初中毕业生学业考试数学卷1

合集下载

房山区2023年初中学业水平考试模拟测试(一)数学试题

房山区2023年初中学业水平考试模拟测试(一)数学试题

房山区2023年初中学业水平考试模拟测试(一)九 年 级 数 学本试卷共8页,共100分,考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将答题卡交回,试卷自行保存。

一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.如图是某几何体的展开图,该几何体是 (A )长方体 (B )四棱锥(C )三棱柱(D )正方体2.中国立足本国国情、粮情,实施新时期国家粮食安全战略,走出了一条中国特色粮食安全之路. 2022年我国全年粮食产量68653万吨,比上年增加368万吨,增产0.5% . 将686 530 000用科学记数法表示应为 (A )68653×104(B )0.68653×109 (C ) 6.8653×108 (D )6.9×1083.如图是由射线AB ,BC ,CD ,DE ,EF ,FA 组成 的平面图形,则123456∠+∠+∠+∠+∠+∠的值 为(A )180° (B )360° (C )540°(D )720°4.实数a 、b 在数轴上的对应点的位置如图所示, 实数c 满足0+=a c ,下列结论中正确的是 (A )>b c (B )| a | > b (C )0<bc(D )| c | > | a |5.直尺和三角板如图摆放,∠1 = 50°,则∠2的度数为 (A )30° (B )40° (C )45°(D )50°6.下列图形中,直线l 为该图形的对称轴的是(A ) (B ) (C ) (D )12ll l l l ll l F EDCB A6543217.同时抛掷面值为1角,5角,1元的三枚质地均匀的硬币,则三枚硬币都正面向上的概率是 (A )31 (B )41 (C )61 (D )81 8.如图8-1,在边长为4的等边△ABC 中,点D 在BC 边上,设BD 的长度为自变量x ,以下哪个量作为因变量y ,使得x ,y 符合如图8-2所示的函数关系(A )△ABD 的面积(B )△ABD 的周长 (C )△ACD 的面积(D )△ACD 的周长二、填空题(共16分,每题2分)9x 的取值范围是 . 10.分解因式:22ax ax a -+= .11.计算:22a b a b b a+--= . 12.在平面直角坐标系xOy 中,若点A (1,m ),B (3,n )在反比例函数xky(k<0)的图象上,则m n (填“>”“=”或“<”) 13.如图,△ABC 中,CD 平分∠ACB ,DE ∥AC 交BC于点E .若AC = 5,DE = 3,则BE = .图8-1 图8-2EDCBADCBA14.关于x 的一元二次方程240++=ax x c 有两个相等的实数根,写出一组满足条件的实数a ,c 的值:a = ,c = .15.某校要在张平和李波两位跳远成绩优秀的同学中选择一位同学代表学校参加区春季运动会. 体育老师对两位同学近10次的测试数据进行了统计,发现其平均数都是5.72米,并将两位同学的测试数据制成了折线图. 如果要选出一名发挥相对稳定的同学参赛,则应该选择 (填“张平”或“李波”).16.为进一步深化“创城创卫”工作,传播健康环保的生活理念,房山区持续推进垃圾分类工作. 各乡镇(街道)的党员、志愿者纷纷参与“桶前值守”,在垃圾桶旁监督指导居民对垃圾进行分类. 某垃圾值守点有甲、乙、丙、丁四名志愿者,某一天每人可参与值守时间段如下表所示:已知每名志愿者一天至少要参加一个时间段的值守,任意时刻垃圾值守点同时最多需要2名志愿者值守,则该值守点这一天所有参与值守的志愿者的累计值守时间最短为_______小时,最长为_______小时(假设志愿者只要参与值守,就一定把相应时间段全部值完).三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分) 解答应写出文字说明、演算步骤或证明过程.17.计算:()04sin6043--+π-./18.解不等式组:4123,54.3-<+⎧⎪-⎨>⎪⎩x x x x19.已知2430+-=a a ,求代数式2(2)(3)+++a a a 的值.20.下面是证明等腰三角形性质定理“三线合一”的三种方法,选择其中一种完成证明.21.