【强烈推荐各地名校】七年级数学下册期末综合复习试卷(北师大版)

合集下载

北师大版数学七年级下册期末复习综合练习卷(含答案)

北师大版数学七年级下册期末复习综合练习卷(含答案)

期末综合练习卷一.选择题1.下面的四个汉字可以看作是轴对称图形的是()A.B.C.D.2.在图中,∠ACE的补角、余角分别是()A.∠ECB、∠ECD B.∠ECD、∠ECB C.∠ACB、∠ACD D.∠ACB、∠ACD 3.纳米(nm)是种非常小的长度单位,1nm=10﹣9m,如果某冠状病毒的直径为110nm,那么用科学记数法表示该冠状病毒的直径为()A.1.1×10﹣7m B.1.1×10﹣8m C.110×10﹣9m D.1.1×1011m4.如图,P在线段AB的垂直平分线l上,已知PA=5,AC=3,PC=4,则线段PB的长度是()A.6 B.5 C.4 D.35.下列事件中,是不确定事件的是()A.三条线段可以组成一个三角形B.内错角相等,两条直线平行C.对顶角相等D.平行于同一条直线的两条直线平行6.如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在白色区域的概率等于()A.B.C.D.无法确定7.下列计算正确的是()A.a+2a2=3a3B.a3•a2=a6C.(ab)3=a3b3D.a6÷a2=a38.下列整式乘法不能用平方差公式运算的是()A.(a+b)(a﹣b)B.(﹣a+b)(a﹣b)C.(﹣a﹣b)(a﹣b)D.(a+b)(b﹣a)9.设三角形三边之长分别为3,8,2a,则a的取值范围为()A.1.5<a<4.5 B.2.5<a<5.5 C.3.5<a<6.5 D.4.5<a<7.5 10.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D,再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E 作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.O、E两点关于CD所在直线对称D.C、D两点关于OE所在直线对称11.小明同学为响应我市“阳光体育运动”的号召,与同学一起登山.他们在早上8:00出发,在9:00到达半山腰,休息30分钟后加快速度继续登山,在10:00到达山顶.下面能反映他们距山顶的距离y(米)与时间x(分钟)的函数关系的大致图象是()A .B .C .D .12.如图,锐角△ABC 中,D 、E 分别是AB 、AC 边上的点,△ADC ≌△ADC ′,△AEB ≌△AEB ′,且C ′D ∥EB ′∥BC ,BE 、CD 交于点F ,若∠BAC =α,∠BFC =β,则( )A .2α+β=180°B .2β﹣α=145°C .α+β=135°D .β﹣α=60°二.填空题 13.如图,AB ∥CD ,直线l 交AB 于点E ,交CD 于点F ,若∠2=85°,则∠1等于 °.14.等腰三角形有一外角为100°,则它的底角为 .15.若a 3x +y =﹣24,a x =﹣2,则a y = .16.如图,正方形ABCD 的边长为a ,P 为正方形边上一动点,运动路线是A ﹣D ﹣C ﹣B ﹣A ,设P 点经过的路程为x ,以点A ,P ,D 为顶点的三角形的面积是y ,图象反映了y 与x 的关系,当S △ADP =S 正方形ABCD 时,x = .三.解答题17.化简(1)(2)(﹣2a+b)(﹣2a+b)(3)[(2x﹣y)2+(y﹣2x)(2x﹣4y)+(x﹣2y)2]÷(x+y)﹣118.已知(x2+mx+1)(x2﹣2x+n)的展开式中不含x2和x3项.(1)分别求m,n的值;(2)先化简再求值:2n2+(2m+n)(m﹣n)﹣(m﹣n)219.如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).(1)在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标.(2)求△ABC的面积.20.在这场疫情中,“新型冠状性病毒”拆散了许多家庭,也有不少人的生命戛然而止,令人心痛.小明为了纪念这场疫情,自己动手做了四张扑克牌,四张扑克牌的文字分别为“武”、“汉”、“加”、“油”.小明将4张扑克牌翻成反面,然后搅匀扑克牌,搅匀后从中随机抽取一张牌,记录字后然后放回去,接着抽取一张牌,记录第二张牌上的字.请用画树状图或列表的方法,求出摸到两次“武”字的概率.21.把下面的说理过程补充完整:已知:如图,BC∥EF,BC=EF,AF=DC线段AB和线段DE平行吗?请说明理由.解:AB∥DE理由:∵AF=DC(已知)∴AF+FC=DC+即AC=DF∵BC∥EF∴∠BCA=∠EFD又∵BC=EF∴△ABC≌△DEF∴∠A=∠D.∴AB∥DE.22.王师傅非常喜欢自驾游,为了解他新买轿车的耗油情况,将油箱加满后进行了耗油实验,得到下表中的数据:行驶的路程s(km)0 100 200 300 400 …油箱剩余油量Q(L)50 42 34 26 18 …(1)在这个问题中,自变量是,因变量是;(2)该轿车油箱的容量为L,行驶150km时,估计油箱中的剩余油量为L;(3)王师傅将油箱加满后驾驶该轿车从A地前往B地,到达B地时油箱中的剩余油量为22L,请直接写出A,B两地之间的距离是km.23.如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D在边AB 上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.参考答案一.选择题1.解:四个汉字中,可以看作轴对称图形的是,故选:A.2.解:∠ACE的补角是∠ECB,∠ACE的余角是∠ECD.故选:A.3.解:因为1nm=10﹣9m,所以110nm=110×10﹣9m=1.1×10﹣7m.故选:A.4.解:∵P在线段AB的垂直平分线l上,PA=5,∴PB=PA=5,故选:B.5.解:A、三条线段可以组成一个三角形,属于随机事件,符合题意;B、内错角相等,两条直线平行,是一定发生的事件,属于必然事件,不符合题意;C、对顶角相等,属于必然事件,不符合题意;D、在平面内,平行于同一条直线的两条直线平行,属于必然事件,不符合题意;故选:A.6.解:以自由转动的转盘,被分成了6个相同的扇形,白色区域有4个,因此=,故选:C.7.解:A、a和2a2不是同类项,不能合并,故原题计算错误;B、a3•a2=a5,故原题计算错误;C、(ab)3=a3b3,故原题计算正确;D、a6÷a2=a4,故原题计算错误;故选:C.8.解:由平方差公式条件判断:A答案:(a+b)(a﹣b)=a2﹣b2,满足条件;B答案:(﹣a+b)(a﹣b)=﹣(a﹣b)(a﹣b),不满足条件;C答案:(﹣a﹣b)(a﹣b)=﹣(a+b)(a﹣b)=b2﹣a2,满足条件;D答案:(a+b)(b﹣a)=b2﹣a2,满足条件;故选:B.9.解:由题意,得8﹣3<2a<8+3,即5<2a<11,解得:2.5<a<5.5.故选:B.10.解:A、连接CE、DE,根据作图得到OC=OD、CE=DE.∵在△EOC与△EOD中,,∴△EOC≌△EOD(SSS),∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意;B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意;C、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意;D、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线,∴C、D两点关于OE所在直线对称,正确,不符合题意;故选:C.11.解:①8:00到9:00,用1个小时到达半山腰;②9:00到9:30休息30分钟,③9:30到10:00,用30分钟到达山顶,休息后的速度是休息前的速度的2倍,休息后的线段比休息前的线段更陡,纵观各选项,只有C选项图象符合.故选:C.12.解:延长C′D交AC于M,如图,∵△ADC≌△ADC′,△AEB≌△AEB′,∴∠C′=∠ACD,∠C′AD=∠CAD=∠B′AE=α,∴∠C′MC=∠C′+∠C′AM=∠C′+2α,∵C′D∥B′E,∴∠AEB′=∠C′MC,∵∠AEB′=180°﹣∠B′﹣∠B′AE=180°﹣∠B′﹣α,∴∠C′+2α=180°﹣∠B′﹣α,∴∠C′+∠B′=180°﹣3α,∵β=∠BFC=∠BDF+∠DBF=∠DAC+∠ACD+∠B'=α+∠ACD+∠B′=α+∠C′+∠B′=α+180°﹣3α=180°﹣2α,即:2α+β=180°.故选:A.二.填空题13.解:如图所示:∵AB∥CD,∴∠2=∠3,又∵∠2=85°,∴∠85°,又∵∠1+∠3=180°,∴∠1=95°,故答案为95.14.解:∵等腰三角形的一个外角等于100°,∴等腰三角形的一个内角为80°,①当80°为顶角时,其他两角都为50°、50°,②当80°为底角时,其他两角为80°、20°,所以等腰三角形的底角可以是50°,也可以是80°答案为:80°或50°.15.解:∵a 3x +y =﹣24=a 3x ×a y=(a x )3×a y=﹣23×a y =﹣24,则a y =3.故答案为:3.16.解:当点P 由点A 向点D 运动,即0≤x ≤4时,y 的值为0,可得a =4, ∵S △ADP =S 正方形ABCD ,∴当点P 在DC 上时,DP =; 当P 的AB 上时,∵AP ==2, ∴BP =4﹣2=2,∴当S △ADP =S 正方形ABCD 时,x =4+2或4×3+2,解得x =6或14.故答案为:6或14三.解答题17.解:(1)原式=﹣1﹣27×9+1,=﹣243;(2)原式=4a 2﹣4ab +b 2;(3)原式=[(2x﹣y)2﹣2(2x﹣y)(x﹣2y)+(x﹣2y)2]÷(x+y)﹣1,=(x+y)2÷(x+y)﹣1,=(x+y)3.18.解:(1)(x2+mx+1)(x2﹣2x+n)=x4﹣2x3+nx2+mx3﹣2mx2+mnx+x2﹣2x+n=x4+(﹣2+m)x3+(n﹣2m+1)x2+(mn﹣2)x+n,∵(x2+mx+1)(x2﹣2x+n)的展开式中不含x2和x3项,∴﹣2+m=0,n﹣2m+1=0,解得:m=2,n=3;(2)2n2+(2m+n)(m﹣n)﹣(m﹣n)2=2n2+2m2﹣2mn+mn﹣n2﹣m2+2mn﹣n2=m2+mn,当m=2,n=3时,原式=4+6=10.19.解:(1)如图,A′(﹣2,4),B′(3,﹣2),C′(﹣3,1);=6×6﹣×5×6﹣×6×3﹣×1×3,(2)S△ABC=36﹣15﹣9﹣1,=10.20.解:将武汉加油分别记为1、2、3、4,列表如下:1 2 3 41 11 12 13 142 21 22 23 243 31 32 33 344 41 42 43 44由表可知共有16种等可能结果,其中摸到两次“武”字的只有1种结果,∴摸到两次“武”字的概率为.21.解:AB∥DE理由:∵AF=DC(已知)∴AF+FC=DC+FC.∴AC=DF.∵BC∥EF已知,∴∠BCA=∠EFD(两直线平行,内错角相等).∵BC=EF(已知).∴△ABC≌△DEF(SAS)∴∠A=∠D(两三角形全等则它们的对应角相等).∴AB∥DE(内错角相等,两直线平行).故答案为FC;已知,两直线平行,内错角相等;已知;SAS;两三角形全等则它们的对应角相等;内错角相等,两直线平行.22.解:(1)上表反映了轿车行驶的路程s(km)和油箱剩余油量Q(L)之间的关系,其中轿车行驶的路程s(km)是自变量,油箱剩余油量Q(L)是因变量;故答案是:行驶的路程;油箱剩余油量;(2)由表格可知,开始油箱中的油为50L,每行驶100km,油量减少8L,据此可得Q与s的关系式为Q=50﹣0.08s,当s=150时,Q=50﹣0.08×150=38(L);故答案是:50,38;(3)由(2)得Q=50﹣0.08s,当Q=22时,22=50﹣0.08s解得s=350.答:A,B两地之间的距离为350km.故答案是:350.23.(1)证明:∵△CDE是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=30°,∴∠EDB=∠B,∴DE=EB;(2)解:ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=30°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,在△ACD和△OCE中,,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,在△COE和△BOE中,,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(3)取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=3,∵GE∥AB,∴∠G=180°﹣∠A=120°,在△CEG和△DCO中,,∴△CEG≌△DCO,∴CG=OD,设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+3+3,解得,a=2,即CG=2.。

