江苏省扬州市2016届九年级数学上册期末考试题1

合集下载

九年级2016--2017期末数学试卷

九年级2016--2017期末数学试卷

人教版九年级2016--2017期末数学试卷一.选择题(共12分)1.方程x2=x的根是()A.x=1 B.x=﹣1 C.x1=0,x2=1 D.x1=0,x2=﹣12.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.如图,四边形ABCD为⊙O的内接四边形,若∠BOD=90°,则∠BCD的大小为()A.90°B.125°C.135°D.145°4.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.45.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.6.对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大二.填空题(共24分)7.三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为.8.关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为.9.二次函数y=x2+4x﹣3的最小值是.10.如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为.11.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=6,BC=3,则∠BDC=度.12.如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.13.关于x的一元二次方程ax2+bx﹣2016=0有一个根为x=1,写出一组满足条件的实数a,b的值:a=,b=.14.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.三.解答题(共84分)15.解方程:x2+4x﹣1=0.16.如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.(1)在图1中画△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且以A、B、C、D为顶点的四边形是轴对称图形.(2)在图2中画△ABE(点E在小正方形的顶点上),使△ABE的周长等于△ABC的周长,且以A、B、C、E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.17.已知关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0(Ⅰ)求证:方程有两个不相等的实数根;(Ⅱ)若△ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求△ABC的周长.18.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.19.如图,在半径为2的⊙O中,弦AB长为2.(1)求点O到AB的距离.(2)若点C为⊙O上一点(不与点A,B重合),求∠BCA的度数.20.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.21.两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).(2)当α=45°时(如图③),求证:四边形MHND为正方形.22.如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(﹣1,0),点C (0,5),点D(1,8)都在抛物线上,M为抛物线的顶点.(1)求抛物线的函数解析式;(2)求直线CM的解析式;(3)求△MCB的面积.23.把一张边长为40cm的正方形硬纸板进行裁剪,折成一个长方体盒子(纸板的厚度忽略不计).如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.(1)若剪掉的正方形的边长为9cm时,长方体盒子的底面边长为cm,高为cm.(2)要使折成的长方体盒子的底面积为484cm2,那么剪掉的正方形边长为多少?(3)折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.24.已知,如图,△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A、B、D三点.(1)求证:AB是⊙O的直径;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.25.