如图,ABCD 中,对角线AC 、BD 交于点O ,在BD 上截取OE = OF = OA. (1)求证:四边形AECF 是矩形;(2)若AE = AF ,求证:AC 平分∠BAD .22.在平面直角坐标系xOy 中,点A (1,a )在直线l 1:=+30()y kx k k >上,直线l 2:y = x +m 过点B (2,3).(1)求a 的值及直线l 2的表达式;(2)当x >-1时,对于x 的每一个值,函数=+30y kx k k >()的值大于函数y = x +m 的值,直接写出k 的取值范围.23.如图,△ABC 中,AB = AC ,以BC 为直径作⊙O ,与边AC 交于点D ,过点D 的⊙O 的切线交BC的延长线于点E .(1)求证:∠BAC = 2∠DBC ; (2)若cos ∠BAC =53,DE = 4,求BE 的长.24.2023年国际数学日的主题是“给每一个人的数学”. 在数学日当天,甲、乙两所学校联合举办九年级数学知识竞赛. 为了解两校学生的答题情况,从中各随机抽取20名学生的得分,并对这些数据进行整理、描述和分析,下面给出部分信息. a .两校学生得分的数据的频数分布直方图如下:(数据分成4组:20≤x <40,40≤x <60,60≤x <80,80≤x ≤100)乙校20名学生得分频数分布直方图Bb .其中乙校学生得分在60≤x <80这一组的数据如下:68 68 69 73 74 74 76 76 77 78 79 c .两组样本数据的平均数、中位数如下表所示:学校 平均数 中位数 甲校 68.25 69 乙校67.65m根据所给信息,解答下列问题:(1)写出表中m 的值:m = ;(2)一名学生的成绩为70分,在他所在的学校,他的成绩超过了一半以上被抽取的学生,他是 (填“甲校”或“乙校”)学生;(3)在这次数学知识竞赛中,你认为哪个学校的学生表现较好,为什么?25.如图25-1,某公园在入园处搭建了一道“气球拱门”,拱门两端落在地面上. 若将拱门看作抛物线的一部分,建立如图25-2所示的平面直角坐标系. 拱门上的点距地面的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2=+0()(<)y a x h k a .图25-1 图25-2(1)拱门上的点的水平距离x 与竖直高度y 的几组数据如下:根据上述数据,直接写出“门高”(拱门的最高点到地面的距离),并求出拱门上的点满足的函数关系2=+0()(<)y a x h k a .(2) 一段时间后,公园重新维修拱门. 新拱门上的点距地面的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系y =-0.288(x -5)2+7.2,若记“原拱门”的跨度(跨度为拱门底部两个端点间的距离)为d 1,“新拱门”的跨度为d 2,则d 1 d 2(填“>”“=”或“<”).水平距离x/m23681012竖直高度y/m 4 5.4 7.2 6.4 4 0 竖直高度y /m水平距离x /mO竖直高度y /m水平距离x /mO26.已知抛物线22=-+y x ax b 经过点(1,1).(1)用含a 的式子表示b 及抛物线的顶点坐标;(2)若对于任意1-a ≤x ≤2+a ,都有y ≤1,求a 的取值范围.27.如图,正方形ABCD 中,点E 是边BC 上的一点,连接AE ,将射线AE 绕点A 逆时针旋转90°交CD 的延长线于点F ,连接EF ,取EF 中点G ,连接DG .(1)依题意补全图形;用等式表示∠ADG 与∠CDG 的数量关系,并证明; (2)若DG,用等式表示线段BC 与BE 的数量关系,并证明.28.在平面直角坐标系xOy 中,对于直线l :y = kx +b (k ≠ 0)和点P ,给出如下定义:将点P 向右(k > 0)或向左(k < 0)平移 | k | 个单位长度,再向上(b ≥0)或向下(b < 0)平移 | b | 个单位长度,得到点P'l 的“平移对称点”.(1)如图,已知直线l 为1=-y x .①点A 坐标为(1,2),则点A 关于直线l 对称点”坐标为 ;②在直线l 上是否存在点B ,使得点B “平移对称点”还在直线l 坐标,若不存在请说明理由.(2)已知直线m :y =-x +b ,若以点T (t ,0)为圆心,1为半径的圆上存在一点P ,使得点P关于直线m 的“平移对称点”在直线m 上,直接写出t 的取值范围.A BCD E。

