数所用的时间比原计划少用了10天.求实际每天种植多少棵?21.阅读:对于两个不等的非零实数a、b,若分式的值为零,则x=a或x=b.又因为==x+﹣(a+b),所以关于x的方程x+=a+b有两个解,分别为x1=a,x2=b.应用上面的结论解答下列问题:(1)方程x+=q的两个解分别为x1=﹣1、x2=4,则P=,q=;(2)方程x+=4的两个解中较大的一个为;(3)关于x的方程2x+=2n的两个解分别为x1、x2(x1<x2),求的值.22.某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于2100元,则第二批衬衫每件至少要售多少元?23.某商家预测一种应季衬衫能畅销市场,就用16800元购进了一批这种衬衫,面市后果然供不应求,商家又用36400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按六折优惠卖出,如果两批衬衫全部售完后利润不低于20%(不考虑其他因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(共9小题,满分36分)1.B2.B3.A4.D5.D6.A7.D8.B9.A 二、填空题(共8小题,满分40分)10.x=211.x=1.12.213..14.m>﹣6且m≠﹣3.15.1.16.a≠﹣且a≠0.17.m≥5且m≠三、解答题(共6小题,满分44分)18.解:设=y,则原方程化为y=+2y,解之得,y=﹣.当y=﹣时,有=﹣,解得x=﹣.经检验x=﹣是原方程的根.∴原方程的根是x=﹣.19.解:方程两边都乘以(x+2)(x﹣2)得,2(x+2)+mx=3(x﹣2),∵分式方程又增根,∴(x+2)(x﹣2)=0,x+2=0或x﹣2=0,解得x=﹣2或x=2,①当x=﹣2时,2(﹣2+2)+(﹣2)m=3(﹣2﹣2),解得m=6,②当x=2时,2(2+2)+2m=3(2﹣2),解得m=﹣4,综上所述,m的值为6或﹣4.故答案为:6或﹣4.20.解:设计划每天种x棵树,则实际每天种x棵树,根据题意得﹣10=,得x=40,经检验x=40是原方程的解符合题意,实际:×40=60(棵),答:实际每天种植60棵树.21.解:(1)∵方程x+=q的两个解分别为x1=﹣1、x2=4,∴p=﹣1×4=﹣4,q=﹣1+4=3,故答案为:﹣4,3;(2)设方程x+=4的两个解为a,b,则ab=3,a+b=4,∴a=1,b=3或a=3,b=1,∴两个解中较大的一个为3;故答案为:3;(3)∵2x+=2n,∴2x+1+=2n+1,2x+1+=(n+2)+(n﹣1),∴2x+1=n+2或2x+1=n﹣1,x=或,∵x1<x2,∴x1=,x2=,∴===1.22.解:(1)设第二次购进衬衫x件,则第一次购进衬衫2x件,依题意,得:﹣=10,经检验,x=15,经检验,x=15是所列分式方程的解,且符合题意,∴2x=30.答:第一次购进衬衫30件,第二次购进衬衫15件.(2)由(1)可知,第一次购进衬衫的单价为150元/件,第二次购进衬衫的单价为140元/件,设第二批衬衫的售价为y元/件,依题意,得:(200﹣150)×30+(y﹣140)×15≥2100,解得:y≥180.答:第二批衬衫每件至少要售180元.23.解:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有+10=,解得x=140,经检验,x=140是原方程的解,且符合题意.答:该商家购进的第一批衬衫是140件.(2)3x=3×140=420,设每件衬衫的标价y元,依题意有(420﹣50)y+50×0.6y≥(16800+36400)×(1+20%),解得y≥159.6.答:每件衬衫的标价至少是159.6元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式(三)(人教版)试卷简介:分式方程的应用一、单选题(共14道,每道6分)1.