七年级数学整式单元测试题

合集下载

人教版七年级上册数学第二章整式单元测试卷(含知识点)

人教版七年级上册数学第二章整式单元测试卷(含知识点)

人教版七年级上册数学第二章整式单元测试卷(含知识点)1、单项式-3x²减去单项式-4x²y,-5x²,2x²y的和,列算式为,化简后的结果是-3x²+4x²y+5x²-2x²y=2x²+2x²y。

2、当x=-2时,代数式-x²+2x-1=9,x²-2x+1=9.3、写出一个关于x的二次三项式,使得它的二次项系数为-5,则这个二次三项式为-5x²+mx+n。

4、已知:x+1/11=1,则代数式(x+1/11)2010+x-5的值是2/11.5、XXX从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则XXX卖报收入0.5b-0.4a元。

6、计算:3x-3+5x-7=8x-10,(5a-3b)+(9a-b)=14a-4b。

7、计算:(m+3m+5m+…+2009m)-(2m+4m+6m+…+2008m)=1005m。

8、-a+2bc的相反数是a-2bc,3-π≈-0.1416,最大的负整数是-1.9、若多项式2x²+3x+7的值为10,则多项式6x²+9x-7的值为28.10、若(m+2)2x³yn-2是关于x,y的六次单项式,则m≠0,n=3.11、已知a²+2ab=-8,b²+2ab=14,则a²+4ab+b²=6,a²-b²=-22.12、多项式3x²-2x-7x³+1是次项式-7x³,最高次项是x³,常数项是1.13、下列等式中正确的是D、2x-5=-(2x-5)。

14、下面的叙述错误的是B、a+2b²的意义是a与b²的2倍的和。

15、7x³y²+x²y³-3xy²的次数是5.16、-(a-b+c)变形后的结果是-B、-a+b-c。

七年级数学-整式的加减单元测试题及答案

七年级数学-整式的加减单元测试题及答案

七年级数学-整式的加减单元测试题及答案七年级数学-整式的加减单元测试题一、选择题(每小题2分,共20分)1.在代数式中,x2-5,-1,x2-3x+2,π,5/x,x2+1/x+1,-3π整式有()A。

3个 B。

4个 C。

5个 D。

6个2.单项式-3πxy2z2的系数和次数分别是()A。

-π,5 B。

-1,6 C。

-3π,6 D。

-3,73.下面计算正确的是()A。

3x2-x2=3 B。

3a2+2a3=5a5 C。

3+x=3x D。

-0.25ab+1/4ab=04.多项式-x2-1/2x-1的各项分别是()A。

-x2,1/2x,1 B。

-x2,-1/2x,-1 C。

-x2,1/2x,-1 D。

x2,-1/2x,-15.已知2x3y2和-3x3my2是同类项,则式子4m-24的值是()A。

20 B。

-20 C。

28 D。

-286.下面各题去括号错误的是()A。

x-(6y-1/2)=x-6y+1/2B。

2m+(-n+1/3a-b)=2m-n+1/3a-bC。

-1/2(4x-6y+3)=-2x+3y+3D。

(a+1/2b)-(-1/3c+2/7)=a+1/2b+1/3c-2/77.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()元。

A。

4m+7n B。

28mn C。

7m+4n D。

11mn8.减去-4x等于3x2-2x-1的代数式是()A。

3x2-6x-1 B。

5x2-1 C。

3x2+6x-1 D。

3x2+2x-19.已知下列一组数,用代数式表示第n个数:1、3/4、5/9、7/16、9/25……则第n个数为()A。

2n-1/n B。

n2-4/n C。

2n-1/n2 D。

2n+1/n210.如果a-b=1/2,那么-3(b-a)的值时()A。

-3/5 B。

2/3 C。

3/2 D。

1/6二、填空题(每小题3分,共30分)11.在代数式中,xy,-3,-1/4x2+1,x-y,-m2n,1/x,4-x2,ab2,2/x+3单项式有5个,多项式有3个。

七年级数学下册《整式的乘除》单元测试卷(附答案)

七年级数学下册《整式的乘除》单元测试卷(附答案)