初中毕业生学业考试(试考)数学试卷及答案

初中毕业生学业考试(试考)数学试卷及答案

九年级生学业考试(试考)数 学一、选择题(每小题3分,共24分) 1、下列各数中,在1与2之间的数是 A .-1B .3C .37 D .32、下列运算正确的是 A .632a a a =⋅ B .532)(a a = C .a a a 532=+D .23a a a =-3、正视图、左视图和俯视图完全相同的几何体是4、如图,阴影部分的面积是 A .xy 27 B .xy 29 C .xy 4 D .xy 25、如图,等腰梯形ABCD 中,AD ∥BC ,若将腰AB 沿A →D 的方向平移到DE 的位置,则图中与∠C 相等的角(不包括∠C )有 A .1个 B .2个 C .3个 D .4个6、若一组数据1,2,3,x 的极差为6,则x 的值是 A .7 B .8 C .9 D .7或-37、如图,任意四边形ABCD 各边中点分别是E 、F 、G 、H ,若对角线AC 、BD 的长都为20cm ,则四边形EFGH 的周长是 A .80cm B .40cm C .20cm D .10cm8、如图,在正方形网格上,若使△ABC ∽△PBD ,则点P 应在 A .P 1处 B .P 2处 C .P 3处 D .P 4处二、填空题(每小题3分,共18分) 9、计算:54-= _____________。

10、不等式组⎪⎩⎪⎨⎧-+≥-12312152>x ,x x 的解集是_____________________。

11、甲、乙两个水桶内水面的高度y (cm )与放水(或注水)的时间x (分)之间的函数图象如图所示,当两个水桶内水面高度相同时,x 约为____________分。

(精确到0.1分) 12、将一矩形纸条,按如图所示折叠,则∠1 = ________________________度。

13、晓明玩转盘游戏,当他转动如图所示的转盘,转盘停止时指针指向2的概率是_________。

14、如图,直线l 与双曲线交于A 、C 两点,将直线l 绕点O 顺时针旋转α度角(0°<α≤45°),与双曲线交于B 、D 两点,则四边形ABCD 的形状一定是_________________形。

天津市2019年中考数学真题试题(含解析)(1)

天津市2019年中考数学真题试题(含解析)(1)

2019年天津市初中毕业生学生考试试卷数学试卷满分120分,考试时间100分钟。

第I 卷一、选择题目(本大题12小题,每小题3分,共36分)1.计算(-3)×9的结果等于A. -27B. -6C. 27D. 6 【答案】A【解析】有理数的乘法运算:=-3×9=-27,故选A. 2.︒60sin 2的值等于A. 1B. 2C. 3D. 2 【答案】B【解析】锐角三角函数计算,︒60sin 2=2×23=3,故选A. 3.据2019年3月21日《天津日报》报道:“伟大的变革---庆祝改革开放四十周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次,将4230000用科学记数法表示为A. 0.423×107B.4.23×106C.42.3×105D.423×104【答案】B【解析】科学记数法表示为4.23×106,故选B.4.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看做是轴对称图形的是【答案】A【解析】美、丽、校、园四个汉子中,“美”可以看做轴对称图形。

故选A 5.右图是一个由6个相同的正方体组成的立体图形,它的主视图是【答案】B【解析】图中的立体图形主视图为,故选B.6.估计33的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间 【答案】D 【解析】因为,所以,故选D.7.计算1212+++a a a 的结果是 A. 2 B. 22+a C. 1 D.14+a a【答案】A 【解析】21221212=++=+++a a a a a ,故选A. 8.如图,四边形ABCD 为菱形,A 、B 两点的坐标分别是(2,0),(0,1),点C 、D 在坐标轴上,则菱形ABCD 的周长等于A.5B.34C.54D. 20【答案】C【解析】由勾股定理可得,由菱形性质可得, 所以周长等于故选C. 9.方程组⎩⎨⎧=-=+1126723y x y x ,的解是A.⎩⎨⎧=-=51y xB.⎩⎨⎧==21y xC.⎩⎨⎧==1-3y xD.⎪⎩⎪⎨⎧==212y x【答案】D【解析】用加减消元法,⎩⎨⎧=-=+②①1126723y x y x①+②=1172623+=-++y x y x189=x 2=x代入2=x 到①中,726=+y 则21=y ,故选D. 10.若点A (-3,1y ),B (-2,2y ),C (1,3y )都在反比函数xy 12-=的图象上,则321,,y y y 的关系 A. 312y y y << B.213y y y << C.321y y y << D.123y y y << 【答案】B【解析】将A (-3,1y ),B (-2,2y ),C (1,3y )代入反比函数xy 12-=中,得:12-112,6212,4312321=-==--==--=y y y ,所以213y y y <<,故选B. 11.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是A.AC=ADB.AB ⊥EBC. BC=DED.∠A=∠EBC【答案】D【解析】由旋转性质可知,AC=CD ,AC ≠AD ,∴A 错 由旋转性质可知,BC=EC ,BC ≠DE ,∴C 错由旋转性质可知,∠ACB=∠DCE ,∵∠ACB=∠ACD+∠DCB ,∠DCE=∠ECB+∠DCB ∴∠ACD=∠ECB ,∵AC=CD ,BC=CE ,∴∠A=∠CDA=21(180°-∠ECB ),∠EBC=∠CEB=21(180°-∠ECB ), ∴D 正确,由于由题意无法得到∠ABE=90°,∴B 选项错误. 故选D 。