化简得_______,从的范围内挑选一个你认为合适的整数作为x的值,代入求值的结果是________,则你认为横线上应填入的的结果是( )A. B.C. D.答案:D解题思路:(1)考点:分式化简求值(2)解答过程:∵且x为整数∴x=-1,0,1,2∵x(x-1)≠0,(x+1)(x-1)≠0,(x-1)2=0,∴x≠0且x≠1且x≠-1∴x=2将x=2代入故选D(3)易错点:合适的整数x是满足,并且使得分式有意义的整数.试题难度:三颗星知识点:分式化简求值2.先化简,然后从的范围内选取一个合适的整数作为x的值代入求得的结果是( )A. B.C. D.以上都对答案:B解题思路:(1)考点:分式化简求值(2)解答过程:∵且x为整数∴x=-2,-1,0∵x(x-2)≠0,(x+2)(x-2)≠0,x≠0∴x≠0且x≠2且x≠-2∴x=-1将x=-1代入故选B(3)易错点:合适的整数x是满足,并且使得分式有意义的整数.试题难度:三颗星知识点:分式化简求值3.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少.设货车的速度为千米/小时,依题意列方程正确的是()A. B.C. D.答案:C解题思路:(1)考点:理解题意是解答问题的关键,找出题中的等量关系,列出关系式.(2)解答过程:解:设货车的速度为千米/小时,则小车的速度为(x+20)千米/小时,货车行驶25千米所用时间为小时,小车行驶35千米所用时间为小时,∵货车行驶25千米与小车行驶35千米所用时间相同,∴所列方程为故选C试题难度:三颗星知识点:分式方程应用题4.有两块面积相同的小麦试验田,分别收获小麦和.已知第一块试验田每公顷的产量比第二块少,若设第一块试验田每公顷的产量为,根据题意,可得方程( )A. B.C. D.答案:C解题思路:(1)考点:理解题意是解答问题的关键,找出题中的等量关系,列出关系式.(2)解答过程:解:设第一块试验田每公顷的产量为,则第二块试验田每公顷的产量为(x+3000)kg,第一块试验田的面积为,第二块试验田的面积为∵两块试验田的面积相同∴所列方程为故选C(3)易错点:找不到对应的产量和产率建立等式.试题难度:三颗星知识点:分式方程应用题5.某车间要加工170个零件,在加工完90个以后改进了操作方法,•每天可多加工10个,一共用5天完成了任务,若改进操作方法后每天加工x个零件,•所列方程正确的是( )A. B.C. D.答案:A解题思路:(1)考点:理解题意是解答问题的关键,找出题中的等量关系,列出关系式.(2)解答过程:解:设改进操作方法后每天加工x个零件,•则改进操作方法前每天加工(x-10)个零件,改进操作方法前所用时间为,改进操作方法后所用时间为,∵一共用5天完成了任务∴所列方程为故选A试题难度:三颗星知识点:分式方程应用题6.为保证某高速公路在今年年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x天,由题意列出的方程是( )A. B.C. D.答案:B解题思路:(1)考点:理解题意是解答问题的关键,找出题中的等量关系,列出关系式.(2)解答过程:解:设规定的时间为x天,•则甲队单独完成这项工程需(x+10)天,乙队单独完成这项工程需(x+40)天,甲、乙两队合作完成这项工程需(x-14)天∴甲队的工作效率为,乙队的工作效率为,甲、乙两队合作的工作效率为,∴所列方程为故选B试题难度:三颗星知识点:分式方程应用题7.“退耕还林还草”是我国西部地区实施的一项重要生态工程,某地规划退耕面积共69000公顷,退耕还林与退耕还草的面积比为5:3,设退耕还林的面积为x公顷,下列所列方程哪一个是不正确的?()A. B.C. D.答案:B解题思路:(1)考点:理解题意是解答问题的关键,找出题中的等量关系,列出关系式.(2)解答过程:解:设退耕还林的面积为x公顷,则退耕还草的面积为(69000-x)公顷∵退耕还林与退耕还草的面积比为5:3∴,选项A正确,选项C正确,选项D正确故选B(3)易错点:根据退耕还林与退耕还草的面积比为5:3列出等式,合理变形是解决本题的关键.