2023年北师大版七年级下册数学期末复习综合试卷及答案 (3)

2023年北师大版七年级下册数学期末复习综合试卷及答案 (3)

又因为∠BCF+∠GCA=90°,
所以∠CAD+∠GCA=90°,所以∠CGA=90°,即AD⊥CF.
·数学
(2)CF=AF,理由: 由(1)知△CBF≌△ACD, 所以CF=AD. 因为△DBF是等腰直角三角形,且BE是∠DBF的平分线, 所以BE垂直平分DF, 所以AF=AD. 因为CF=AD,所以CF=AF.
·数学
解:(1)随着月份x的增大,月产量y逐渐增加. (2)1月、2月两个月的月产量保持不变,3月~4月,4月~5月 的产量在匀速增长,6月份的产量最高. (3)2022年上半年的平均月产量:(10 000+10 000+12 000+ 13 000+14 000+18 000)÷6≈12 833(台).
AD=AD, 所以△AMD≌△AND(SAS),所以DM=DN.
·数学
15.下表是某电器厂2022年上半年每个月的产量:
x/月 1
2
3
4
5
6
y/台 10 000 10 000 12 000 13 000 14 000 18 000
(1)根据表格中的数据,你能否根据x的变化,得到y的变化 趋势? (2)根据表格中的数据判断哪几个月的月产量保持不变,哪 几个月的月产量在匀速增长,哪个月的产量最高; (3)2022年上半年的平均月产量是多少?
·数学
16.如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中 点,DE⊥AB,垂足为点E,过点B作BF∥AC,交DE的延长 线于点F,连接CF. (1)试说明:AD⊥CF; (2)连接AF,CF与AF之间有什么 数量关系,并说明理由.
解:(1)在等腰直角三角形ABC中,
·数学
因为∠ACB=90°,所以∠CBA=∠CAB=45°.

北师版七年级数学下册期末综合复习卷三(含答案)

北师版七年级数学下册期末综合复习卷三(含答案)

北师版七年级下册期末综合复习卷(时间100分钟,满分120分)一、选择题(共10小题,3*10=30)1.下列计算正确的是( )A .x 2+3x 2=4x 4 `B .x 2y ·2x 3=2x 4yC .6x 2y 2÷3x =2x 2 `D .(-3x )2=9x 22.下列图形中,是轴对称图形的是( )3.下列各组数作为三条线段的长,使它们能构成三角形的一组是( )A .2,3,5B .4,4,8C .14,6,7D .15,10,94.如图,直线a ∥b ,∠1=120°,∠2=40°,则∠3等于( )A .60°B .70°C .80°D .90°5.下列说法中不正确的是( )A .抛掷一枚硬币,硬币落地时正面朝上是随机事机B .把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C .任意打开七年级下册数学教科书,正好是97页是确定事件D .一个盒子中有白球m 个,红球6个,黑球n 个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m 与n 的和是66. 如图,直线EF 分别与直线AB ,CD 相交于点G ,H ,已知∠1=∠2=50°,GM 平分∠HGB 交直线CD 于点M .则∠3等于( )A .60°B .65°C .70°D .130°7. 下列各组条件中,能判定△ABC ≌△DEF 的是( )A .AB =DE ,BC =EF ,∠A =∠D B .∠A =∠D ,∠C =∠F ,AC =EFC .AB =DE ,BC =EF ,△ABC 的周长=△DEF 的周长D .∠A =∠D ,∠B =∠E ,∠C =∠F8.如图,点A 在DE 上,AC =EC ,∠1=∠2=∠3,则DE 等于( )A .BCB .ABC .DCD .AE +AC9.如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后从中随机抽取一张,则抽到的卡片上算式正确的概率是( ) a 2+a 4=a 7 a 8÷a 4=a 2 (a 3)2=a 6 a 2+a 3=2a 5A.14B.12C.34D .1 10.如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的图象大致为( )二.填空题(共8小题,3*8=24)11.将方程4x +3y =6变形成用y 的代数式表示x 的形式,则x =_________.12. 世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000 000 076克,用科学记数法表示是_______克.13.如图,在四边形ABCD 中,∠A =100°,∠C =70°.将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B =________.14.经测量,人在运动时所能承受的每分钟心跳的最高次数通常和人的年龄有关.如果用x 表示一个人的年龄,用y 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么y =0.8(220-x ).今年上七年级的小虎12岁,据此表达式计算,他运动时所能承受的每分钟的最高心跳次数约是________(取整数)次.15.若3a 4b 3m +2n 与-5a 2m +3n b 6是同类项,则|m +n |=__ __.16.下列说法:①三角形的一个外角等于它的两个内角和;②三角形的内角和等于180°,外角和等于360°;③若一个三角形的三边长分别为3、5、x ,则x 的取值范围是2<x <8;④角是轴对称图形,角的对称轴是角的平分线;⑤圆既是轴对称图形,也是中心对称图形,圆有无数条对称轴.其中正确的有__________.(填序号)17.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB的延长线交于点E,则四边形AECF A的面积是____.18.如图,在△ABC中,AB=AC,AB的垂直平分线DE交BC于E,EC的垂直平分线FM交DE的延长线于M,交EC于F,若∠FMD=40°,则∠C=________.13题图17题图18题图三.解答题(共7小题,66分)19.(8分)(1)计算:2-2-(π-3.14)0+(-0.5)2020×22020.(2) 化简并求值:(3x+2y)2-(3x-2y)2+2(x+y)(x-y)-2x(x+4y)其中,x=1,y=-1.20.(8分) 如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,AB和CD是否平行?请说明理由.21.(8分) 小明和小刚做摸纸牌游戏.如图,两组相同的纸牌,每组两张牌面数字分别是2和3.将两组牌背面朝上,洗匀后从每组牌中各摸出一张,称为一次游戏.当两张牌的牌面数字之积为奇数,小明得2分,否则小刚得1分.这个游戏对双方公平吗?请说明理由.22.(10分) 若一个多边形的所有内角与它的一个外角的和为600°,求这个多边形的边数和内角和.23.(10分)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,试说明:DE=DF.24.(10分)某医药研究所开发一种新药,在做药效试验时发现,如果成人按规定剂量服用,那么服药后,每毫升血液中含药量y(μg)随时间t(h)的变化图象如图所示,根据图象回答:(1)服药后几时血液中含药量最高?每毫升血液中含多少微克?(2)在服药几时内,每毫升血液中含药量逐渐升高?在服药几时后,每毫升血液中含药量逐渐下降?(3)服药后14 h时,每毫升血液中含药量是多少微克?(4)如果每毫升血液中含药量为4微克及以上时,治疗疾病有效,那么有效时间为几时?25.(12分) 在△ABC中,AB=AC,D是直线BC上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE =∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图①,点D在线段BC上移动时,角α与β之间的数量关系是____________,请说明理由;(2)如图②,点D在线段BC的延长线上移动时,角α与β之间的数量关系是____________,请说明理由;参考答案1-5DADCAC 6-10BCBAB11. 6-3y 412.7.6×10-813. 95°14.16615. 216. ②③⑤17. 1618.40°19. 解:(1)原式=14-1+(-0.5×2)2020=14-1+1=14(2)原式=16xy -2y 2.当x =1,y =-1时,原式=-16-2=-18.20. 解:AB 和CD 平行.理由如下:因为CE 平分∠BCD ,所以∠4=∠1=70°,∠BCD =2∠1=140°.因为∠1=∠2=70°,所以∠4=∠2=70°.所以AD ∥BC .所以∠B =∠3=40°.所以∠B +∠BCD =40°+140°=180°.所以AB ∥CD .21. 解:P (积为奇数)=14,P (积为偶数)=34,∴小明得分:14×2=12(分),小刚得分:34×1=34(分).∵12≠34,∴这个游戏对双方不公平22. 解:设这个多边形的边数为n ,这个外角的度数为α.根据题意,得(n -2)×180°+α=600°,则α=600°-(n -2)×180°.又∵0°<α<180°,∴0°<600°-(n -2)×180°<180°,解得413<n <513.又∵n 为正整数,∴n =5,∴这个多边形为五边形,内角和为(5-2)×180°=540°,而α=600°-540°=60°.23. 解:连接AD ,在△ACD 和△ABD 中,因为AB =AC ,BD =CD ,AD =AD ,所以△ACD △≌ABD (SSS ),所以∠CAD =∠BAD ,所以AD 是∠BAC 的角平分线,又因为DE ⊥AB ,DF ⊥AC ,所以DE =DF24. 解:(1)服药后2 h 血液中含药量最高,每毫升血液中含6 μg .(2)在服药2 h 内,每毫升血液中含药量逐渐升高,在服药2 h 后,每毫升血液中含药量逐渐下降.(3)2 μg(4)8-43=203(h ),即有效时间为203 h .25. 解:(1)α+β=180°理由:因为∠DAE =∠BAC ,所以∠DAE -∠CAD =∠BAC -∠CAD ,即∠BAD =∠CAE .又因为AB =AC ,AD =AE ,所以△ABD≌△ACE(SAS).所以∠ABC=∠ACE.在△ABC中,∠BAC+∠ABC+∠ACB=180°,∠ABC=∠ACE,所以∠BAC+∠ACB+∠ACE=180°.因为∠ACB+∠ACE=∠DCE=β,所以α+β=180°.(2)α=β理由:因为∠DAE=∠BAC,所以∠BAD=∠CAE.又因为AB=AC,AD=AE,所以△ABD≌△ACE(SAS).所以∠ABC=∠ACE.因为∠ABC+∠BAC+∠ACB=180°,∠ACB+∠ACD=180°,所以∠ACD=∠ABC+∠BAC=∠ACE+∠ECD.所以∠BAC=∠ECD.所以α=β.。