如图,∠C=90°,⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,连接OE,OF.AO的延长线交BC于点D,AC=6,CD=2.(1)求证:四边形OECF为正方形;(2)求⊙O的半径;(3)求AB的长.26.已知一次函数y=﹣x+1与抛物线y=x2+bx+c交于A(0,1),B两点,B点纵坐标为10,抛物线的顶点为C.(1)求b,c的值;(2)判断△ABC的形状并说明理由;(3)点D、E分别为线段AB、BC上任意一点,连接CD,取CD的中点F,连接AF,EF.当四边形ADEF为平行四边形时,求平行四边形ADEF的周长.九年级2016--2017期末数学试卷一.选择题(共6小题)1.(2016秋•南京期中)方程x2=x的根是()A.x=1 B.x=﹣1 C.x1=0,x2=1 D.x1=0,x2=﹣1【解答】解:x2=x,x2﹣x=0,x(x﹣1)=0,x=0,x﹣1=0,x1=0,x2=1,故选C.2.(2016•哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.3.(2016•长春模拟)如图,四边形ABCD为⊙O的内接四边形,若∠BOD=90°,则∠BCD 的大小为()A.90°B.125°C.135°D.145°【解答】解:∵∠BOD=90°,∴∠A=∠BOD=45°,∵四边形ABCD为⊙O的内接四边形,∴∠A+∠BCD=180°,∴∠BCD=135°,故选:C.4.(2016•抚顺)某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.5.(2016•张家界)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.【解答】解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x=>0,应在y轴的右侧,故不合题意,图形错误;B、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x=<0,应在y轴的左侧,故不合题意,图形错误;C、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向上,对称轴x=>0,应在y轴的右侧,故符合题意;D、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向下,a<0,故不合题意,图形错误;故选:C.6.(2016•三明)对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大【解答】解:“某市明天下雨的概率是75%”说明某市明天下雨的可能性较大,故选:D.二.填空题(共8小题)7.(2016•临夏州)三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为12.【解答】解:x2﹣13x+40=0,(x﹣5)(x﹣8)=0,所以x1=5,x2=8,而三角形的两边长分别是3和4,所以三角形第三边的长为5,所以三角形的周长为3+4+5=12.故答案为12.8.(2016•本溪)关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为1.【解答】解:∵关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,∴k≠0且b2﹣4ac>0,即,解得k>﹣1且k≠0,∴k的最小整数值为:1.故答案为:1.9.(2016•兰州)二次函数y=x2+4x﹣3的最小值是﹣7.【解答】解:∵y=x2+4x﹣3=(x+2)2﹣7,∵a=1>0,∴x=﹣2时,y有最小值=﹣7.故答案为﹣7.10.(2016•黔东南州)如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为π.【解答】解:∵,∴S 阴影==πAB2=π.故答案为:π.11.(2016•牡丹江)如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=6,BC=3,则∠BDC=30度.【解答】解:连接AC,∵AB是直径,∴∠ACB=90°,∵AB=6,BC=3,∴sin∠CAB===,∴∠CAB=30°,∴∠BDC=30°,故答案为:30.12.(2016•聊城)如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.【解答】解:∵随机地闭合开关S1,S2,S3,S4,S5中的三个共有10种可能,能够使灯泡L1,L2同时发光有2种可能(S1,S2,S4或S1,S2,S5).∴随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是=.故答案为.13.(2016春•延庆县期末)关于x的一元二次方程ax2+bx﹣2016=0有一个根为x=1,写出一组满足条件的实数a,b的值:a=1,b=2015.