七年级数学下册《整式的乘除》单元测试卷(附答案)一.选择题(共8小题,满分40分)1.已知a+b﹣2=0,则3a•3b的值是()A.6 B.9 C.D.﹣92.若8x=21,2y=3,则23x﹣y的值是()A.7 B.18 C.24 D.633.如果2(5﹣a)(6+a)=100,那么a2+a+1的值为()A.19 B.﹣19 C.69 D.﹣694.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是()A.3 B.6 C.7 D.85.已知4x2+mx+9是完全平方式,则m的值是()A.8 B.±6 C.±12 D.±166.若x+y=3,xy=1,则(1﹣2x)(1﹣2y)的值是()A.1 B.﹣1 C.2 D.﹣27.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()A.ab=c B.a+b=cC.a:b:c=1:2:10 D.a2b2=c28.若(mx+3)(x2﹣x﹣n)的运算结果中不含x2项和常数项,则m,n的值分别为()A.m=0,n=0 B.m=0,n=3 C.m=3,n=1 D.m=3,n=0二.填空题(共8小题,满分40分)9.若(x+m)(x﹣3)=x2+nx﹣12,则n=.10.直接写出计算结果:(﹣3x2y3)4(﹣xy2)2=.11.当a=时,多项式x2﹣2(a﹣1)x+25是一个完全平方式.12.已知(x+y)2=2,(x﹣y)2=8,则x2+y2=.13.计算:(﹣)2022×(﹣1)2021=.14.(1)已知x+y=4,xy=3,则x2+y2的值为.(2)已知(x+y)2=25,x2+y2=17,则(x﹣y)2的值为.(3)已知x满足(x﹣2020)2+(2022﹣x)2=12,则(x﹣2021)2的值为.15.已知(x+3)2﹣x=1,则x的值可能是.16.如图,小颖用4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若a=2b,则S1、S2之间存在的数量关系是.三.解答题(共5小题,满分40分)17.计算:(x﹣2y+3)(x+2y﹣3).18.计算(1)(﹣5x)2﹣(3x+5)(5x﹣3);(2)(2x﹣3y)2﹣(﹣x+3y)(3y+x);(3)先化简,再求值:[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy),其中,y=3.19.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(4,64)=,(﹣2,4)=,(,﹣8)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4);他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n;∴3x=4,即(3,4)=x.∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30).(3)拓展应用:计算(3,9)×(3,20)﹣(3,5).20.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.21.阅读、理解、应用.例:计算:20223﹣2021×2022×2023.解:设2022=x,则原式=x3﹣(x﹣1)•x•(x+1)=x3﹣x(x2﹣1)=x=2022.请你利用上述方法解答下列问题:(1)计算:1232﹣124×122;(2)若M=123456789×123456786,N=123456788×123456787,请比较M,N的大小;(3)计算:.参考答案与解析一.选择题(共8小题,满分40分)1.【答案】解:∵a+b﹣2=0;∴a+b=2;∴3a•3b=3a+b=32=9.故选:B.2.【答案】解:∵8x=21,2y=3;∴23x=21;∴23x﹣y=23x÷2y=21÷3=7.故选:A.3.【答案】解:∵2(5﹣a)(6+a)=100;∴﹣a2+5a﹣6a+30=50;∴a2+a=﹣20;∴a2+a+1=﹣20+1=﹣19.故选:B.4.【答案】解:∵25a•52b=56,4b÷4c=4;∴52a•52b=56,4b﹣c=4;∴2a+2b=6,b﹣c=1;即a+b=3,b﹣1=c;∴a2+ab+3c=a(a+b)+3(b﹣1)=3a+3b﹣3=3(a+b)﹣3=3×3﹣3=9﹣3=6.故选:B.5.【答案】解:∵(2x±3)2=4x2±12x+9;∴m=±12;故选:C.6.【答案】解:原式=1﹣2y﹣2x+4xy =1﹣2(x+y)+4xy;当x+y=3,xy=1时;原式=1﹣2×3+4=1﹣6+4=﹣1;故选:B.7.【答案】解:∵5×10=50;∴2a•2b=2c;∴2a+b=2c;∴a+b=c;故选:B.8.【答案】解:(mx+3)(x2﹣x﹣n)=mx3﹣mx2﹣nmx+3x2﹣3x﹣3n=mx3+(﹣m+3)x2+(﹣nm﹣3)x﹣3n;∵(mx+3)(x2﹣x﹣n)的乘积中不含x2项和常数项;∴﹣m+3=0,﹣3n=0;解得:m=3,n=0;故选:D.二.填空题(共8小题,满分40分)9.【答案】解:(x+m)(x﹣3)=x2﹣3x+mx﹣3m=x2+(m﹣3)x﹣3m;∴m﹣3=n,3m=12;解得:m=4,n=1;故答案为:1.10.【答案】解:原式=81x8y12•x2y4=81x10y16.故答案为:81x10y16.11.【答案】解:因为x2﹣2(a﹣1)x+25=x2﹣2(a﹣1)x+52是完全平方式;属于﹣2(a﹣1)x=±2•x•5;解得:a=﹣4或6.故答案为:﹣4或6.12.【答案】解:∵(x+y)2=2,(x﹣y)2=8;∴x2+2xy+y2=2①,x2﹣2xy+y2=8②;①+②得:2(x2+y2)=10;∴x2+y2=5.故答案为:5.13.【答案】解:原式=[(﹣)×(﹣)]2021×(﹣)=12021×(﹣)=1×(﹣)=﹣;故答案为:﹣.14.【答案】解:(1)∵x+y=4,xy=3;∴x2+y2=(x+y)2﹣2xy=16﹣6=10.故答案为:10;(2)∵(x+y)2=25,x2+y2=17;∴x2+y2+2xy﹣(x2+y2)=8;∴xy=4;∴(x﹣y)2=x2+y2﹣2xy=17﹣8=9.故答案为:9;(3)∵(x﹣2020)2+(x﹣2022)2=12;∴[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=12;∴(x﹣2021)2+2(x﹣2021)+1+(x﹣2021)2﹣2(x﹣2021)+1=12;∴(x﹣2021)2=5.故答案为:5.15.【答案】解:当x+3=1时;解得:x=﹣2;故(x+3)2﹣x=(﹣2+3)2﹣(﹣2)=14=1;当x+3=﹣1时;解得:x=﹣4;故(x+3)2﹣x=(﹣4+3)6=1;当2﹣x=0时;解得:x=2;故(x+3)2﹣x=(2+3)0=1;综上所述,x的值可能是﹣2或﹣4或2.故答案为:﹣2或﹣4或2.16.【答案】解:S1=b(a+b)×2+ab×2+(a﹣b)2=a2+2b2;S2=(a+b)2﹣S1=(a+b)2﹣(a2+2b2)=2ab﹣b2;∵a=2b;∴S1=a2+2b2=6b2,S2=2ab﹣b2=3b2∴S1=2S2.故答案为:S1=2S2.三.解答题(共5小题,满分40分)17.【答案】解:原式=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣9.18.【答案】解:(1)原式=25x2﹣(15x2﹣9x+25x﹣15)=25x2﹣15x2+9x﹣25x+15=10x2﹣16x+15;(2)原式=4x2﹣12xy+9y2﹣(9y2﹣x2)=4x2﹣12xy+9y2﹣9y2+x2=5x2﹣12xy;(3)[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy)=(x2y2﹣4xy+4﹣2x2y+4xy﹣4)÷(﹣2xy)=(x2y2﹣2x2y)÷(﹣2xy)=﹣xy+x;把,y=3代入得:﹣xy+x=﹣×(﹣)×3+(﹣)=﹣=.19.【答案】解:(1)∵43=64,(﹣2)2=4,(﹣)﹣3=﹣8;∴(4,64)=3,(﹣2,4)=2,(﹣,﹣8)=﹣3.故答案为:3,2,﹣3.(2)设(4,5)=x,(4,6)=y,(4,30)=z;则4x=5,4y=6,4z=30;∴4x×4y=5×6=30;∴4x×4y=4z;∴x+y=z,即(4,5)+(4,6)=(4,30).(3)设(3,20)=a,(3,5)=b;∴3a=20,3b=5;∵(3,9)=2;∴(3,9)×(3,20)﹣(3,5)=2a﹣b;∵32a﹣b=(3a)2÷3b=202÷5=80;∴2a﹣b=(3,80),即(3,9)×(3,20)﹣(3,5)=(3,80).20.【答案】解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab;故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=;∴m+n=5,m2+n2=20时;mn===;(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023;可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022);由(2)题结论a2+b2=(a+b)2﹣2ab可得;(a+b)2=a2+2ab+b2;又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4;且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30;∴(x﹣2022)2=()2====16.21.【答案】解:(1)设123=x;∴1232﹣124×122=x2﹣(x+1)(x﹣1)=x2﹣x2+1=1;(2)设123456786=x;∴M=123456789×123456786=(x+3)•x=x2+3x;N=123456788×123456787=(x+2)(x+1)=x2+3x+2;∴M<N;(3)设++...+=x;∴=(x+)(1+x)﹣(1+x+)•x=x+x2++x﹣x﹣x2﹣x =.。