【最新】北师大版七年级下册数学《期末考试试卷》及答案解析

【最新】北师大版七年级下册数学《期末考试试卷》及答案解析

北师大版七年级下学期期末测试数学试卷学校________班级________姓名________成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列计算正确的是()A.3a2-4a2=a2B.a2 a3=a6C.a10÷a5=a2D.(a2)3=a62.如图,直线a,b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠53.下面作三角形最长边上的高正确的是()A. B.C. D.4.某种蔬菜的价格随季节变化如下表,根据表中信息,下列结论错误的是()月份x价格y(元/千克)1234567891011125.005.505.004.802.001.501.000.901.503.002.503.50A.x是自变量,y是因变量B.2月份这种蔬菜价格最高,为5.50元/千克9 D.110 C.110 B.1.C.28月份这种蔬菜价格一直在下降D.812月份这种蔬菜价格一直在上升5.如图,在Rt∆ABC中,ED是AC的垂直平分线,分别交BC,AC于E,D,已知∠BAE=10o,则∠C 为()A30o B.40o C.50o D.60o6.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是()A. B. C. D.7.下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是1 3C.天气预报说明天降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖8.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”概率为()A.389.如图,已知D为∆ABC边AB的中点,E在AC上,将∆ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65o,则∠BDF等于()A.65oB.50oC.60oD.57.5o10.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙,若图甲和图乙中阴影部分的面积分别为3和16,则正方形A,B的面积之和为()A.13B.11C.19D.21二、填空题(本大题共6个小题,每题3分,共18分,将答案填在答题纸上)11.计算:(x+1)(x-1)=12.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.13.如图,用两根拉线固定竖直电线杆的示意图,其中拉线的长AB=AC,若∠ABD=50o,则∠CAD=__________.14.在地球某地,温度T(℃)与高度d(m)的关系可以近似用T=10-d50来表示,根据这个关系式,当高度d的值是400时,T的值为_________.15.如图,在△ABC中,AC=10,BC=6,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长是_____.16.如图,在第1个∆ABA中,∠B=20o,AB=A B,在A B上取一点C,延长AA到A,使得A A=AC;111112121在A2C上取一点D,延长A A2到A3,使得A2A3=A2D;……按此作法进行下去,第n个三角形的以A n为顶点的内角的度数为___.三、解答题:本大题共9个小题,共72分.解答应写出文字说明、证明过程或演算步骤.17.先化简,再求值:(a+b)2+b(a﹣b)﹣4ab,其中a=2,b=﹣12.18.如图,已知∠1=∠2,∠3=100o,∠B=80o,判断CD与EF之间位置关系,并说明理由.的19.如图所示,BC=DE,BE=DC,试说明(1)BC//D E;(2)∠A=∠ADE20.一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球的个数是白球3个数的2倍少5个,已知从袋中摸出一个球是红球的概率是.10(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.21.如图,已知∆ABC中,AB=AC,点D,E分别在AB,AC上,且BD=CE,如何说明BE=CD呢?解:因为AB=AC()所以∠ABC=∠ACB()又因为BD=CE()BC=CB()所以∆BCD≌∆CBE()所以BE=CD()22.小明某天上午9时骑自行车离开家,15时回家,他离家的距离与时间的变化情况如图所示.(1)10时时他离家km,他到达离家最远的地方时是时,此时离家km;(2)他可能在哪段时间内休息,并吃午餐?(3)他在出行途中,哪段时间内骑车速度最快,速度是多少?23.如图,已知AB=AC,∠A=40o,AB的垂直平分线MN交AC于点D,(1)求∠DBC的度数;(2)若∆DBC的周长为14cm,BC=5cm,求AB的长.24.阅读理解先阅读下面的内容,再解决问题例题:若m2+2mn+2n2-6n+9=0,求m和n的值.解:∵m2+2mn+2n2-6n+9=0∴m2+2mn+n2+n2-6n+9=0∴(m+n)2+(n-3)2=0∴m+n=0,n-3=0∴m=-3,n=3问题:(1)x2+2y2-2x y+4y+4=0,求x y的值.(2)已知a,b,c是∆ABC的三边长,满足a2+b2=12a+8b-52,求c的范围.25.如图1,点P是线段AB上动点(点P与A,B不重合),分别以AP,PB为边向线段AB的同一侧作正∆APC和正∆PBD.的(1)请你判断AD与BC有怎样的数量关系?请说明理由;(2)连接AD,BC,相交于点Q,设∠AQC=α,那么α的大小是否会随点P的移动而变化?请说明理由;(3)如图2,若点P固定,将∆PBD绕点P按顺时针方向旋转(旋转角小于180o),此时α的大小是否发生变化?(只需直接写出你的猜想,不必证明).答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列计算正确的是()A.3a2-4a2=a2B.a2 a3=a6C.a10÷a5=a2D.(a2)3=a6【答案】D【解析】【分析】根据合并同类项的法则、同底数的乘法和除法法则、幂的乘方运算性质进行计算判断即可【详解】解:A、3a2-4a2=-a2,所以本选项错误;B、a2 a3=a5,所以本选项错误;C、a10÷a5=a5,所以本选项错误;D、(a2)3=a6,本选项正确.故选D.【点睛】本题考查了合并同类项的法则、同底数的乘法和除法法则、幂的乘方运算性质等知识,属于基础题型,熟练掌握上述法则与性质是解题的关键.2.如图,直线a,b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠5【答案】C【解析】分析:根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解答即可.详解:由同位角的定义可知,∠1的同位角是∠4.故选C..点睛:本题考查了同位角问题,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解.3.下面作三角形最长边上的高正确的是()A.B.C.D.【答案】C【解析】【分析】先找出图形中的最长边和它所对的顶点,过这个顶点向最长边作垂线段,即得答案 【详解】解:∵三角形为钝角三角形,∴最长边上的高是过最长边所对的角的顶点,作对边的垂线,垂足在最长边上.故选 C.【点睛】本题考查三角形高的定义和垂线的定义,无论三角形是什么形状的三角形,其最长边上的高一定在三角形内部,即过最长边所对的角的顶点,作对边的垂线,垂足在最长边上.4.某种蔬菜的价格随季节变化如下表,根据表中信息,下列结论错误的是()月份 x 价格 y(元/千克)1 2 3 4 5 6 7 8 9 10 11 125.00 5.50 5.00 4.80 2.00 1.50 1.00 0.90 1.50 3.00 2.50 3.50A. x 是自变量, y 是因变量B. 2 月份这种蔬菜价格最高,为 5.50 元/千克C. 2 8 月份这种蔬菜价格一直在下降D.8-12月份这种蔬菜价格一直在上升【答案】D【解析】【分析】根据表格提供数据信息逐一进行判断即可.【详解】解:A、由题意,蔬菜的价格随季节变化而变化,所以月份x是自变量,蔬菜价格y是因变量,所的以A正确;B、观察表格可知,2月份时蔬菜价格为5.50元/千克,是各月份的最高价格,所以B正确;C、2-8月份这种蔬菜由5.50元/千克一直下降到0.90元/千克,所以C正确;D、8-12月份这种蔬菜价格分别是:0.90、1.50、3.00、2.50、3.50(元/千克),不是一直在上升,所以本选项错误.故选D.【点睛】本题考查的是用表格表示变量之间的关系,读懂题意,弄清表格数据所提供的数据信息是解题的关键.5.如图,在Rt∆ABC中,ED是AC的垂直平分线,分别交BC,AC于E,D,已知∠BAE=10o,则∠C 为()A.30oB.40oC.50oD.60o【答案】B【解析】【分析】先根据线段垂直平分线的性质和等腰三角形的性质得到∠EAC=∠C,然后根据直角三角形两锐角互余的性质即可求得结果.【详解】解:∵ED是AC的垂直平分线,..∴EA =EC ,∴∠EAC =∠C ,设∠C =x ,则∠BAC =x +10,∵∠BAC +∠C =90°,∴x +x +10=90°,解得 x =40°,即∠C =40°.故选 B.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的性质和直角三角形的性质,属于基础题型,熟知线段垂直平分线的性质和等腰三角形的性质是解此题的关键 6.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60 秒后将容器内注满.容器内水面的高度 h (cm )与注水时间 t (s )之间的函数关系图象大致是()A. B. C. D.【答案】D【解析】【分析】根据图像分析不同时间段的水面上升速度,进而可得出答案.【详解】已知一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60 秒后将容器内注满.