【解答】解:把x=1代入ax2+bx﹣2016=0得a+b﹣2016=0,当a=1时,b=2015.故答案为:1,2015.14.(2016•长春)如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为15.【解答】解:∵D是抛物线y=﹣x2+6x上一点,∴设D(x,﹣x2+6x),∵顶点C的坐标为(4,3),∴OC==5,∵四边形OABC是菱形,∴BC=OC=5,BC∥x轴,∴S△BCD=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+15,∵﹣<0,∴S△BCD有最大值,最大值为15,故答案为15.三.解答题(共12小题)15.(2016•淄博)解方程:x2+4x﹣1=0.【解答】解:∵x2+4x﹣1=0∴x2+4x=1∴x2+4x+4=1+4∴(x+2)2=5∴x=﹣2±∴x1=﹣2+,x2=﹣2﹣.16.(2015•香坊区三模)如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.(1)在图1中画△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且以A、B、C、D为顶点的四边形是轴对称图形.(2)在图2中画△ABE(点E在小正方形的顶点上),使△ABE的周长等于△ABC的周长,且以A、B、C、E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.【解答】解:(1)如图1所示:(2)如图2所示:四边形ACBE的面积为:2×4=8.17.(2016春•南开区期末)已知关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0 (Ⅰ)求证:方程有两个不相等的实数根;(Ⅱ)若△ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求△ABC的周长.【解答】(1)证明:∵△=(2k+3)2﹣4(k2+3k+2)=1,∴△>0,∴无论k取何值时,方程总有两个不相等的实数根;(2﹚解:∵△ABC是等腰三角形;∴当AB=AC时,△=b2﹣4ac=0,∴(2k+3)2﹣4(k2+3k+2)=0,解得k不存在;当AB=BC时,即AB=5,∴5+AC=2k+3,5AC=k2+3k+2,解得k=3或4,∴AC=4或6.∴△ABC的周长为14或16.18.(2016•宁波)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,点P的坐标为:(1,2).19.(2015秋•玄武区期末)如图,在半径为2的⊙O中,弦AB长为2.(1)求点O到AB的距离.(2)若点C为⊙O上一点(不与点A,B重合),求∠BCA的度数.【解答】解:(1)过点O作OD⊥AB于点D,连接AO,BO.如图1所示:∵OD⊥AB且过圆心,AB=2,∴AD=AB=1,∠ADO=90°,在Rt△ADO中,∠ADO=90°,AO=2,AD=1,∴OD==.即点O到AB的距离为.(2)如图2所示:∵AO=BO=2,AB=2,∴△ABO是等边三角形,∴∠AOB=60°.若点C在优弧上,则∠BCA=30°;若点C在劣弧上,则∠BCA=(360°﹣∠AOB)=150°;综上所述:∠BCA的度数为30°或150°.20.(2015•宁波)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.【解答】解:(1)设红球的个数为x,由题意可得:,解得:x=1,经检验x=1是方程的根,即红球的个数为1个;(2)画树状图如下:∴P(摸得两白)==.21.(2014•黔南州)两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).(2)当α=45°时(如图③),求证:四边形MHND为正方形.【解答】证明:(1)如图②,∵由题意知,AD=GD,ED=CD,∠ADC=∠GDE=90°,∴∠ADC+∠CDE=∠GDE+∠CDE,即∠ADE=∠GDC,在△AED与△GCD中,,∴△AED≌△GCD(SAS);(2)如图③,∵α=45°,BC∥EH,∴∠NCE=∠NEC=45°,CN=NE,∴∠CNE=90°,∴∠DNH=90°,∵∠D=∠H=90°,∴四边形MHND是矩形,∵CN=NE,∴DN=NH,∴矩形MHND是正方形.22.(2016春•荣成市校级月考)如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(﹣1,0),点C(0,5),点D(1,8)都在抛物线上,M为抛物线的顶点.(1)求抛物线的函数解析式;(2)求直线CM的解析式;(3)求△MCB的面积.