人教版七年级数学上册《第四章整式的加减》单元测试卷及答案

人教版七年级数学上册《第四章整式的加减》单元测试卷及答案

人教版七年级数学上册《第四章整式的加减》单元测试卷及答案一、整体代入法求值整体代入法求值,就是将一个复杂的表达式或方程看作一个整体,然后将其代入到另一个表达式或方程中进行求解的方法。

通过“比较各项系数”“拼拆各项构造整体”“比较各项系数”“拼拆各项构造整体”等方法“化繁为简”,将复杂的问题分解成若干个简单的问题,再逐一解决,最终汇聚成整体的答案。

一、 整体代入——比较各项系数1. 若代数式b a -2的值为1 ,则代数式b a 247-+ 的值为( ) .A. 7B. 8C. 9D. 102. 若a 、b 互为相反数,c 、d 互为倒数,则()=-+cd b a 3 .3. 已知代数式y x 2+的值是3 ,则代数式142-+y x 的值是 .4. 若6=+b a ,则=--b a 2218 ( ) .A. 6B. 6-C. 24-D. 125. 已知,0122=++a a 求3422-+a a 的值 . 6. 若72=-b a ,则b a 426+- 的值为 .7. 如果代数式b a -的值为4 ,那么代数式522--b a 的值为 . 8. 已知代数式y x -2的值是2- ,则代数式y x +-21 的值是 .二、 整体代入——拼拆各项构造整体1. 请回答下列各题:( 1 )化简:()().363252222y x xy xy y x --+ ( 2 )化简求值:已知,2,9==+ab b a 求()()⎪⎭⎫ ⎝⎛+--++-b ab a ab ab ab 2141025131532的值.2. 已知,12,5=-=+c b b a 则c b a -+2 的值为( ) . A. 17B. 7C. 17-D.7-3. 已知5=-b a ,2=+d c 则()()d a c b --+的值是( ) .A.3-B. 3C.7-D. 74. 已知3=-b a ,2=+dc 则()()d a c b --+ 的值为 .5. 已知,6,1422-=-=+bc b bc a 则22b a+ 的值是 ,bc b a 3222+-的值是6. 已知,5,14=-=+ab b a 求()()[]a b ab a b ab 65876+--++ 的值 .三、 整体代入——比较各项系数1. 代数式22++x x 的值为0 ,则代数式3222-+x x 的值为( ) . A. 6 B. 7 C. 6- D. 7-2. 解答下列问题:( 1 )若代数式7322++x x 的值为 8 ,那么代数式2025962++x x 的值为( 2 )若5,7==+xy y x .则代数式xy y x +--228的值为 ( 3 )若,5,162244=-=+xy y x y x 则()()()422244253y xy xy y x y x----- 的值是多 少?3. 若代数式y x 32-的值是1 ,那么代数式846+-x y 的值是 .4. 已知a ,b 互为相反数, c ,d 互为倒数, x 的绝对值为2 .求()()20252cd x cd b a x -+++-的值 .5. 已知a 与b 互为相反数,c 与d 互为倒数, m 的值为6-,求m cd mba +-+的值 . 6. 若代数式5322++x x 的值是 8 ,则代数式7642-+x x 的值是( ) . A. 1- B. 1 C. 9- D. 9 7. 若1-=-n m ,则()n m n m 222+-- 的值是 .四、 整体代入——拼拆各项构造整体1. 若32-=+mn m,1832=-mn n 则224n mn m -+ 的值为 .2. 已知2,522-==+ab b a ,求代数式()()222222353242b b ab ab ab a ++---+的值.3. 已知:1,4-==-mn n m .求:()()()mn n m m n mn n m mn ++--+-++-4223322的值 . 4. 已知(),07535172=-++-+y x y x 求=+y x 32 .5. 已知,62,1422-=-=+bc b bc a 则=-+bc b a 54322 ( ) .A. 18B. 18-C. 20D. 86. 已知2-=-+a c b ,则()()=-++⎪⎭⎫ ⎝⎛+-+--a c b c b a c b c b a a 2223132323232 参考答案一、 整体代入——比较各项系数【解答】()b a b a -+=-+227247把12=-b a 代入上式得:927=+=∴原式. 答案:C【解答】b a 、 互为相反数,d c 、互为倒数.,1,0==+∴cd b a(),3303-=-=-+∴cd b a 答案:3-【知识点】倒数的定义1. 【解答】由题意可知:,32=+y x 原式().516122=-=-+=y x【解答】,6=+b a(),612182182218=-=+-=--∴b a b a 答案:A 2. 【解答】,0122=++a a ()550512234222=-=-++=-+∴a a a a3. 【解答】()b a b a 226426--=+-,其中,72=-b a 所以原式8726-=⨯-=4. 【解答】,4=-b a ()35425252=-⨯=--=--b a b a5. 【解答】22-=-y x()()3212121=--=--=+-∴y x y x二、 整体代入——拼拆各项构造整体1.【解答】(1)原式222222913361510xy y x y x xy xy y x +=+-+=(2)原式b ab a ab ab ab 24252210---++-=(),255822524210b a ab ba ab +--=--⎪⎭⎫ ⎝⎛+-+-=其中.2,9==+ab b a.5206511618922558-=--=⨯-⨯-=∴原式 2.