因为长方体是均匀的,所以初期的图像应是直线,当水越过长方体后,注水需填充的体积变大,因此此时的图像也是直线,但斜率小于初期,综上所述答案选 D.【点睛】能够根据条件分析不同时间段的图像是什么形状是解答本题的关键 7.下列说法正确的是( )A. 367 人中至少有 2 人生日相同9 D.110 C.110 B.1B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是1 3C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖【答案】A【解析】分析:利用概率的意义和必然事件的概念的概念进行分析.详解:A、367人中至少有2人生日相同,正确;B、任意掷一枚均匀的骰子,掷出的点数是偶数的概率是12,错误;C、天气预报说明天的降水概率为90%,则明天不一定会下雨,错误;D、某种彩票中奖的概率是1%,则买100张彩票不一定有1张中奖,错误;故选:A.点睛:此题主要考查了概率的意义,解决的关键是理解概率的意义以及必然事件的概念.8.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为()A.38【答案】B【解析】分析:直接利用概率公式求解.详解:这句话中任选一个汉字,这个字是“绿”的概率=1 10.故选:B.点睛:本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.9.如图,已知D为∆ABC边AB的中点,E在AC上,将∆ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65o,则∠BDF等于()A.65oB.50oC.60oD.57.5o【答案】B【解析】【分析】先根据折叠的性质和等腰三角形的性质得到∠DFB=∠B,再根据三角形的内角和即可求得结果.【详解】解:由折叠的性质知:DF=DA,∵D为边AB的中点,∴DB=DA,∴DF=DB,∴∠DFB=∠B=65°,∴∠BDF=180°-∠B-∠BFD=180°-65°-65°=50°.故选B.【点睛】本题考查了折叠的性质、等腰三角形的性质和三角形的内角和等知识,由折叠的性质和等腰三角形的性质得出∠DFB=∠B是解答的关键.10.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙,若图甲和图乙中阴影部分的面积分别为3和16,则正方形A,B的面积之和为()A.13【答案】C【解析】【分析】B.11C.19D.21设正方形A的边长为a,正方形B的边长为b,根据图形列出a、b的关系式求解即得.【详解】解:设正方形A的边长为a,正方形B的边长为b,由图甲得:(a-b)2=3,即a2+b2-2ab=3,由图乙得:(a+b)2-a2-b2=16,整理得2ab=16,所以a2+b2=19.即正方形A、B面积之和为19.故选C.的【点睛】本题主要考查了完全平方公式在几何图形中的应用和整体代入的数学思想,根据图形得出数量关系是解题的关键.二、填空题(本大题共6个小题,每题3分,共18分,将答案填在答题纸上)11.计算:(x+1)(x-1)=【答案】x2-1【解析】原式=x2-12=x2-1.12.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.【答案】60°【解析】【分析】先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D的度数.【详解】∵DA⊥CE,∴∠DAE=90°,∵∠1=30°,∴∠BAD=60°,又∵AB∥CD,∴∠D=∠BAD=60°,.【详解】解:把 d = 400 代入 T = 10 - ,得 T = 10 - 故答案为:60°.【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.13.如图,用两根拉线固定竖直电线杆的示意图,其中拉线的长 AB = AC ,若 ∠ABD = 50o ,则∠CAD = __________.【答案】 40o【解析】【分析】根据等腰三角形的性质和直角三角形两锐角互余的性质即可求解 【详解】解:∵ AB = AC ,∴∠ABD =∠ACD =50°,由题意得:AD ⊥BC ,∴∠CAD =90°-∠ACD =40°.故答案为 40o .【点睛】本题考查了等腰三角形的性质和直角三角形的性质,属于基础题型,弄清题意,熟练掌握等腰三角形的性质是解题的关键.14.在地球某地,温度T (℃)与高度 d ( m )的关系可以近似用T = 10 -当高度 d 的值是 400 时, T 的值为_________.【答案】2【解析】【分析】d 50来表示,根据这个关系式,把 d = 400 代入 T = 10 - d 50计算即得结果.故答案为 2.d 40050 50= 10 - 8 = 2 .16.如图,在第1个∆ABA中,∠B=20o,AB=A B,在A B上取一点C,延长AA到A,使得A A=AC;1【点睛】本题考查了代数式求值,难度不大,属于基础题型.15.如图,在△ABC中,AC=10,BC=6,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长是_____.【答案】16【解析】【分析】由线段垂直平分线上的点到线段两端点的距离相等可求出AE=BE,进而求出△BCE的周长.【详解】∵DE是AB的垂直平分线,∴AE=BE,∵AC=10cm,BC=6cm,∴△BCE的周长=BC+BE+CE=BC+AE+CE=BC+AC=10+6=16cm.故答案为:16【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,求出△BCE的周长等于AC与BC的和是解题的关键.11112121在A2C上取一点D,延长A A2到A3,使得A2A3=A2D;……按此作法进行下去,第n个三角形的以A n为顶点的内角的度数为___.【答案】80o2n-1∴∠BA 1A = = = 80o , ∴∠CA 2A 1= = = 40o ; 40o 80o 20o 80o=20°,∠EA 4A 3= 2 【解析】【分析】先根据等腰三角形的性质求出∠ BA 1A 的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2 及∠EA 4A 3 的度数;找出规律即可得出第 n 个三角形的以 A n 为顶点的内角的度数.【详解】解:∵在△ABA 1 中,∠B =20°,AB =A 1B ,180o - ? B 180o 20o 2 2∵A 1A 2=A 1C ,∠BA 1A 是 △A 1A 2C 的外角,BA A 80o 1 2 2同理可得,∠DA 3A 2=……= = 2 2 2 23 =10°,∴第 n 个三角形的以 A n 为顶点的内角的度数为80o 2n -1.故答案为: 80o 2n -1.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA 2A 1,∠DA 3A 2 及∠EA 4A 3的度数,找出规律是解答此题的关键.三、解答题:本大题共 9 个小题,共 72 分. 解答应写出文字说明、证明过程或演算步骤.17.先化简,再求值:(a+b )2+b (a ﹣b )﹣4ab ,其中 a=2,b=﹣1 2.【答案】5.【解析】分析:首先计算完全平方,计算单项式乘以多项式,然后再合并同类项,化简后,再代入 a 、b 的值,进而可得答案.详解:原式=a 2+2ab+b 2+ab-b 2-4ab=a 2-ab ,当 a=2,b=- 1 2时,原式=4+1=5..( 点睛:此题主要考查了整式的混合运算--化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.18.如图,已知 ∠1 = ∠2 , ∠3 = 100o , ∠B = 80o ,判断 CD 与 EF 之间的位置关系,并说明理由.【答案】 EF / /CD ,见解析.【解析】【分析】由 ∠1 = ∠2 可得 AB / /CD ,由∠3、∠B 的关系可判断 AB 与 EF 的关系,进一步即可解答.【详解】解: EF / /CD ,理由如下:因为 ∠1 = ∠2 ,所以 AB / /CD ,又因为 ∠3 = 100o , ∠B = 80o , 所以 ∠3 + ∠B = 180o , 所以 AB / / E F ,所以 EF / /CD .【点睛】本题考查了平行线的判定和平行公理的推论,熟练掌握平行线的判定方法是解题的关键 19.如图所示, BC = DE , BE = DC ,试说明(1) BC / / D E ;(2) ∠A = ∠ADE【答案】 1)见解析;(2)见解析.⎨ D C = BE ⎪ B D = DB ( 【解析】【分析】(1)连接 BD ,先根据 SSS 证明 ∆BCD ≌ ∆DEB ,再根据全等三角形的性质得∠CBD = ∠EDB ,进一步即得结论;(2)由(1),根据平行线的性质即得结论.【详解】解:(1)连接 BD ,在 ∆BCD 和 ∆DEB 中⎧ B C = DE ⎪⎩所以 ∆BCD ≌ ∆DEB ( SSS ),所以 ∠CBD = ∠EDB ,所以 BC / / D E .(2)由(1)知: AC / / D E ,所以 ∠A = ∠ADE .【点睛】本题考查了全等三角形的判定和性质以及平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.20.一个不透明的袋中装有红、黄、白三种颜色的球共 100 个,它们除颜色外都相同,其中黄球的个数是白球个数的 2 倍少 5 个,已知从袋中摸出一个球是红球的概率是 3 10.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走 10 个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.【答案】 1)30 个(2)1/4(3)1/3【解析】3 解:(1)根据题意得:100× =30,10答:袋中红球有 30 个.(2)设白球有 x 个,则黄球有(2x -5)个,根据题意得 x +2x -5=100-30,解得 x=25。