【解答】解:(1)根据题意得,解得,所以二次函数解析式为y=﹣x2+4x+5;(2)y=﹣x2+4x+5=﹣(x﹣2)2+9,则M点坐标为(2,9),设直线MC的解析式为y=mx+n,把M(2,9)和C(0,5)代入得,解得,所以直线CM的解析式为y=2x+5;(3)把y=0代入y=2x+5得2x+5=0,解得x=﹣,则E点坐标为(﹣,0),把y=0代入y=﹣x2+4x+5得﹣x2+4x+5=0,解得x1=﹣1,x2=5,所以S△MCB=S△MBE﹣S△CBE=××9﹣××5=15.23.(2016秋•孝感校级月考)把一张边长为40cm的正方形硬纸板进行裁剪,折成一个长方体盒子(纸板的厚度忽略不计).如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.(1)若剪掉的正方形的边长为9cm时,长方体盒子的底面边长为22cm,高为9cm.(2)要使折成的长方体盒子的底面积为484cm2,那么剪掉的正方形边长为多少?(3)折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.【解答】解:(1)如图所示,由已知得:BC=9cm,AB=40﹣2×9=22cm,故答案为:22,9;(2)设剪掉的正方形的边长为x cm,则(40﹣2x)2=484,即40﹣2x=±22,解得x1=31(不合题意,舍去),x2=9;答:剪掉的正方形边长为9cm;③折成的长方体盒子的侧面积有最大值,设剪掉的正方形的边长为x cm,盒子的侧面积为y cm2,则y与x的函数关系式为y=4(40﹣2x)x,即y=﹣8x2+160x,y=﹣8(x﹣10)2+800,∵﹣8<0,∴y有最大值,∴当x=10时,y最大=800;答:折成的长方体盒子的侧面积有最大值,这个最大值是800cm2,此时剪掉的正方形的边长是10cm.24.(2016春•合肥校级月考)已知,如图,△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A、B、D三点.(1)求证:AB是⊙O的直径;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.【解答】(1)证明:如图1,连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB是⊙O的直径;(2)证明:如图2,连接OD,∵AO=BO,BD=DC,∴DO是△BAC的中位线,∴DO∥AC,∴DO⊥DE,∴DE为⊙O的切线;(3)解:如图3,∵AO=3,∴AB=6,又∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AD=3,∵AC×DE=CD×AD,∴6×DE=3×3,解得:DE=.25.(2015•南丹县一模)如图,∠C=90°,⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,连接OE,OF.AO的延长线交BC于点D,AC=6,CD=2.(1)求证:四边形OECF为正方形;(2)求⊙O的半径;(3)求AB的长.【解答】(1)证明:∵⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,∴∠C=∠CFO=∠CEO=90°,∴四边形CFOE是矩形,∵OF=OE,∴四边形OECF为正方形;(2)解:由题意可得:EO∥AC,∴△DEO∽△DCA,∴=,设⊙O的半径为x,则=,解得:x=1.5,故⊙O的半径为1.5;(3)解:∵⊙O的半径为1.5,AC=6,∴CF=1.5,AF=4.5∴AG=4.5,设BG=BE=y,∴在Rt△ACB中AC2+BC2=AB2,∴62+(y+1.5)2=(4.5+y)2,解得:y=3,∴AB=AG+BG=4.5+3=7.5.26.(2016•亭湖区一模)已知一次函数y=﹣x+1与抛物线y=x2+bx+c交于A(0,1),B两点,B点纵坐标为10,抛物线的顶点为C.(1)求b,c的值;(2)判断△ABC的形状并说明理由;(3)点D、E分别为线段AB、BC上任意一点,连接CD,取CD的中点F,连接AF,EF.当四边形ADEF为平行四边形时,求平行四边形ADEF的周长.【解答】解:(1)把A(0,1),代入y=x2+bx+c,解得c=1,将y=10代入y=﹣x+1,得x=﹣9,∴B点坐标为(﹣9,10),将B (﹣9,10),代入y=x2+bx+c得b=2;(2)△ABC是直角三角形,理由如下:∵y=x2+2x+1=(x+3)2﹣2,∴点C的坐标为(﹣3,﹣2),分别作BG垂直于y轴,CH垂直于y轴∵BG=AG=9,∴∠BAG=45°,同理∠CAH=45°,∴∠CAB=90°∴△ABC是直角三角形;(3)∵BG=AG=9,∴AB=9,∵CH=AH=3,∴AC=3,∵四边形ADEF为平行四边形,∴AD∥EF,又∵F为CD中点,∴CE=BE,即EF为△DBC的中位线,EF∴EF=AD=BD,∵AB=9,∴EF=AD=3在Rt△ACD中,AD=3,AC=3,∴CD=6,∴AF=3,∴平行四边形ADEF周长为6+6.第21页(共21页)。