初中学业水平考试数学试卷-附带答案

初中学业水平考试数学试卷-附带答案

初中学业水平考试数学试卷-附带答案1.本场考试时间100分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,请在答题纸指定位置填写姓名、报名号、座位号.井将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题. 一、选择题(每题4分,共24分) 1.如果x y >,那么下列正确的是( )A.55x y +<+B.55x y -<-C.55x y >D.55x y ->-2.函数2()3xf x x -=-的定义域是( ) A.2x =B.2x ≠C.3x =D.3x ≠3.以下一元二次方程有两个相等实数根的是( ) A.260x x -=B.290x -=C.2660x x -+=D.2690x x -+=4.科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的A.甲种类B.乙种类C.丙种类D.丁种类5.四边形ABCD 为矩形,过A 、C 作对角线BD 的垂线,过B 、D 作对角线AC 的垂线.如果四个垂线拼成一个四边形,那这个四边形为( ) A.菱形B.矩形C.直角梯形D.等腰梯形6.在ABC △中,AC=3,BC=4,AB=5,点P 在ABC 内,分别以ABP 为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( ) A.内含B.相交C.外切D.相离二、填空题(每题4分,共48分)7.计算:()324x=___________.8.计算:()()a b b a +-=___________.9.1=,则x =___________.10.科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的___________倍.(用科学计数法表示)11.若正比例函数y kx =的图像经过点(7,13)-,则y 的值随x 的增大而___________.(选填“增大”或“减小”)12.在菱形ABCD 中66ABC ∠=︒,则BAC ∠=___________.13.某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元.则投入80万元时,销售量为___________万元.14.一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有___________个绿球.15.如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a =,BE b =若2AE EC =,则DC =___________(结果用含a ,b 的式子表示).16.博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种)。