【精选】北师大版七年级下册数学期末综合测试卷(含答案)

【精选】北师大版七年级下册数学期末综合测试卷(含答案)

【精选】北师大版七年级下册数学期末综合测试卷(含答案)一、选择题(每题3分,共30分)1.【2022·重庆】下列北京冬奥会运动标识图案是轴对称图形的是( )2.【2022·齐齐哈尔】下列计算正确的是( )A.ab2÷ab=b B.(a-b)2=a2-b2C.2m4+3m4=5m8D.(-2a)3=-6a33.【2022·本溪】下列事件中,是必然事件的是( )A. 射击运动员射击一次,命中靶心B.掷一次骰子,向上一面的点数是6C.任意买一张电影票,座位号是2的倍数D.从一个只装有红球的盒子里摸出一个球是红球4.【教材P86随堂练习T1变式】如果一个三角形的两边长分别为2和4,则第三边长可能是( )A.2 B.4 C.6 D.85.【2022·山西】如图,Rt△ABC是一块直角三角板,其中∠C=90°,∠BAC=30°.直尺的一边DE经过顶点A,若DE∥CB,则∠DAB的度数为( )A.100° B.120°C.135° D.150°6.下列说法错误..的是( )A.等腰三角形底边上的高所在的直线是它的对称轴B.△ABC≌△DEF,则△ABC与△DEF一定关于某条直线对称C.连接轴对称图形的对应点的线段必被对称轴垂直平分D.线段和角都是轴对称图形7.【教材P138习题T2改编】【2022·北京】不透明的袋子中装有红,绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( )A.14B.13C.12D.348.【2021·重庆】如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能..判断△ABC≌△DEF的是( )A.AB=DE B.∠A=∠DC.AC=DF D.AC∥FD9.如图,在△ABC中,D是AB上一点,DF交AC于点E,AE=EC,DE=EF,则下列结论:①∠ADE=∠EFC;②∠ADE+∠ECF+∠FEC=180°;③∠B+∠BCF=180°;④S△ABC=S四边形DBCF.其中正确的结论有( )A.4个B.3个C.2个D.1个10.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B 时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致为( )二、填空题(每题3分,共24分)11.【2022·广元】石墨烯是目前世界上最薄却最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为____________.12.图书馆现有2 000本图书供学生借阅,如果每个学生一次借4本,则剩下的书y(本)和借书学生人数x(人)之间的关系式是____________________(要求写出x的取值范围).13.【开放题】如图,BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为____________(只需添一个).(第13题) (第14题) (第16题) (第17题) (第18题) 14.【教材P151议一议变式】如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是_______.15.若x<y,x2+y2=3,xy=1,则x-y=________.16.如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8.若S△ABC=21,则DE=________.17.【2022·广州八一实验学校模拟】珠江流域某江段水流方向经过B,C,D三点拐弯后与原来相同,如图所示.若∠ABC=120°,∠BCD=80°,则∠CDE =________.18.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB的延长线交于点E,则四边形AECF的面积是________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.计算:(1)(0.2x-0.3)(0.2x+0.3);(2)(2a3b2-4a4b3+6a5b4)÷(-2a3b2).20.【教材P34复习题T7变式】先化简,再求值:(3x+2y)2-(3x-2y)2+2(x+y)(x -y)-2x(x+4y),其中x=1,y=-1.21.如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,AB和CD是否平行?请说明理由.22.【2022·岳阳】守护好一江碧水,打造长江最美岸线.江豚、麋鹿、天鹅已成为岳阳“吉祥三宝”的新名片.某校生物兴趣小组设计了3张环保宣传卡片,正面图案如图所示,它们除此之外完全相同.(1)将这3张卡片背面朝上,洗匀,从中随机抽取一张,则抽取的卡片正面图案恰好是“麋鹿”的概率为________;(2)将这3张卡片背面朝上,洗匀,从中随机抽取一张,不放回,再从剩余的两。

最新北师大版七年级下册数学期末试卷及答案

最新北师大版七年级下册数学期末试卷及答案

北师大版七年级下册数学期末复习试卷(一)一、耐心填一填( 共15空,每空两分,共30)1、等腰三角形的三边长分别为:x +1、 2x +3 、9 。

则x = 2.计算:x ·x 2·x 3= ; (-x)·(-21x)= ; (-21)0= ; (a +2b)( )=a 2-4b 2; (2x -1)2= 3.若,21,8==nma a 则=-nm a324.已知,如图1,AC ⊥BC ,CD ⊥AB 于D ,则图中有 个直角,它们是 ,点C 到AB 的距离是线段 的长图1 图25.如图2,直线a 、b 被直线c 所截形成了八个角,若a ∥b ,那么这八个角中与∠1相等的角共有 个(不含∠1).6、如果x 、y 互为相反数,满足()095322=++--x y a ,那么a = 。

7.把a 4-16分解因式是8.若x 2+kx +25是一个完全平方式,则k =9七⑴班学生42人去公园划船,共租用10艘船。

大船每艘可坐5人,小船每艘可坐3人,每艘船都坐满。

问大船、小船各租了多少艘?设坐大船的有x 人,坐小船的有y 人,由题意可得方程组为: .二:精心选一选:(只有一个答案正确,每题3分,共30分10.下列命题中的假命题是( ) A .两直线平行,内错角相等 B .两直线平行,同旁内角相等 C .同位角相等,两直线平行D .平行于同一条直线的两直线平行11.在下列多项式的乘法中,可用平方差公式计算的是( ) A .(2+a)(a +2)B .(21a +b)(b -21a) C .(-x +y)(y -x)D .(x 2+y)(x -y 2)A B CD 1a b c12、能把任意三角形分成面积相等的两个三角形的线段是这个三角形的一条( ) A 、角平分线 B 、中线 C 、高线 D 、既垂直又平分的线段13、如右上图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全 一样的玻璃,那么最省事的办法是( )(A )带①去 (B )带②去 (C )带③去 (D )带①和②去图3 图4 14.如图4,AB ∥ED ,则∠A +∠C +∠D =( ) A .180°B .270°C .360°D .540°15.下列方程组中,是二元一次方程组的是( )A 、⎩⎨⎧-=+=z y y x 312B 、⎩⎨⎧=+=712y x xyC 、⎩⎨⎧==43y xD 、⎪⎩⎪⎨⎧=-=+423211y x y x 16.不等式2(x -1)≥3x +4的解集是( )A .x <-6B .x ≤-6C .x >-6D .x ≥-6 17下列事件中,不确定事件是( )A 两直线平行,内错角相等;B 拔苗助长;C 掷一枚硬币,国徽的一面朝上;D 太阳每天早晨从东方升起。

最新北师大新版七年级下学期数学期末考试试卷(精品期末试卷含数学参考答案)

最新北师大新版七年级下学期数学期末考试试卷(精品期末试卷含数学参考答案)