2016--2017(上)期末九年级数学试题及答案

2016--2017(上)期末九年级数学试题及答案

2016-2017学年度(上)期末数学九年级质量检测试题(卷面满分:120分 考试时间 120分钟)一、选择题:(每小题3分,共30分) 1.点P (-2,b )是反比例函数y=x2的图象上的一点,则b =( ) A.-2 B. -1 C. 1 D. 22.用因式分解法解一元二次方程x (x -3) =x-3时,原方程可化为( )A .(x -1)(x-3)=0 B. (x+1)(x -3) =0 C. x (x -3)=0 D. (x-2)(x-3)=0 3.准备两组相同的牌,每组两张且大小相同,两张牌的牌面数字分别是0,1,从每组牌中各摸出一张牌,两张牌的牌面数字和为1的概率为( )A.43 B. 31 C. 21 D. 414.已知关于x 的一元二次方程x 2+(m-2)x+m+1=0有两个相等的实数根,则m 的值是( )A. 0B. 8C. 42D .0或85. 某几何体的主视图和左视图完全一样如图所示,则该几何体的俯视图不可能是( )6.如图,△ABC 中,D 、E 、F 分别是AB ,AC ,BC 上的点,且DE ∥BC ,EF ∥AB ,AD:DB=1:2,BC=30cm ,则FC 的长为( )A. 10 cm B . 20cm C. 5cm D. 6cm 7.如图,在Rt △ABC 中,∠C =90°,AM 是BC 边上的中线,sin ∠CAM =35,则tanB 的值为( )A.32B.23C.56D.438. 关于二次函数y =ax 2+bx +c 的图象有下列命题:①当c =0时,函数的图象经过原点;②当c>0且函数图象开口向下时,方程ax 2+bx +c =0必有两个不相等的实数根;③函数图象的最高点的纵坐标是4ac -b24a;④当b =0时,函数的图象关于y 轴对称.其中正确命题的个数是( )A .1个B .2个C .3个D .4个9.如图,在△ABC 中,∠ACB=90°,BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,且BE=BF,添加一个条件,仍不能证明四边形BECF 为正方形的是( ) A. BC=AC B. CF ⊥BF C.BD=DF D.AC=BF 10.如图,菱形ABCD 和菱形ECGF 的边长分别是2和3,∠A=120°,则图中阴影部分的面积是( )A.3B.2C.3D.2二.填空题:(每小题3分,共18分)11.方程(x-2)2=9的解是 . 12.反比例函数y=xk经过点(-2,1),则一次函数y=x+k 的图象经过点(-1, ). 13.写一个你喜欢的实数m 的值 ,使关于x 的一元二次方程x 2+x+m=0有两个不相等的实数根. 14.等腰三角形的三边分别为1,1,3,那么它的一个底角为 .15.在平面直角坐标系中,有两点A(6,2),B(6,0),以原点为位似中心,相似比为3:1,把线段AB 缩小为线段A ´B ´,则点A ´的坐标为 .16.按一定规律排列的一列数:21、22、23、25、28、213………,若x 、y 、z 表示这数列中的连续三个数,猜想x 、y 、z 满足的关系式是 . 三.解答题:(本大题共9小题,共72分,解答题写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分5分) 已知,如图,AB 和DE 是直立在地面上的两根立柱,AB =5 m ,某一时刻AB 在阳光下的投影BC =3 m.(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6 m ,请你计算DE 的长.18.(本小题满分6分)已知关于x 的一元二次方程x 2+2x+m=0(1)当m=3时,判定方程的根的情况. (2)当m =-3时,求方程的根.19.(本小题满分6分)如图所示是一个直四棱柱及其主视图和俯视图(等腰梯形). (1)根据图中所给数据,可得俯视图(等腰梯形)的高为________;(2)在虚线框内画出其左视图,并标出各边的长.(尺规作图,不写作法,保留作图痕迹)20.(本小题满分6分)如图,在平面直第5题图 A . B . C . D . 第6题图 AB C D E F 第7题图 第9题图 D B C A F E 第10题图 B G E F A C D 第17题图第22题图 角坐标系中,一次函数y =kx +b(k ≠0)的图象与x 、y 轴交于点A (2,0),B (0,-2)与反比例函数y =xm在第一象限内的图象交于点C ,点C 的纵坐标为1. (1)求一次函数的解析式(2)求点C 的坐标及反比例函数的解析式。