2023黄石中考数学试题

2023黄石中考数学试题

黄石市2023年初中毕业生学业水平考试数学试题卷一、选择题:本题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.实数a 与b 在数轴上的位置如图所示,则它们的大小关系是()A .a b> B.a b = C.a b< D.无法确定2.下列图案中,()是中心对称图形A. B. C. D.3.下列运算正确的是()A.224326x x x += B.()32626x x -=- C.326x x x ⋅= D.2322–623x y x y y÷=-4.如图,根据三视图,它是由()个正方体组合而成的几何体A.3B.4C.5D.65.函数1y x =-的自变量x 的取值范围是()A.0x ≥ B.1x ≠ C.0x ≥且1x ≠ D.1x >6.我市某中学开展“经典诵读”比赛活动,8个班在此次比赛中的得分分别是:9.19.89.19.29.99.19.99.1,,,,,,,,这组数据的众数和中位数分别是()A.9.19.1, B.9.19.15, C.9.19.2, D.9.99.2,7.如图,已知点()()1,0,4,A B m ,若将线段AB 平移至CD ,其中点()()2,1,,C D a n -,则m n -的值为()A.3- B.1- C.1 D.38.如图,在ABC 中,按以下步骤作图:①分别以点B ,C 为圆心,大于12BC 的长为半径画弧,两弧相交于E ,F 两点,EF 和BC 交于点O ;②以点A 为圆心,AC 长为半径画弧,交AB 于点D ;③分别以点D ,C 为圆心,大于12CD 的长为半径画弧,两弧相交于点M ﹐连接AM AM ,和CD 交于点N ,连接ON 若9,5AB AC ==,则ON 的长为()A.2B.52C.4D.929.如图,有一张矩形纸片ABCD .先对折矩形ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平.再一次折叠纸片,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM ﹐同时得到线段BN ,MN .观察所得的线段,若1AE =,则MN =()A.2B.1C.3D.210.已知二次函数2(0)y ax bx c a =++≠的图像经过三点()()()1122,,,,3,0A x y B x y C -,且对称轴为直线=1x -.有以下结论:①0a b c ++=;②230c b +=;③当121x -<<-,201x <<时,有12y y <;④对于任何实数0k >,关于x 的方程()21ax bx c k x ++=+必有两个不相等的实数根.其中结论正确的有()A.1个B.2个C.3个D.4个二、填空题:本题共8小题,第11~14小题每题3分,第15~18小题每题4分,共28分11.因式分解:()()141x y y -+-=________.12.计算:(2112cos 603-⎛⎫-+--︒= ⎪⎝⎭________.13.据《人民日报》(2023年5月9日)报道,我国海洋经济复苏态势强劲,在建和新开工的海上风电项目建设总规模约为18000000千瓦,比上年同期翻一番其中18000000用科学记数法表示为___________.14.“神舟”十四号载人飞行任务是中国空间站建造阶段的首次载人飞行任务,也是空间站在轨建造以来情况最复杂、技术难度最高、航天员乘组工作量最大的一次载人飞行任务.如图,当“神舟”十四号运行到地球表面P 点的正上方的F 点处时,从点F 能直接看到的地球表面最远的点记为Q 点,已知6400km 9PF ≈,20,cos 200.9FOQ ∠=︒︒≈,则圆心角POQ ∠所对的弧长约为_____km (结果保留π).15.如图,某飞机于空中A 处探测到某地面目标在点B 处,此时飞行高度1200AC =米,从飞机上看到点B 的俯角为37︒飞机保持飞行高度不变,且与地面目标分别在两条平行直线上同向运动.当飞机飞行943米到达点D 时,地面目标此时运动到点E 处,从点E 看到点D 的仰角为47.4︒,则地面目标运动的距离BE 约为_______米.(参考数据:310tan 37,tan 47.449︒≈︒≈)16.若实数a 使关于x 的不等式组213x x a -<-<⎧⎨->⎩的解集为14x -<<,则实数a 的取值范围为_________.17.如图,点5,A a a ⎛⎫ ⎪⎝⎭和5,B b b ⎛⎫⎪⎝⎭在反比例函数()0k y k x =>的图象上,其中0a b >>.过点A 作AC x ⊥轴于点C ,则AOC 的面积为_______;若AOB 的面积为154,则ab=_______.18.如图,将ABCD Y 绕点A 逆时针旋转到A B C D '''' 的位置,使点B '落在BC 上,B C ''与CD 交于点E 若33,4,2AB AD BB '===,则BAB '∠=_________(从“1,2,3行”中选择一个符合要求的填空);DE =________.三、解答题:本题共7小题,共62分.解答应写出必要的文字说明、证明过程或演算步骤.19.先化简,再求值:22221369m m m m -⎛⎫+÷⎪--+⎝⎭,然后从1,2,3,4中选择一个合适的数代入求值.20.如图,正方形ABCD 中,点M ,N 分别在AB ,BC 上,且BM CN =,AN 与DM 相交于点P .(1)求证:ABN ≌DAM ;(2)求APM ∠的大小.21.健康医疗大数据蕴藏了丰富的居民健康状况、卫生服务利用等海量信息,是人民健康保障的数据金矿和证据源泉.目前,体质健康测试已成为中学生的必测项目之一.某校某班学生针对该班体质健康测试数据开展调查活动,先收集本班学生八年级的《体质健康标准登记表》,再算出每位学生的最后得分,最后得分记为x ,得到下表成绩频数频率不及格(059x ≤≤)6及格(6074x ≤≤)20%良好(7589x ≤≤)1840%优秀(90100x ≤≤)12(1)请求出该班总人数;(2)该班有三名学生的最后得分分别是68,88,91,将他们的成绩随机填入表格□□□,求恰好得到的表格是88,91,68的概率;(3)设该班学生的最后得分落在不及格,及格,良好,优秀范围内的平均分分别为a ,b ﹐c ,d ,若23641275a b c d +++=,请求出该班全体学生最后得分的平均分,并估计该校八年级学生体质健康状况.22.关于x 的一元二次方程210x mx +-=,当1m =时,该方程的正根称为黄金分割数.宽与长的比是黄金分割数的矩形叫做黄金矩形,希腊的巴特农神庙采用的就是黄金矩形的设计;我国著名数学家华罗庚的优选法中也应用到了黄金分割数.(1)求黄金分割数;(2)已知实数a ,b 满足:221,24a ma b mb +=-=,且2b a ≠-,求ab 的值;(3)已知两个不相等的实数p ,q 满足:2211p np q q nq p +-=+-=,,求pq n -的值.23.某工厂计划从现在开始,在每个生产周期内生产并销售完某型号设备,该设备的生产成本为10万元/件.设第x 个生产周期设备的售价为z 万元/件,售价z 与x 之间的函数解析式是15,012,1220x z mx n x <≤⎧=⎨+<≤⎩,其中x 是正整数.当16x =时,14z =;当20x =时,13z =.(1)求m ,n 的值;(2)设第x 个生产周期生产并销售完设备的数量为y 件,且y 与x 满足关系式520y x =+.①当1220x <≤时,工厂第几个生产周期获得的利润最大?最大的利润是多少万元?②当020x <≤时,若有且只有3个生产周期的利润不小于a 万元,求实数a 的取值范围.24.如图,AB 为O 的直径,DA 和O 相交于点F ,AC 平分DAB ∠,点C 在O 上,且CD DA ⊥,AC 交BF 于点P .(1)求证:CD 是O 的切线;(2)求证:2AC PC BC ⋅=;(3)已知23BC FP DC =⋅,求A F A B的值.25.如图,在平面直角坐标系中,抛物线2y ax bx c =++与x 轴交于两点()()3,0,4,0A B -,与y 轴交于点()0,4C.(1)求此抛物线的解析式;(2)已知抛物线上有一点()00,P x y ,其中00y <,若90CAO ABP ∠+∠=︒,求0x 的值;(3)若点D ,E 分别是线段AC ,AB 上的动点,且2AE CD =,求2CE BD +的最小值.。