2024—2025学年最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、纳米是一种长度单位,它用来表示微小的长度,1纳米为十亿分之一米,即10﹣9米.甲型H1N1流感病毒的直径大约83纳米左右,“83纳米”用科学记数法表示为()A.8.3×10﹣8米B.8.3×10﹣9米C.83×10﹣9米D.0.83×10﹣11米2、下列运算正确的是()A.a4+a3=a7B.(a﹣1)2=a2﹣1C.(a3b)2=a3b2D.a(2a+1)=2a2+a3、下列说法正确的是()A.10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大B.从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大C.小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件D.抛一枚质地均匀的硬币,正面朝上的概率为,连续抛此硬币2次必有1次正面朝上4、等腰三角形的两边长分别为4cm和9cm,则这个三角形的周长为()A.22cm B.17cm或13cmC.13cm D.17cm或22cm5、如图,在三角形ABC中,∠C=90°,AC=5,点P是边BC上的动点,则AP的长不可能是()A.4.8B.5C.6D.76、根据下列条件能画出唯一确定的△ABC的是()A.AB=4,BC=3,∠A=30°B.AB=3,BC=4,AC=8C.∠A=60°,∠B=45°,AB=4D.∠A=50°,∠B=60°,∠C=70°7、如图,AB∥DC,BC∥DE,∠B=145°,则∠D的度数为()A.25°B.35°C.45°D.55°8、七巧板是我国古代的一项发明,被誉为“东方魔板”,19世纪传到国外被称为“唐图”,它是由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成.如图,在七巧板铺成的正方形地板上,一个小球自由滚动,则小球停留在阴影部分的概率为()A.B.C.D.9、如果(x 2﹣px +1)(x 2+6x ﹣7)的展开式中不含x 2项,那么p 的值是( )A .1B .﹣1C .2D .﹣210、如图1,矩形ABCD 中,BD 为其对角线,一动点P 从D 出发,沿着D →B →C 的路径行进,过点P 作PQ ⊥CD ,垂足为Q .设点P 的运动路程为x ,PQ ﹣DQ 为y ,y 与x 的函数图象如图2,则AD 的长为( )A .B .C .D .二、填空题(每小题3分,满分18分)11、计算(﹣0.25)2024×(﹣4)2025的结果是 .12、若(x ﹣1)(x ﹣2)=x 2+mx +n ,则n m 的值为 .13、若x ﹣2y =2,则10x ÷100y = .14、如图,在锐角三角形ABC 中,AD 是边BC 上的高,在BA ,BC 上分别截取线段BE ,BF ,使BE =BF ;分别以点E ,F 为圆心,大于EF 的长为半径画弧,在∠ABC 内,两弧交于点P ,作射线BP ,交AD 于点M ,过点M 作MN ⊥AB 于点N .若MN =2,AD =4MD ,则AM = ,15、如图,△ABC 中,AB =AC =4,P 是BC 上任意一点,过P 作PD ⊥AC 于D ,PE ⊥AB 于E ,若S △ABC =12,则PE +PD = .16、如图,点C ,D 分别是边∠AOB 两边OA 、OB 上的定点,∠AOB =20°,OC =OD =4.点E ,F 分别是边OB ,OA 上的动点,则CE +EF +FD 的最小值是 .第5题图 第7题图 第8题图 第16题图第15题图 第14题图2024—2025学年最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:;18、先化简,再求值:[(2a+b)2﹣(2a+b)(2a﹣b)]÷2b,其中a=2,b=﹣1.19、如图,点D、E分别是等边三角形ABC边BC、AC上的点,且BD=CE,BE与AD交于点F.求证:AD=BE.20、如图,EF∥CD,GD∥CA,∠1=140°.(1)求∠2的度数;(2)若DG平分∠CDB,求∠A的度数.21、如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,BE平分∠ABC交AC于点E,交CD于点F,过点E作EG∥CD,交AB于点G,连接CG.(1)求证:∠A+∠AEG=90°(2)求证:EC=EG;(3)若CG=4,BE=5,求四边形BCEG的面积.22、如图,长方形ABCD中,点P沿着四边按B→C→D→A方向运动,开始以每秒m个单位匀速运动,a秒后变为每秒2个单位匀速运动,b秒后恢复原速匀速运动.在运动过程中,△ABP的面积S与运动时间t的函数关系如图所示.(1)求长方形的长和宽;(2)求m、a、b的值;(3)当P点运动到BC中点时,有一动点Q从点C出发,以每秒1个单位的速度沿C→D→A运动,当一个点到达终点,另一个点也停止运动,设点Q运动的时间为x秒,△BPQ的面积为y,求y与x之间的关系式.23、如图①,点A、点B分别在直线EF和直线MN上,EF∥MN,∠ABN=45°,射线AC从射线AF的位置开始,绕点A以每秒2°的速度顺时针旋转,同时射线BD从射线BM的位置开始,绕点B以每秒6°的速度顺时针旋转,射线BD 旋转到BN的位置时,两者停止运动.设旋转时间为t秒.(1)∠BAF=°;(2)在转动过程中,当射线AC与射线BD所在直线的夹角为80°,求出t 的值.(3)在转动过程中,若射线AC与射线BD交于点H,过点H作HK⊥BD交直线AF于点K,的值是否会发生改变?如果不变,请求出这个定值;如果改变,请说明理由.24、对于任意有理数a、b、c、d,定义一种新运算:.(1)=;(2)对于有理数x、y,若是一个完全平方式,则k;(3)对于有理数x、y,若x+y=10,xy=22.①求的值;②将长方形ABCD和长方形CEFG按照如图方式进行放置,其中点B、C、G在同一条直线上,点E在边CD上,连接BD、BF.若AD=x,AB=nx,FG =y,EF=ny,图中阴影部分的面积为45,求n的值.25、△ABC中,∠ACB=90°,AC=BC,点D是BC边上的一个动点,连接AD 并延长,过点B作BF⊥AD延长线于点F.(1)如图1,若AD平分∠BAC,AD=6,求BF的值;(2)如图2,M是FB延长线上一点,连接AM,当AD平分∠MAC时,试探究AC、CD、AM之间的数量关系并说明理由;(3)如图3,连接CF,①求证:∠AFC=45°;②S△BCF =,S△ACF=21,求AF的值.2024—2025学年最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、﹣412、13、100 14、6 15、6 16、4三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、918、2a+b,3.19、略20、(1)40°(2)40°21、(1)证明略(2)证明略(3)1022、(1)长为8,宽为4(2)a=4,b=11,m=1(3)y=.23、(1)135(2)20或25(3)不变,=.24、(1)﹣4;(2)2或﹣2;(3)①56;②2.25、(1)3;(2)AM=AC+CD,理由略(3)①∠AFC=45°;②AF的值为12.。

2022-2023学年北师大新版七年级下册数学期末复习试卷(含解析)

2022-2023学年北师大新版七年级下册数学期末复习试卷(含解析)