【解答】12,5=-=+c b b a()()171252=+=-++=-+∴c b b a c b a .答案:A3.【解答】2,5=+=-d c b a()()325-=+-=++-=+-+=∴d c b a d a c b 原式.答案:A4.【解答】,d a c b +-+=原式()()132-=-=--+=+-+=b a d c ba d c5.【解答】()();86142222=-+=-++=+bc b bc a b a()()();346282322222=--=--+=+-bc bbc abc b a答案:8;346.【解答】()34228=++=++=ab b a a b ab 原式三、整体代入——比较各项系数1. 【解答】2,0222-=+=++x x x x 即()734322-=--=-+=x x 原式.答案:D2. 【解答】(1)87322=++x x,1322=+∴x x则原式(),20282025320253232=+=++=x x(2),5,7==+xy y x()xy y x ++-=∴28原式151485728-=+-=+⨯-=(3)()()()422244253y xy xy y xyx -----()()115165,16,3225322442244422244=-=∴=-=+∴--+=+-+--=原式xy y x y x xy y x y x y xy xy y x y x3. 【解答】,132=-y x()6828322=+-=+--=∴y x 原式【解答】b a , 互为相反数,d c ,互为倒数,x 的绝对值为2,2,1,0±===+∴x cd b a当2=x 时,原式()();11241210220252=--=-+⨯+-=当2-=x 时,原式()()()();51241210220252=-+=-+-⨯+--= 所以()()20252cd x cd b a x -+++-的值为1或5.【解答】b a , 互为相反数0=+∴b ad c , 互为倒数1=∴cd.5610610=+-=-+-=+-+m cd mba 4. 【解答】由题意可知:85322=++x x,3322=+∴x x().1732276422-=-+=-+∴x x x x 答案:A5. 【解答】1-=-n m()()()()()3121222222=-⨯--=---=+-=n m n m nm n m四、整体代入——拼拆各项构造整体1. 【解答】方法一:,183,322=--=+mn n mn m∴将这两个等式的两边相减得:(),183322--=--+mn n mn m,21322-=+-+∴mn n mn m ,21422-=-+∴n mn m方法二:原式(),332222mn n mn m n mn mn m --+=-++= 将183,322=--=+mn n mn m 代入 得原式21183-=--=2.【解答】原式,691524822222b b ab a b ab a +-+--+=(),137,71372222ab b a b ab a ++-=-+-=当2,522-==+ab b a 时 原式612635-=--=.3. 【解答】原式,4223322mn n m m n mn n m mn ---+--++-=(),36336n m mn nm mn -+-=-+-=把1,4-==-mn n m 代入得:原式18126=+=.4. 【解答】 已知条件17-+y x 和()27535-+y x 都是非负数,且(),07535172=-++-+y x y x .3932,5127535170753517=+∴⎩⎨⎧==∴⎩⎨⎧=+=+∴=-+=-+∴y x y x y x y x y x y x5. 【解答】bc b a 54322-+()()182414324322=-⨯=-++=bc b bc a6. 【解答】原式().382323222=⨯=--=c b a。

七年级数学整式单元测试卷

七年级数学整式单元测试卷

七年级数学整式单元测试卷一、选择题(每题3分,共30分)1. 下列式子中,整式为()A. (1)/(x)B. x + yC. √(x)D. (1)/(x + y)2. 单项式-3xy^2的系数和次数分别是()A. -3,3B. -3,2C. 3,3D. 3,2.3. 多项式2x^2-3x + 1的次数是()A. 2B. 3C. 1D. 0.4. 下列运算中,正确的是()A. x^2+x^3=x^5B. x^3· x^2=x^6C. (x^2)^3=x^6D. x^6÷ x^2=x^35. 化简-2a + 3a的结果是()A. -aB. aC. 5aD. -5a.6. 一个多项式与x^2-2x + 1的和是3x - 2,则这个多项式为()A. -x^2+5x - 3B. -x^2+x - 1C. x^2-5x + 3D. x^2-x + 17. 若单项式3x^my^3与-2x^2y^n是同类项,则m + n的值为()A. 5B. 4C. 3D. 2.8. 计算(a - 2b)(a + 2b)的结果是()A. a^2-4b^2B. a^2+4b^2C. a^2-2b^2D. a^2+2b^29. 当 a = -2时,代数式a^2-2a + 1的值为()A. 9B. 1C. -1D. -9.10. 已知 A = 2x^2+3xy - 2x - 1,B=-x^2+xy - 1,则 A - 3B等于()A. 5x^2+10xy - 2x - 4B. 5x^2+10xy - 2x + 2C. 5x^2-10xy - 2x - 4D.5x^2-10xy - 2x + 2二、填空题(每题3分,共15分)11. 单项式(2)/(3)π r^2的系数是___。