2016九上期末卷(

2016九上期末卷(

2016-2017学年九年级(上)期末数学试卷一、选择题(每小题3分,共36分)1.下列函数是二次函数的是()A.y=3x+1 B.y=ax2+bx+c C.y=x2+3 D.y=(x﹣1)2﹣x22.若反比例函数y=的图象位于第一、三象限,则k的取值可以是()A.﹣3 B.﹣2 C.﹣1 D.03.将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是()A.平行四边形B.矩形 C.正方形D.菱形4.已知二次函数y=x2+x+c的图象与x轴的一个交点为(2,0),则它与x轴的另一个交点坐标是()A.(1,0)B.(﹣1,0)C.(2,0)D.(﹣3,0)5.已知Rt△ABC中,∠C=90°,AB=2,tanA=,则BC的长是()A.2 B.8 C.2 D.46.抛物线y=x2,y=﹣3x2,y=﹣x2,y=2x2的图象开口最大的是()A.y=x2B.y=﹣3x2C.y=﹣x2D.y=2x27.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为()A.1.5 B.2 C.2.5 D.38.如图,⊙O的直径AB=2,点C在⊙O上,弦AC=1,则∠D的度数是()A.30°B.45°C.60°D.75°(第8题)(第9题)9.如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值为()A.1 B.C.D.10.已知函数y=,若使y=k成立的x值恰好有两个,则k的值为()A.﹣1 B.1 C.0 D.±111.如图,将Rt △ABC 绕点A 按顺时针旋转一定角度得到Rt △ADE ,点B 的对应点D 恰好落在BC 边上.若AC=,∠B=60°,则CD 的长为( )A .0.5B .1.5C .D . 1(第11题) (第12题)12.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论:①ac <0;②a ﹣b+c <0;③当x <0时,y <0;④方程ax 2+bx+c=0(a ≠0)有两个大于﹣1的实数根.其中正确的是( )A .①②③B .①③④C .②③④D .①②④二、填空题(每小题4分,共24分)13.方程x (x ﹣1)=0的根是______。

2016-2017年九年级上数学期末试题及答案

2016-2017年九年级上数学期末试题及答案

2016-2017年九年级上数学期末试题及答案2016-2017学年度第一学期期末考试初三年级数学试卷一、选择题(10×3分=30分)1、下列图形中,既是中心对称图形又是轴对称图形的是(。

)2、将函数y=-3x^2+1的图象向右平移2个单位得到的新图象的函数解析式为(。

)A。

y=-3(x-2)^2+1B。

y=-3(x+2)^2+1C。

y=-3x^2+2D。

y=-3x^2-23、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为(。

)A.40°B.30°C.45°D.50°4、方程x^2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12B.12或15C.15D.无法确定5、如图,有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上,从中任意抽取一张是数字3的概率是(。

)A、1/4B、1/6C、2/3D、1/36、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是(。

)A.4B.5C.6D.37、如果矩形的面积为6,那么它的长y与宽x间的函数关系用图像表示(。

)8、如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△ABC1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于(。

)A.55°B.70°C.125°D.145°9、一次函数y=ax+b与二次函数y=ax^2+bx+c在同一坐标系中的图像可能是(。

)A.B.C.D.10、如图,已知正方形ABCD的边长为2,P为BC的中点,连接AP并延长交BD于点E,则PE的长度为(。

)A。

2B。

1C。

√2D。

1/√2二、填空题(8×4分=32分)11、方程x^2=x的解是(。

)12、正六边形的边长为10cm,那么它的边心距等于(。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档 你我共享 知识改变命运 江苏省扬州市梅岭中学2015届九年级上学期期末数学试卷 一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上) 1.在Rt△ABC中,若各边的长度同时都扩大2倍,则锐角A的正切值( ) A.也扩大2倍 B.也缩小2倍 C.不变 D.扩大1倍

2.用配方法解方程x2﹣2x=2,原方程可变形为( ) A.(x+1)2=3 B.(x﹣1)2=3 C.(x+2)2=7 D.(x﹣2)2=7

3.如果关于x的一元二次方程(m﹣1)x2+2x+1=0有两个不相等的实数根,那么m的取值

范围是( ) A.m>2 B.m<2 C.m>2且m≠1 D.m<2且m≠1

4.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表

达式是( ) A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=(x﹣1)2﹣2 D.y=(x+1)2﹣2

5.下列各组图形不一定相似的是( ) A.两个等边三角形 B.各有一个角是100°的两个等腰三角形 C.两个正方形 D.各有一个角是45°的两个等腰三角形

6.如图,AB是半圆的直径,点D是的中点,∠ABC=50°,则∠DAB等于( )