2022-2023学年北师大新版七年级下册数学期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.生活垃圾处理是关系民生的基础性公益事业,加强生活垃圾管理,维护公共环境和节约资源是全社会公共的责任.2020年5月1日起北京将全面推行生活垃圾强制分类.下列四个垃圾分类标识中的图形是轴对称图形的是( )A.B.C.D.2.长度单位1纳米=10﹣9米,一种病毒直径为25100纳米,用科学记数法表示该病毒直径是( )A.2.51×105米B.2.51×10﹣4米C.2.51×10﹣5米D.2.51×10﹣6米3.下列计算正确的是( )A.x2+x3=x5B.x3÷x2=x(x≠0)C.x2•x3=x6D.(2x2)3=6x64.下列事件属于必然事件的是( )A.实数a<0,则2a<0B.我们班的同学将会有人成为航天员C.打开电视,正在播放新闻D.新疆的冬天不下雪5.长度分别为2,5,x的三条线段能组成一个三角形,x的值可以是( )A.1B.3C.5D.76.如图,下列推理中,不正确的是( )A.如果∠1=∠E,那么AC∥DEB.如果∠2=∠BAC,那么AB∥CDC.如果∠B+∠BAD=180°,那么AD∥BCD.如果∠E+∠ADE=180°,那么AC∥DE7.下列说法正确的是( )A.同一平面内,没有公共点的两条线段是平行线B.同一平面内,两条平行线只有一个公共点C.同一平面内,没有公共点的两条直线是平行线D.两条不相交的直线叫做平行线8.某农户要改造部分农田种植蔬菜,经调查,平均每亩改造费用是900元,添加辅助设备费用(元)与改造面积(亩)的平方成正比,比例系数为18,每亩种植蔬菜还需种子、人工费用600元,若每亩蔬菜年销售额为7000元,设改造农田x亩,改造当年收益为y 元,则y与x之间的数量关系可列式为( )A.y=7000x﹣(900x+18x+600x)B.y=7000x﹣(900x+18x2+600x)C.y=7000﹣(900x+18x2+600x)D.y=7000x﹣(900x+18x2+600)9.已知△ABC,按图示痕迹做△A'B'C',得到△ABC≌△A'B'C'.则在作图时,这两个三角形满足的条件是( )A.AB=A'B',AC=A'C'B.∠B=∠B',AB=A'B'C.∠A=∠A',∠B=∠B',∠C=∠C'D.AB=A'B',AC=A'C',BC=B'C'10.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB,垂足为E,下列结论:①CD=ED;②BD=CD;③AC+BE=AB;④S△BDE:S△ACD=BD:AC,其中正确的有( )A.①③B.①②③C.①③④D.①②③④二.填空题(共5小题,满分15分,每小题3分)11.已知x m=6,x n=2,则x m﹣n= .12.不透明的袋子里装有3个红球,2个白球,这些球除颜色外无其他差别,从袋子中随机摸出一个球,则摸出红球的概率是 .13.某下岗职工购进一批水果,到集贸市场零售,已知卖出的苹果数量x与售价y的关系如表所示:数量x(千克)12 3 45售价(元)2+0.14+0.26+0.38+0.410+0.5则y与x的关系式是 .14.如图,已知直线AB∥CD,点P在直线AB的上方的一点,∠ABP的平分线BH的反向延长线和∠CDP的补角的平分线相交于点E,则下列结论:①∠PDC=∠PDE;②∠PBH+∠PDE=∠E;③∠P+∠E=90°;④∠P+∠E=90°.其中一定正确的结论是 (填序号).15.如图,△ABC的面积是21,点D、E、F分别在边BC、AB、AC上,且AE=2,EB=4.若△ABD与四边形DFEB面积相等,则△ADC的面积= .三.解答题(共7小题,满分75分)16.计算(1)(﹣2x2)3+x2•x4﹣(﹣3x3)2;(2)(π﹣3)0﹣(﹣)﹣2+×(﹣1.5).17.(1)计算:(﹣a2)3﹣a2•a4+(﹣2a4)2÷a2;(2)先化简,再求值:3(2x2y﹣xy2)﹣(5x2y+2xy2),其中x=﹣1,y=2.18.如图所示,△ABC的顶点分别为A(1,2),B(4,1),C(3,4)(1)作出与△ABC关于y轴对称的图形△A1B1C1;(2)在x轴上找一点P,使PA+PB的值最小;(3)分别写出点B1和点P的坐标 , .19.江苏卫视《最强大脑》曾播出一期“辨脸识人”节目,参赛选手以家庭为单位,每组家庭由爸爸妈妈和宝宝3人组成,爸爸、妈妈和宝宝分散在三块区域,选手需在宝宝中选一个宝宝,然后分别在爸爸区域和妈妈区域中正确找出这个宝宝的父母,不考虑其他因素,仅从数学角度思考,已知在某分期比赛中有A、B、C三组家庭进行比赛:(1)选手选择A组家庭的宝宝,在妈妈区域中正确找出其妈妈的概率;(2)选手选择A组家庭的宝宝,通过列表或树状图的方法,求选手至少正确找对宝宝父母其中一人的概率.20.如图,点E在DF上,点B在AC上.若∠AGB=∠EHF,∠C=∠D,求证:DF∥AC.21.某地区一天的气温变化较大,如图表示该地区一天24小时的气温变化情况.①上图描述的两个变量中自变量是什么?因变量是什么?②一天中哪个时间气温最高或最低,分别是多少?③在什么时间范围内气温上升,什么时间范围内气温下降?④该地区一天的温差是多少?若该地区是一旅游景点,你应向该地旅游的游客提出怎样的合理化建议?22.(1)如图1中,∠A=90°,请用直尺和圆规作一条直线,把△ABC分割成两个等腰三角形(不写作法,但须保留作图痕迹).(2)已知内角度数的两个三角形如图2、图3所示.请你判断,能否分别画一条直线把它们分割成两个等腰三角形?若能,请画出直线,并标注底角的度数.(3)一个三角形有一内角为48°,如果经过其一个顶点作直线能把其分成两个等腰三角形,那么它的最大的内角可能值为 .参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意;故选:D.2.解:25100纳米=25100×10﹣9米=2.51×10﹣5米,故选:C.3.解:A、x2+x3,无法计算,故此选项错误;B、x3÷x2=x(x≠0),故此选项正确;C、x2•x3=x5,故此选项错误;D、(2x2)3=8x6,故此选项错误;故选:B.4.解:A、实数a<0,则2a<0,是必然事件;B、我们班的同学将会有人成为航天员,是随机事件;C、打开电视,正在播放新闻,是随机事件;D、新疆的冬天不下雪,是随机事件;故选:A.5.解:∵长度分别是2,5,x的三条线段能组成一个三角形,∴5﹣2<x<5+2,即3<x<7,∴x的值可以是5.故选:C.6.解:A、∵∠1=∠E,∴AC∥DE,说法正确,不符合题意;B、∵∠2=∠BAC,∴AB∥DC,说法正确,不符合题意;C、∵∠B+∠BAD=180°,∴AD∥BC,说法正确,不符合题意;D、由∠E+∠ADE=180°,∴AD∥BC,说法错误,符合题意;故选:D.7.解:A、在同一平面内,没有公共点的两条直线是平行线,故不符合题意;B、同一平面内,两条平行线没有公共点,故不符合题意;C、同一平面内,没有公共点的两条直线是平行线,正确,符合题意;D、在同一平面内,不相交的两条线段是平行线,不符合题意.故选:C.8.解:设改造农田x亩,则总成本为900x+18x2+600x,总销售额为7000x,∴可列方程为y=7000x﹣(900x+18x2+600x).故选:B.9.解:由作图可知,B′A′=BA,B′C′=BC,A′C′=AC,在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(SSS),故选:D.10.解:①正确,因为在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,所以CD=ED;②错误,因为在Rt△BDE中,DB>DE,所以DB≠CD;③正确,因为由HL可知△ADC≌△ADE,所以AC=AE,即AC+BE=AB;④错误,因为△ADC≌△ADE,所以△ADE和△ACD面积相等,高相等都是DE,所以S△BDE:S△ACD=BE:AC.故选:A.二.填空题(共5小题,满分15分,每小题3分)11.解:x m﹣n=x m÷x n=6÷2=3,故答案为:3.12.解:∵不透明的袋子里装有3个红球、2个白球,∴从袋子中随机摸出一个球,则摸出红球的概率是:=.故答案为:.13.解:易得1千克苹果的售价是2.1元,那么x千克的苹果的售价:y=2.1x,故答案为:y=2.1x.14.解:①∵DE平分∠PDF,∴∠ADE=∠EDF,当∠PDF=120°时,∠PCD=∠PDE=60°,当∠PDF≠120°时,∠PCD≠∠PDE,故①不正确;②过点E作EM∥AB,如下图,∵AB∥CD,∴AB∥ME∥CD,∴∠ABH=∠MEH,∠EDF=∠MED,∴∠ABH+∠EDF=∠MEH+∠MED=∠HED,∵BH平分∠ABP,DE平分∠PDF,∴∠ABH=∠PBH,∠EDF=∠PDE,∴∠PBH+∠PDE=∠DEH,故②正确;③过M作MN平分∠BMD,与DE交于点N,如下图,∵AB∥CD,∴∠BMD+∠MDF=180°,∴∠NMD+∠EDF=90°,∵∠P+∠PBA=∠BMD,∴∠P+∠PBA+∠MDF=180°,∴∠P+2(∠PBH+∠EDF)=180°,∵∠PBH+∠PDE=∠HED,∴∠P+2∠HED=180°,∵∠BMD>∠PBA,∴∠NMD>∠PBH,∴∠PBH+∠EDF<∠NMD+∠EDF,∴∠PBH+∠EDF<90°,∴∠HED<90°,∴∠P+2∠HED+∠HED<180°+90°,∴∠P+3∠HED<270°,∴∠P+∠HED<90°,故③错误;④∵∠P+2∠HED=180°,∴∠P+∠HED=90°,故④正确;故答案为:②④.15.解:如图,连接CE,设AD交EF于点G∵S△ABD=S四边形DFEB,∴S△AEG=S△DFG,∴S△AEG+S△AFG=S△DFG+S△AFG,∴S△AEF=S△ADF,设△ACE的边AC上的高为h1,∵S△AEF=•AF•h1,S△AEC=•AC•h1,设△ACD的边AC上的高为h2,∵S△ADF=•AF•h2,S△ADC=•AC•h2,∵S△AEF=S△ADF,∴h1=h2,∴S△AEC=S△ADC,∵AE=2,EB=4,∴S△AEC=S△BEC=S△ABC,∵S△ABC=21,∴S△AEC=7,∴S△ADC=7.故答案为:7.三.解答题(共7小题,满分75分)16.解:(1)(﹣2x2)3+x2•x4﹣(﹣3x3)2=﹣8x6+x6﹣9x6=﹣16x6;(2)(π﹣3)0﹣(﹣)﹣2+×(﹣1.5)=1﹣4﹣1=﹣4.17.解:(1)(﹣a2)3﹣a2•a4+(﹣2a4)2÷a2=﹣a6﹣a6+4a8÷a2=﹣a6﹣a6+4a6=2a6;(2)3(2x2y﹣xy2)﹣(5x2y+2xy2)=6x2y﹣3xy2﹣x2y﹣xy2=x2y﹣4xy2,当x=﹣1,y=2时,原式=×(﹣1)2×2﹣4×(﹣1)×22=7+16=23.18.解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,作点A关于x轴的对称点A',连接A'B,交x轴于P,则PA+PB的值最小;(3)点B1和点P的坐标分别为(﹣4,1),(3,0).故答案为:(﹣4,1),(3,0).19.解:(1)∵3组家庭都由爸爸、妈妈和宝宝3人组成,∴选手选择A组家庭的宝宝,在妈妈区域中正确找出其妈妈的概率;(2)设三个爸爸分别为A,B,C,对应的三个妈妈分别为A′,B′,C′,对应的三个宝宝分别为A″,B″,C″,以A″为例画树形图得:,由树形图可知任选一个宝宝,最少正确找对父母其中一人的情况有5种,所以其概率=.20.证明:∵∠AGB=∠EHF,∠AGB=∠DGF,∴∠EHF=∠DGF,∴DB∥EC,∴∠C=∠DBA,又∵∠C=∠D,∴∠DBA=∠D,∴DF∥AC.21.解:①图象反映了气温变化和时间之间的关系,其中时间是自变量,气温是因变量;②一天中0时和24时的气温最低,是5℃;15时的气温最高,是40℃;③在0≤t<6和9≤t<15时,气温上升;在6≤t<9和15≤t<24时,气温下降;④该地区一天的温差是:40﹣5=35(℃).该地区的一天内的气温变化比较大,建议旅客选择6~12时外出观光.22.解:(1)如图,作BC的垂直平分线交BC于E,连接AE,则直线AE即为所求;(2)如图:(3)根据(1)(2)中三个角之间的关系可知:当三角形是直角三角形时,肯定可以分割成两个等腰三角形,此时最大角为90°;当一个角是另一个三倍时,也肯定可以分割成两个等腰三角形,此时最大角为99°;如图3,此时最大角为108°.当最大内角为88°或116°时,如图,综上所述:最大角为108°或90°或99°或88°或116°,故答案为:108°或90°或99°或88°或116°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级《下》数学复习试卷一一、 填空题(每题2分,共20分)1、用科学记数法表示—0.0000020得 .。