12. 多项式3x^2y - 5xy^2+y - 2x是___次___项式。

13. 若x^2+mx + 9是一个完全平方式,则m =___。

人教版七年级上册第2章《整式的加减》单元测试卷(含答案)

人教版七年级上册第2章《整式的加减》单元测试卷(含答案)

人教版七年级上册第2章《整式的加减》单元测试卷满分100分姓名:___________班级:___________学号:___________成绩:___________一.选择题(共10小题,满分30分,每小题3分)1.下列整式中,单项式是()A.3a+1B.C.3a D.x=12.代数式1﹣的意义是()A.1与x的差的倒数B.1与x的倒数的差C.x的倒数与1的差D.1与1除以x的商3.下列说法正确的是()A.整式就是多项式B.π是单项式C.x4+2x3是七次二项次D.是单项式4.下列各式中,与x2y3能合并的单项式是()A.x3y2B.﹣x2y3C.3x3D.x2y25.下列运算正确的是()A.4m﹣m=3B.a3﹣a2=a C.2xy﹣yx=xy D.a2b﹣ab2=06.去括号1﹣(a﹣b)=()A.1﹣a+b B.1+a﹣b C.1﹣a﹣b D.1+a+b7.以下各组多项式按字母a降幂排列的是()A.3a﹣7a2+2﹣a3B.﹣7a2+3a+2﹣a3C.﹣a3+3a+2﹣7a2D.﹣a3﹣7a2+3a+28.李老师用长为6a的铁丝做了一个长方形教具,其中一边长为b﹣a,则另一边的长为()A.7a﹣b B.2a﹣b C.4a﹣b D.8a﹣2b9.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定10.已知a﹣b=3,c+d=2,则(a﹣d)﹣2(b﹣c)+(b+3d)的值为()A.7B.5C.1D.﹣5二.填空题(共6小题,满分24分,每小题4分)11.单项式的系数是m,多项式a2b+2ab﹣3的次数是n,则m+n=.12.若3x n y3和﹣x2y m是同类项,则n﹣m=.13.去括号7x3﹣[3x2﹣(x+1)]=.14.“直播带货”是今年的热词.某“爱心助农”直播间推出特产甜瓜,定价8元/千克,并规定直播期间一次下单超过5千克时,可享受九折优惠.李叔叔在直播期间购买此种甜瓜m千克(m>5),则他共需支付元.(用含m的代数式表示)15.若x2+3x=2,则代数式2x2+6x﹣4的值为.16.若多项式3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值与x无关,则m=.三.解答题(共7小题,满分46分)17.(6分)把下列各代数式填在相应的大括号里.(只需填序号)(1)x﹣7,(2),(3)4ab,(4),(5)5﹣,(6)y,(7),(8)x+,(9),(10)x2++1,(11),(12)8a3x,(13)﹣1单项式集合{};多项式集合{};整式集合{}.18.(6分)合并同类项(1)3a+2a﹣7a (2)﹣4x2y+8xy2﹣9x2y﹣21xy2.19.(6分)如果关于x的多项式x4﹣(a﹣1)x3+5x2﹣(b+1)x﹣1不含x3项和x项,求a,b的值.20.(6分)先化简,再求值.4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣y2)],其中:x=﹣1,y=2.21.(7分)学完了《整式的加减》后,小刚与小强玩起了数字游戏:小刚对小强说:你任意写一个两位数,满足十位数字比个位数字大2;然后交换十位数字与个位数字,得到一个新的两位数;最后用其中较大的两位数减去较小的两位数.我就能知道这个差是多少.你知道这是为什么吗?这个差是多少呢?22.(7分)已知A=a2﹣2b2+2ab﹣3,B=2a2﹣b2﹣ab﹣(1)求2(A+B)﹣3(2A﹣B)的值(结果用化简后的a、b的式子表示);(2)当a=﹣,b=0时,求(1)中式子的值.23.(8分)某国际化学校实行小班制教学,七年级四个班共有学生(6m﹣3n)人,一班有学生m人,二班人数比一班人数的两倍少n人,三班人数比二班人数的一半多12人.(1)求三班的学生人数(用含m,n的式子表示);(2)求四班的学生人数(用含m,n的式子表示);(3)若四个班共有学生120人,求二班比三班多的学生人数?参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、3a+1是多项式,故此选项不合题意;B、是分式,故此选项不合题意;C、3a是单项式,符合题意;D、x=1是方程,故此选项不合题意.故选:C.2.解:由代数式的定义得,代数式1﹣表示1与x的倒数的差,故B答案正确.故选:B.3.解:A、根据整式的概念可知,单项式和多项式统称为整式,故A错误;B、π是单项式,故B正确;C、x4+2x3是4次二项式,故C错误;D、是多项式,故D错误.故选:B.4.解:﹣x2y3与x2y3是同类项,是与x2y3能合并的单项式,故选:B.5.解:(A)原式=3m,故A错误;(B)原式=a3﹣a2,故B错误;(D)原式=a2b﹣ab2,故D错误;故选:C.6.解:1﹣(a﹣b)=1﹣a+b,故选:A.7.解:多项式按字母a降幂排列的是﹣a3﹣7a2+3a+2.故选:D.8.解:另一边长=3a﹣(b﹣a)=3a﹣b+a=4a﹣b.故选:C.9.解:∵M=x2+6x+22,N=﹣x2+6x﹣3,∴M﹣N=x2+6x+22﹣(﹣x2+6x﹣3)=x2+6x+22+x2﹣6x+3=2x2+25,∵x2≥0,∴2x2+25>0,∴M>N.故选:A.10.解:原式=a﹣d﹣2b+2c+b+3d=(a﹣b)+2(c+d),当a﹣b=3,c+d=2时,原式=3+4=7,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:∵单项式的系数是m,∴m=﹣,∵多项式a2b+2ab﹣3的次数是n,∴n=3,则m+n=3﹣=.故答案为:.12.解:根据题意可得:n=2,m=3,∴n﹣m=2﹣3=﹣1.故答案为:﹣1.13.解:7x3﹣[3x2﹣(x+1)]=7x3﹣(3x2﹣x﹣1)=7x3﹣3x2+x+1.故答案为:7x3﹣3x2+x+1.14.解:由题意得:8×0.9m=7.2m,则他共需支付7.2m元.故答案为:7.2m.15.解:2x2+6x﹣4=2(x2+3x)﹣4把x2+3x=2代入上式,得原式=2×2﹣4=0故答案为016.解:3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值=3mx2﹣x2+4x﹣2+4x2﹣4x+5=(3m+3)x2+3,∵多项式3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值与x无关,∴3m+3=0,∴m=﹣1,故答案为:﹣1.三.解答题(共7小题,满分46分)17.解:单项式有:,4ab,y,8a3x,﹣1;多项式有:x﹣7,x+,,x2++1;整式有:x﹣7,,4ab,y,x+,,x2++1,8a3x,﹣1.故答案为:(2)(3)(6)(12)(13);(1)(8)(9)(10);(1)(2)(3)(6)(8)(9)(10)(12)(13).18.解:(1)原式=(3+2﹣7)a=﹣2a;(2)原式=(﹣4﹣9)x2y+(8﹣21)xy2=﹣13x2y﹣13xy2.19.解:根据题意得﹣(a﹣1)=0,﹣(b+1)=0,解得a=1,b=﹣1.20.解:原式=4xy﹣[x2+5xy﹣y2﹣2x2﹣6xy+y2]=4xy﹣[﹣x2﹣xy]=x2+5xy,当x=﹣1,y=2时,原式=x2+5xy=(﹣1)2+5×(﹣1)×2=﹣9.21.解:设原来的十位数,十位数字为x,则个位数字为:(x﹣2),故两位数是:10x+x﹣2=11x﹣2,交换十位数字与个位数字,得到的十位数是:10(x﹣2)+x=11x﹣20,故11x﹣2﹣(11x﹣20)=18,即较大的两位数减去较小的两位数的差为18.22.解:(1)2(A+B)﹣3(2A﹣B)=2A+2B﹣6A+3B=﹣4A+5B=﹣4(a2﹣2b2+2ab﹣3)+5(2a2﹣b2﹣ab﹣)=﹣4a2+8b2﹣8ab+12+10a2﹣5b2﹣2ab﹣1=6a2+3b2﹣10ab+11;(2)∵a=﹣,b=0,∴6a2+3b2﹣10ab+11=6×+11=12.23.解:(1)一班人数为:m人.二班人数为:(2m﹣n)人.三班人数为:人;(2)四班人数为:==;(3)由题意可得:6m﹣3n=120,则2m﹣n=40,故二班比三班多的学生数为:===20﹣12=8(人)答:二班比三班多8人.。