A.55° B.60° C.65° D.70° 7.如果给定数组中每一个数都加上同一个非零常数,则数据的( ) A.平均数不变,方差不变 B.平均数改变,方差改变 C.平均数改变,方差不变 D.平均数不变,方差改变

8.若关于x的一元二次方程ax2+2x﹣5=0的两根中有且仅有一根在0和1之间(不含0和

1),则a的取值范围是( ) A.a<3 B.a>3 C.a<﹣3 D.a>﹣3 精品文档 你我共享 知识改变命运 二、填空题(本大题共10题,每题3分,共30分.不需写出解答过程,请把答案直接填写在答题卷相应位置上) 9.方程x2﹣2x=0的根是 .

10.如果,那么锐角A的度数为 . 11.二次函数y=2x2+8x﹣10的图象与x轴的交点坐标是 . 12.点P(﹣2,y1)和点Q(﹣1,y2)分别为抛物线y=x2﹣2x﹣3上的两点,则y1

y2.(用“>”或“<”填空).

13.两个相似三角形的面积比为9:16,则它们的周长之比为 . 14.正方形网格中,∠AOB如图放置,则sin∠AOB的值为 .

15.如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折

叠,点O恰好落在上的点D处,折痕交OA于点C,则的长为 .

16.某校2016届九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留

作纪念,全班共送了1640张相片.如果全班有x名学生,根据题意,列出方程为 .

17.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表: x … ﹣1 0 1 2 3 4 … y … 10 5 2 1 2 5 … 若A(m,y1),B(m+1,y2)两点都在该函数的图象上,当m= 时,y1=y2.

18.如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例

函数y=的图象上,且OA⊥OB,tanA=,则k的值为 . 精品文档 你我共享 知识改变命运 三.解答题(本大题共有10小题,共96分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(1)计算:20140+()﹣1﹣sin45°+tan60°; (2)解方程:x2﹣2x﹣2=0.

20.已知:二次函数y=ax2﹣3x+a2﹣1的图象开口向上,并且经过原点O(0,0). (1)求a的值; (2)用配方法求出这个二次函数图象的顶点坐标.

21.有关部门从甲、乙两个城市所有的自动售货机中分别随机抽取了16台,记录下某一天

各自的销售情况(单位:元): 甲:18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41 乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23 小强用如图所示的方法表示甲城市16台自动售货机的销售情况.

(1)请你仿照小强的方法将乙城市16台自动售货机的销售情况表示出来; (2)用不等号填空:甲 乙;S甲2 S乙2; (3)请说出此种表示方法的优点.

22.为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡

片,集齐三种卡片可获奖,现购买该种食品3袋,能获奖的概率是多少?

23.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧

内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2? 精品文档 你我共享 知识改变命运 24.如图,在Rt△ABC中,∠C=90°,AB的垂直平分线与AC,AB的交点分别为D,E. (1)若AD=15,cos∠BDC=,求AC的长和tanA的值; (2)若∠BDC=30°,求tan15°的值.(结果保留根号)

25.如图,在平面直角坐标系xOy中,⊙A与y轴相切于点B(0,),与x轴相交于M、N两点.如果点M的坐标为(,0),求⊙A的半径及点N的坐标.

26.已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,

垂足为E,ED的延长线与AC的延长线交于点F. (1)求证:DE是⊙O的切线; (2)若⊙O的半径为4,BE=2,求∠F的度数.

27.已知,点P是∠MON的平分线上的一动点,射线PA交射线OM于点A,将射线PA绕点P逆时针旋转交射线ON于点B,且使∠APB+∠MON=180°. (1)利用图1,求证:PA=PB; (2)如图2,若点C是AB与OP的交点,当S△POB=3S△PCB时,求PB与PC的比值; (3)若∠MON=60°,OB=2,射线AP交ON于点D,且满足且∠PBD=∠ABO,请借助图3补全图形,并求OP的长. 精品文档 你我共享