2、-2的倒数是 ,绝对值最小的有理数是 。

3、计算:a 2aa 1⨯÷= 。

4、等腰三角形一边长为8,另一边长为5,则此三角形的周长为 。

5、单项式—2343y x 的系数是 ,次数是 。

6、把两地之间的弯曲河道改直的几何原理是 。

7、从同班学生小明、小颖、小华三人中任选一人参加学生会,而小华没有被选中的概率是 。

8、如图1,已知AB ∥CE ,∠C=30°,BC 平分∠ABD ,则∠BDC= 。

9、圆的面积S 与半径R 之间的关系式是S=2R π,其中自变量是 。

10、如图2,已知,AE ∥BD ,若 要用“角边角”判定ΔAEC ≌ΔDCE , 则需添加的一组平行线是 。

二、选择题(每题3分,共30分) (图1) (图2)11、下列各式不能成立的是( )。

A 、(x 32)=x 6 B 、x 532x x =⋅C 、(x xy y x y 4)()22-+=- D 、x 1)(22-=-÷x12、以下列各组线段能组成三角形的是( )。

A 、1厘米,2厘米,4厘米B 、8厘米,6厘米,4厘米C 、12厘米,5厘米,6厘米D 、2厘米,3厘米,6厘米 13、从平面镜里看到背后墙上电子钟的示数如图所示,这时的正确时间是( )。

A 、21:05 B 、21:15 C 、20:15 D 、20:12 14、近似数12.30万精确到( )。

A 、十分位B 、百分位C 、百位D 、千位 15、下列图形中,不是轴对称的有( )个。

①圆 ②矩形 ○3正方形 ○4等腰梯形 ○5直线 ○6直角三角形 ○7等腰三角形。

_D _ C_ B_ E_ D_ C_ B _ AA、1B、2C、3D、416、若x2+mx+9是一个完全平方式,那么m的值是()。

A、9 B、±18 C、6D、6±17、在同一平面内,如果两条直线被第三条直线所截,那么:()。

A、同位角相等B、内错角相等C、不能确定三种角的关系D、同旁内角互补18、如图3,若AB∥CE,需要的条件是()。

A、∠B=∠ACEB、∠A=∠ACE(图3)C、∠B=ACBD、∠A=∠ECD19、足球守门员很想为自己的球队建立攻勋,一脚提出去的球的高度(h)与时间(t)的关系,可用下图中的()来刻画。

A B C D20、如图:AB=A'B',∠A=∠A',若ΔABC≌ΔA'B'C',则还需添加的一个条件有( )种.C’B’CBA、1B、2C、3D、4三、解答题(共50分第21、22、25各4分,第26、28、29各6分,其余各题均5分)21、计算:(1211200622332141)()()()-⨯+----22、化简:(—2+x)2 _o_o_o_o_t_t_t_E_D_C_B_A23、化简:(—2x+y )(—y —2x ) 24、若:31=+a a ,求212aa +的值。

25、若my x 231与212y x n -可以合并成一个项,求2)(n m n m -+-的值。

26、一辆小车由静止开始从光滑的斜面上向下滑动,通过观察记录小车滑动的距离S (m )与时间t (s )的数据如下表:时间t(s) 1 2 3 4距离s(m)2 8 18 32 ……⑴写出这一变化过程中的自变量,因变量。

⑵写出用t 表示s 的关系式。

27、如图,已知,AB ∥CD ,∠1=∠2,BE 与CF 平行吗?为什么21FE DCB A28、如图,已知:AB ⊥BE ,EF ⊥BE ,AC=ED ,BD=EC ,问:∠A 等于∠E 吗?为什么?_ D_ E _ C_ B_ A_ F29、如图,把一个面积为1的正方形分成两个面积为21的长方形,再把其中一个面积为21的长方形分成两个面积为41的正方形,再把其中一个面积为41的正方形分成两个面积为81的长方形,如此进行下去,用图形揭示的规律计算:(1)计算;321161814121++++ (2)计算:25611281641321161814121++++++++……+n 2130、如图,直线a 是一个轴对称图形的对称轴,画出这个轴对称图形的另一半,并说明这个轴对称图形是一个什么图形,它一共有几条对称轴。

(不写作法,保留作图痕)A BPC31题 图31. 河的一旁有两个村子A 、B, 要在河边建一水泵站引水到村里.一村民画了 一张图, 以直线l 表示一条河, 在河的另一边作A 的对称点C ,连接BC 得与l 的交点P ,那么P 到A 、B 的距离和总比l 上其它点到A 、B 的距离和短,你能说出其中的道理吗?a l北师大版数学七年级下册期中考试检测试题 2008-2009学年度七(下)期中测试卷 数学 一、精心选一选(本大题共10小题,每小题3分,共30分) 1.下列语句不是命题的是() A、两直线平行,内错角相等B、小红是龙城三中初一(3)班的学生 C、邻补角互补D、点到直线的距离2.两直线相交所成的四个角分别分满足下列条件之一,其中不能判定这两直线垂直的条件是() A、两对对顶角分别相等B、有一对对顶角互补C、有一对邻补角相等D、有三个角相等3.如图是“福娃欢欢”的五幅图案,②、③、④、⑤哪一个图案可以通过平移图案①得到() A、② B、③ C、④ D、⑤4.下列各图中,正确画出AC边上的高的是() A、① B、② C、③ D、④ 5.若平面镶嵌的地砖的一个顶点处由6块相同的正多边形组成,则此正多边形只能是() A、正方形B、正三角形C、正五边形D、正六边形6.不是利用三角形稳定性的是() A、自行车的三角形车架B、三角形的房架 C、照相机的三角架D、长方形门框的斜拉条7.右图,点E在AC延长线上,下列条件中能判断AB‖CD () A、∠3=∠4 B、∠1=∠2 C、∠D=∠DCE D、∠D+∠ACD=180°8.在平面直角坐标系中,依次描出下列各点, 并将各组内的点依次连接起来:(1)(2,1),(2,0), (3,0),(3,4);(2)(3,6),(0,4),(6,4),(3,6)。

你发现所得的图形 是() A、两个三角形B、房子C、雨伞D、电灯9.△ABC中,三边长分别为5,8,x,则x的取值范围为() A、3<x<13 B、5<x <8 C、4<x<12 D、不能确定10.10.如果P(m+3,2m+4)在y轴上,那么m=( ) A. 0 B. –3 C. -2 D. 2二、细心填一填(本大题共8小题,每小题3分,共24分) 11.已知多边形的内角和为540°,则该多边形的边数为__________。

12.将点Q(-2,3)向左平移1个单位长度,再向下平移2个单位长度得到点Q′,则点Q′的坐标为__________。

13.若有两条线段的长度分别是1cm,10cm,请你写出一个第三条线段的长度__________cm,使这三条线段能组成一个三角形。

14.若P在第二象限,且到x轴的距离为3,到y轴的距离为4,则点P的坐标为__________。

15.把一副三角板按如图方式放置,则两条斜边所形成的钝角__________。

16.有一个英文单词的字母顺序对应如右图中的有序数对分别为 (5,3),(6,3),(7,3),(4,1),(4,4),请你把这个英文单词写出来或者翻译成中文为____________________。

17.如图,直角ABC的周长为2008,在其内部有五 个小直角三角形,则这五个小直角三角形的周长为_____。

18.五子棋和象棋、围棋一样,深受广大棋友的喜爱,其 规则是:15×15的正方形棋盘中,由黑方先行,轮流弈子, 在任一方向上连成五子者为胜。

如右图是两个五子棋爱好 者甲和乙的对弈图;(甲执黑子先行,乙执白子后走),观 察棋盘思考:若A点的位置记做(8,4),甲必须(6在__________位置上落子,才不会让乙马上获胜。

三、解答下列各题(共计66分) 19.分)2007年是“金猪年”.下面的方格纸中,画出了一个“小金猪”的图案,将“小金猪”向右平移13格,请在方格纸中作出“小金猪”平移后的图案 20.(7分)如右图,已知直线a‖b,∠2=140°,求∠1的度数。

21.(7分)如右图,∠1=30°,∠B =60°,AB⊥AC。

(1)∠DAB+∠B等于多少度? (2)试说明AD‖BC。

22.(8分)如下图,AD是△ABC的BC边上的高,AE是∠BAC的角平分线,若∠B=47°,∠C=73°,求∠DAE的度数。

23.(8分)如图,∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95° (1)求∠DCA的度数; (2)求∠FEA的度数。

24.(9分)如图,直线DE交△ABC的边AB、AC于D、E,交BC延长线于F,若∠B=67°,∠ACB=74°,∠AED=48°求∠BDF的度数. 25.(本题9分)如图,一轮船由B处向C处航行,在B处测得C处在B的北偏东75°方向上,在海岛上的观察所A测得B在A的南偏西30°方向上,C在A的南偏东25°方向。

若轮船行驶到C处,那么从C处看A,B两处的视角∠ACB是多少度? 26.(本题12分)如图,AD为△ABC的中线,BE为△ABD的中线。

(1)∠ABE=15°,∠BAD=40°,求∠BED的度数; (2)在△BED中作BD边上的高; (3)若△ABC的面积为40,BD=5,则点E到BC边的距离为多少?。

相关文档
最新文档