试题难度:三颗星知识点:分式方程应用题8.某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期15天才完成B.每天比原计划少铺设10米,结果延期15天才完成C.每天比原计划少铺设10米,结果提前15天才完成D.每天比原计划多铺设10米,结果提前15天才完成答案:D解题思路:(1)考点:根据所列方程,理解题意,在分析过程中观察题目类型以及每个式子所代表的意义.(2)解答过程:由方程可知:原计划用的时间-实际用的时间=15天,那么就说明实际每天比原计划多铺设10米,结果提前15天完成任务.故选D.试题难度:三颗星知识点:分式方程应用题9.市开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程,刚好如期完工;②乙队单独完成此项工程要比规定工期多用5天;③“…”,剩下的工程由乙队单独做,也正好如期完工.某同学设规定的工期为x天,根据题意列出了方程:,则方案③中“…”的部分应该是() A.甲队先做了4天 B.甲乙合做了4天C.甲队先做了工程的D.甲乙合做了工程的答案:B解题思路:(1)考点:根据所列方程,理解题意,在分析过程中观察题目类型以及每个式子所代表的意义(2)解答过程:解:由方程可知:甲做了4天,乙做了x天.故条件③是甲乙合做了4天.故选B.试题难度:三颗星知识点:分式方程应用题10.一个不等于零的数a是它的倒数的4倍,那么这个数是()A.4aB.C.±2D.±4答案:C解题思路:(1)考点:分式方程的简单应用(2)解答过程:解:由题意得:解得:故选C(3)易错点:一个正数有两个平方根.试题难度:三颗星知识点:分式方程的应用11.某人上山和下山走同一条路,且总路程为千米,若他上山的速度为千米/时,下山的速度为千米/时,则他上山和下山的平均速度为( )A. B.C. D.答案:B解题思路:(1)考点:理解题意是解答问题的关键,利用上、下山平均速度=建立等量关系.(2)解答过程:解:则上山的时间为小时,下山的时间为小时则上、下山的平均速度为故选B(3)易错点:平均速度等于总路程÷总时间试题难度:三颗星知识点:分式方程应用题12.甲、乙两个清洁队参加了某社区“城乡清洁工程”,甲队单独做2天完成了工程的三分之一,这时乙队加入,两队又共同做了1天,完成了全部工程.则乙队单独完成此项工程需要()A.6天B.4天C.2天D.3天答案:C解题思路:(1)考点:理解题意是解答问题的关键,找出题中的等量关系,列出关系式求解方程.(2)解答过程:解:设乙队单独完成此项工程需要的时间为x天,由题意得:解得:x=2,经检验,x=2是原方程的解.∴x=2.故选C.试题难度:三颗星知识点:分式方程应用题13.某人承包1125平方米的铺地砖任务,计划在一定的时间内完成,按计划工作3天后,提高了工作效率,使每天铺地砖的面积为原计划1.5倍,结果提前4天完成了任务,则原计划每天铺() A.70平方米 B.65平方米C.75平方米D.85平方米答案:C解题思路:(1)考点:理解题意是解答问题的关键,根据时间来列等量关系,等量关系为:原计划所用时间-实际工作天数=4(2)解答过程:解:设原计划每天铺x米,由题意得:解得:x=75.经检验x=75是原方程的解.故原计划每天铺75平方米.故选C试题难度:三颗星知识点:分式方程应用题14.八年级学生去距学校10千米的博物馆参观,一部分同学骑自行车先走,过了20分后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,则骑车同学的速度为()A.千米/时B.千米/时C.15千米/时D.30千米/时答案:C解题思路:(1)考点:理解题意是解答问题的关键,根据时间来列等量关系,等量关系为:骑自行车同学所用时间-乘车同学所用时间=(2)解答过程:解:设骑车同学的速度为x千米/时,则乘汽车同学的速度为2x千米/时由题意得:解得:x=15.经检验x=15是原方程的解.答:骑车同学的速度为15千米/时.故选C试题难度:三颗星知识点:分式方程应用题。