第九章 整式数学七年级上册-单元测试卷-沪教版(含答案)

第九章 整式数学七年级上册-单元测试卷-沪教版(含答案)

第九章整式数学七年级上册-单元测试卷-沪教版(含答案)一、单选题(共15题,共计45分)1、把多项式mx2﹣2mx分解因式,结果正确的是()A.m(x 2﹣2x)B.m 2(x﹣2)C.mx(x﹣2)D.mx(x+2)2、下列各式,计算结果为3﹣2的是()A.3 4÷3 6B.3 6÷3 4C.3 3÷3 6D.(﹣3)×(﹣3)3、下列计算中正确的是()A.a 2+b 3=2a 5B.a 4÷a=a 4C.a 2•a 4=a 8D.(﹣a 2)3=﹣a 64、下列运算正确的是()A. B. C. D.5、一张长方形纸片的长为m,宽为n(m>3n)如图1,先在其两端分别折出两个正方形(ABEF、CDGH)后展开(如图2),再分别将长方形ABHG、CDFE对折,折痕分别为MN、PQ (如图3),则长方形MNQP的面积为()A.n 2B.n(m﹣n)C.n(m﹣2n)D.6、下列计算正确的是().A. B. C. D.7、下列各式正确的是()A. B. C.D.8、去括号正确的是( )A.x 2+(2y-x+z)=x 2-2y-x+zB.3a-[6a-(4a-1)]=3a-6a-4a+1 C.2a+(-6x+4y-2)=2a-6x+4y-2 D.-(2x 2-y)+(z-1)=-2x 2-y-z-19、下列各式计算正确的是()A. B. C. D.10、下列运算正确的是()A.a 3+(﹣a)3=﹣a 6B.(a+b)2=a 2+b 2C.2a 2•a=2a3 D.(ab 2)3=a 3b 511、下列各式计算正确的是()A. B. C. D.12、下列运算正确是()A. a2•a2=2 a2B.(a4)4=a8C.(﹣2 a)2=﹣4 a2 D. a7÷a5=a213、下列各式运算正确的是()A.a 3+a 2=2a 5B. a3﹣a2=aC. (a3)2=a5D. a6÷a3</sup>=a314、已知9x2﹣mxy+16y2能运用完全平方公式分解因式,则m的值为()A.12B.±12C.24D.±2415、计算x2•4x3的结果是()A.4x3B.4x4C.4x5D.4x6二、填空题(共10题,共计30分)16、 ________17、如果(3m+n+3)(3m+n-3)=40,则3m+n的值为________;18、若代数式 a2-3a+1 的值为 0,则代数式-3a2+9a+4 的值为________.19、若|m﹣3|+(n+2)2=0,则m+2n的值为________.20、若,,则(x+1)(y﹣1)=________21、按如下图所示的运算程序,能使输出的值为的的值是________.22、比a的2倍大4的数与比a的二分之一小3的数的和为________.23、写出的一个同类项________.24、因式分解:3y2﹣12=________.25、若(x+1)(mx﹣1)(m是常数)的计算结果中,不含一次项,则m的值为________.三、解答题(共5题,共计25分)26、先化简,再求值:-2 +(3x-y)-2(x-),其中x=-3,y=2.27、如果x2+Ax+B=(x﹣3)(x+5),求3A﹣B的值.28、观察如图图形由左到右的变化,计算阴影部分的面积,并用面积的不同表达形式写出相应的代数恒等式.29、﹣2xm+2y4与3x3yn﹣1互为同类项,请求出2m+n的值.30、如图,有一张长方形纸板,在它的四个角各切去一个同样的正方形,然后四周突出的部分折起,制成一个高为a的长方体形状的无盖纸盒,如果纸盒的容积为4ab2 ,底面的一边长为b,求原来长方形纸板的面积.参考答案一、单选题(共15题,共计45分)1、C2、A3、D4、C6、C7、A8、C9、C10、C11、C12、D13、D14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。