知识改变命运 28.如图,抛物线y=mx2+3mx﹣3(m>0)与y轴交于点C,与x轴交于A、B两点,点A在点B的左侧,且. (1)求此抛物线的解析式; (2)如果点D是线段AC下方抛物线上的动点,设D点的横坐标为x,△ACD的面积为S,求S与x的关系式,并求当S最大时点D的坐标; (3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点的平行四边形?若存在求点P坐标;若不存在,请说明理由. 精品文档 你我共享

知识改变命运 江苏省扬州市梅岭中学2015届九年级上学期期末数学试卷 参考答案与试题解析 一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上) 1.在Rt△ABC中,若各边的长度同时都扩大2倍,则锐角A的正切值( ) A.也扩大2倍 B.也缩小2倍 C.不变 D.扩大1倍 【考点】锐角三角函数的增减性. 【分析】根据正切的定义即可求解. 【解答】解:设Rt△ABC中,∠C=90°,AB=c,BC=a,AC=b,则tanA=; 将Rt△ABC各边的长度同时都扩大2倍,得到Rt△A′B′C′,则A′B′=2c,B′C′=2a,A′C′=2b,

∴tanA′==; ∴tanA′=tanA. 故选C. 【点评】本题主要考查了正切的定义:在直角三角形中,正切等于对边比邻边.

2.用配方法解方程x2﹣2x=2,原方程可变形为( ) A.(x+1)2=3 B.(x﹣1)2=3 C.(x+2)2=7 D.(x﹣2)2=7 【考点】解一元二次方程-配方法. 【专题】计算题. 【分析】方程两边加上1,变形即可得到结果. 【解答】解:两边加上1,得:x2﹣2x+1=3,即(x﹣1)2=3. 故选B. 【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.

3.如果关于x的一元二次方程(m﹣1)x2+2x+1=0有两个不相等的实数根,那么m的取值

范围是( ) A.m>2 B.m<2 C.m>2且m≠1 D.m<2且m≠1 【考点】根的判别式;一元二次方程的定义. 【专题】计算题. 【分析】根据一元二次方程的定义和判别式的意义得到m﹣1≠0且△=22﹣4(m﹣1)>0,然后求出两个不等式的公共部分即可. 【解答】解:根据题意得m﹣1≠0且△=22﹣4(m﹣1)>0, 解得m<2且m≠1. 故选D. 【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义. 精品文档 你我共享 知识改变命运 4.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表

达式是( ) A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=(x﹣1)2﹣2 D.y=(x+1)2﹣2 【考点】二次函数图象与几何变换. 【分析】根据函数图象右移减、左移加,上移加、下移减,可得答案. 【解答】解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 y=(x﹣1)2+2, 故选:A. 【点评】本题考查了二次函数图象与几何变换,函数图象右移减、左移加,上移加、下移减是解题关键.

5.下列各组图形不一定相似的是( ) A.两个等边三角形 B.各有一个角是100°的两个等腰三角形 C.两个正方形 D.各有一个角是45°的两个等腰三角形 【考点】相似图形. 【专题】常规题型. 【分析】根据相似图形的定义,以及等边三角形,等腰三角形,正方形的性质对各选项分析判断后利用排除法求解. 【解答】解:A、两个等边三角形,对应边的比相等,角都是60°,相等,所以一定相似; B、各有一个角是100°的两个等腰三角形,100°

的角只能是顶角,夹顶角的两边成比例,所

以一定相似; C、两个正方形,对应边的比相等,角都是90°,相等,所以一定相似; D、各有一个角是45°的两个等腰三角形,若一个等腰三角形的底角是45°

,而另一个等腰三

角形的顶角是45°,则两个三角形一定不相似. 故选D. 【点评】本题考查了相似图形的判断,严格按照定义,对应边成比例,对应角相等进行判断即可,另外,熟悉等腰三角形,等边三角形,正方形的性质对解题也很关键.

6.如图,AB是半圆的直径,点D是的中点,∠ABC=50°,则∠DAB等于( )

相关文档
最新文档