七年级数学《整式的加减》单元测试卷

七年级数学《整式的加减》单元测试卷

七年级数学《整式的加减》单元测试卷班级: ____ 座位: ___ 姓名: __________ 成绩: ______一、填空题(每题2分,共30分)1、教室里有x人,走了y人,此时教室里有____________ 人。

2、比a和b差的平方大9的数是________________ .3、细胞在分裂过程中,一个细胞第一次分裂成两个,第二次分裂成4个,第三次分裂成8个,那么第n次时细胞分裂的个数为__________ 个。

4、单项式—4x^的系数是,次数是。

55、整式_6x3-乞• y2・x-3是次项式,三次项的系数是。

5 —&如果lx2v|m|-(m -1)v+1是三次三项式,则m= 。

5 37、多项式ab3 _3a2b2 _a3b _3按a 的升幕排列是_________________________________________________________________________ 。

8、(a - 2b c)(a 2b - c)二[a -()][ a ( )]9、单项式_4ab,3ab, -b2的和是_______________ .10、某商品进价为a元,零售时要加价20%则它的零售价为____________ .11、十位数字是m,个位数字比m小2,百位数字是m的一半,则这个三位数是。

12、-ax m y2是关于x、y的一个单项式,且系数是4,次数是5,则a =_____ m= ____13、一个多项式加上-2 • x - x2得到x2 -1,则这个多项式是—一14、在代数式4x2 -8x,5-3x2,6x-2中,—8x和_________ 是同类项,合并后的结果是_______ . _____15、一个多项式A减去多项式2x2 5^3,马虎的同学将减号抄成加号,运算结果得-x2+3x-7,多项式A是 _______________________ 。

二、选择题(每题3分,共24分)16、若ac0,abc0,贝U b—a+1+|a—b—5 的值( )A .等于4B .等于-4C .- 2a 2b 6D .不能确定17、与a 2b 是同类项的是A. x y z B . x-y z C 19、将(x y) 2(x - y^4(x y)合并同类项得A. (x y)B. -(x y)C. -x yD. x -y 20、已知-x - 3y = 5,则 5(x-3y)2「8(x 「3y)「5 的值为A . 80B . -170C . 160D . 60 21、若A=4x 2 —3x -2 , B=4x 2 -3x -4,则A与B 的大小关系是A . A>B B . A<BC . A=BD .无法确定3 2-(m - 5)x (n -1 )x -5x 3不含C.不高于七次多项式或单项式D.六次多项式三、化简(本题共4小题,每题4分,共16分) 24、(5x 「3y 2xy)_(6x 4y_3xy) 25、x 2^3xy 2 2yx^y 2x26、3(5m-6n) 2(3m-4n) 27、5(a 2b-2ab 2 c)-4(2c 3a 2b-ab 2)A. b 2aB. a 2bc C.18、3、对 -{Jx-(y-z)]}去括号,巫D.5结果是(ab)222、已知:关于x 的多项式3x 4x 3和 x 2 ()A. m=-5 ,n=-1B. m=5 ,n=1C. m=-5 ,n=1D. m=5 ,n=-123、若A 是一个七次多项式, B 也是一个七次多项式,则 A - B 一定是( )A.十四次多项式B. 七次多项式四、解答题(本题共5小题,每题6分,共30 分)29、已知:x 4y - -1, xy = 5,求(6xy 7y) [8x 一(5xy 一y 6x)]的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学整式单元测试题It was last revised on January 2, 2021单元测试题班级:__________ 姓名:____________ 学号:______________ 得分:_____________一、选择题。

(每题3分,共24分)1、代数式、-x 2y 、2x 2-3x+1、-a2、31-x 、3x 中,单项式共有( )。

个 个 个 个2、下列各题是同类项的一组是( )。

A. xy 2与-x 212y 与-4x 2yz C. a 3 与b 3 D. –2a 3b 与21ba 3 3、下列运算正确的是( )。

+2x 3=5x 5 B. 2x 2+3x 2=5x 2 C. 2x 2+3x 2 =5x 4 D. 2x 2+3x 3 = 6x 54、下列式子是二次三项式的是( )。

A. 0.5x 2-3x+5B. -x 2+5C. x n+2-7x n+1+12x nD. 2x 2-x 3-95、多项式4xy+32xy 2-5x 3y 2+5x 4-3y 2-7中最高次项系数是 ( )。

B. 32 6、若M+N=x 2-3,M=3x-3,则N 是( ) 。

A. x 2+3x-6 +3x C. x 2-3x-67、下列各式错误的是│a-b │+│a+b │的结果是( )。

A. -(a-b) = b-aB. (a-b )2= (b-a )2C. │a-b │=│b-a │D. a-b = b-a8、代数式2a 2-3a+1的值是6,则4a 2-6a+5的值是( )。

二、填空题。

(1-8每题3分,9题8分,共32分)1.单项式3yz x 223-的系数是 ,次数是 。

2.若x=1,y=-2时,代数式5x-(2y-3x)的值是 。

3.多项式4x-32x 2y 2-x 3y+5y 3-7是_______次_______项式,按x 的降幂排列 是______________ 。

4.若2x m y 3和-7xy 2n-1是同类项,则m= , n= 。

+c-2d = 2a - ( )。

6.结合日常生活实际,用语言解释代数式2(a+b)的意义是______________________ 。

7.已知从甲地向乙地打电话,前3分钟收费元,3分钟后每分钟加收费1元,则通话时间t(3≥3)分钟时所需费用是 元。

8.若n 表示3个连续偶数中的最小一个,则这三个连续偶数的和为 。

9.化简:(1)-2x-5x=__________;(2)-2x+5x=_________;(3)3m2-m2=__________;(4)mn + nm =________;(5)-k-2k=__________;(6)-p 2-p 2-p 2=________;(7)6a-2(a-2b)=_________;(8) -(-6x 2) +4x 2 +(-9x 2 )=_____________。

三.计算题(1、2、3、4、5每题6分,6、7题每题7分,共44分)1、 3x – 2 (2 + x )2、 2x - (x+3y) - (-x-y) + (x-y)3、5a 2b – [ 2ab 2- 3(ab 2 - a 2b )]4、 4(2x 2-3x+1) – 10(52x 2 -107+2) 5、先化简再求值:2x 2 + y 2 +(2 y 2-3x 2 ) – 2( y 2 - 2x 2 ),其中x =-1,y =2 .6、已知:A =2x 2-3xy +2y 2,B =2x 2+xy -3y 2,求 A -(B -2A )。

7、当│x +5│+(y-2) 2 = 0时,求代数式(4x-2y 2)-[ 5x - (x - y 2) ]-x 的值。

附加题。

(共10分,每题5分)1、观察下列式子:13 + 23 = 33, 13 + 23 + 33 = 63,13 + 23 + 33 + 43 = 103 , ......请你将猜想到的规律用自然数n (n ≥1)表示出来______________________。

2、用拖拉机耕地,第一天耕了这块地的41还多2公顷,第二天耕了剩下的21,若这块地为x 公顷,求两天后还剩多少地未耕3、4、 一元一次方程练习题一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x 的,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时, x-1和 的值互为.4.已知x 的 与x 的3倍的和比x 的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x 的表示y ,则y=________.6.某商品的进价为300元,按标价的六折销售时,为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m 的值为( ).A .0B .1C .-2D .-10.方程│3x│=18的解的情况是( ).A .有一个解是6B .有两个解,是±6C .无解D .有无数个解11.若方程2ax-3=5x+b 无解,则a ,b 应满足( ).A .a≠ ,b≠3B .a= ,b=-3C .a≠ ,b=-3D .a= ,b≠-313.在道上有两人练,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t 分钟后第一次相遇,t 等于( ).A .10分B .15分C .20分D .30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减 D.减少1%15.在梯形S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( •)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组 B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个才能使天平仍然平衡()A.3个 B.4个 C.5个 D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分20.解方程:(x-1)- (3x+2)= - (x-1).22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.24.某公园的门票价格规定如下表:购票人数 1~50人 51~100人 100人以上票价 5元元 4元某校初一甲、乙共103人(其中甲班人数多于乙班人数)去游该公园,如果都以班为单位分别购票,则一共需付486元.(1)如果联合起来,作为一个团体购票,则可以节约多少钱(2)两班各有多少名学生(提示:本题应分情况讨论)【知能点分类训练】知能点1 合并与1.下面解一元的变形对不对?如果不对,指出错在哪里,并改正.(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.2.下列变形中:①由方程 =2,得x-12=10;②由方程 x= 两边同除以,得x=1;③由方程6x-4=x+4,得7x=0;④由方程2- 两边同乘以6,得12-x-5=3(x+3).错误变形的个数是()个.A.4 B.3 C.2 D.13.若式子5x-7与4x+9的值相等,则x的值等于().A.2 B.16 C. D.4.合并下列式子,把结果写在横线上.(1)x-2x+4x=__________; (2)5y+3y-4y=_________;(3)5.解下列方程.(1)6x=3x-7 (2)5=7+2x(3)y- = y-2 (4)7y+6=4y-36.根据下列条件求x的值:(1)25与x的差是-8.(2)x的与8的和是2.7.如果方程3x+4=0与方程3x+4k=8是,则k=________.8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.知能点2 用一元分析和解决实际问题9.一桶8千克,从桶中取出一半油后,千克,•桶中原有油多少千克10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.11.小明每天早上7:50从家出发,到距家1000米的学校上学,•每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,•并且在途中追上了他.(1)爸爸追上小明用了多长时间(2)追上小明时距离学校有多远【综合应用提高】12.已知y1=2x+8,y2=6-2x.(1)当x取何值时,y1=y2 (2)当x取何值时,y1比y2小513.已知关于x的方程 x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程-15=0的解.【开放探索创新】14.编写一道,使它满足下列要求:(1)题意适合一元;(2)所编完整,题目清楚,且符合实际生活.。

相关文档
最新文档