学业水平测试-数学试卷1及参考答案

学业水平测试-数学试卷1及参考答案

江苏省中等职业学校学业水平考试《数学》试卷(一)本试卷分第Ⅰ卷(必考题)和第Ⅱ卷(选考题)两部分.两卷满分100分,考试时间75分钟.第Ⅰ卷(必考题,共84分)一、选择题(本大题共12小题,每小题4分,共48分.每个小题列出的四个选项中,只有一项符合要求.)1.数集{}Z x x x ∈<≤-,32,用列举法可表示为 ( ) A .}3,2,1,0,1,2{-- B .}2,1,,1,2{-- C .{1,0,1,2,3}- D .}2,1,0,1,2{-- 2.若()=21f x x -,则()2f 等于 ( ) A .-1 B .1 C .3 D .53.若等比数列{}n a 中,14a =-,12q =,则4a 等于 ( ) A .21 B .41- C .21- D .2-4.已知(2,5)A -,(2,7)B -,则线段AB 的中点M 的坐标为 ( ) A .(-2,25) B .(-2,27) C .(-2,-1) D .(-2,6)5.某小组有3名女生,2名男生,现从这个小组中任意选出一名组长,则其中一名女生小丽当选为组长的概率是 ( )A .15 B .13 C .16D .566.球的直径为6,则其体积为 ( ) A .36π B .72π C .144π D .288π7.已知直线l 经过两个点(1,2)A ,(4,5)B ,则直线l 的斜率为 ( ) A .33B .1C .3D .-1 8.8名学生在一次数学测试中的成绩为80,82,79,69,74,78,x,81,这组成绩的平均数是77,则x 的值为 ( )A .73B .74C .75D .769.若等差数列{}n a 中,38a =,414a =,则13a 等于 ( )A .68B .74C .80D .86 10. 函数21-=xy 的定义域是 ( )A .),(+∞-∞B .()+∞,0C .[)∞+,0 D .(]0,∞- 11.设集合{}4≤=x x P ,集合{}a x x Q >=,若φ=Q P ,则实数a 的取值范围是 ( ) A .4<a B .4≤a C .4>a D .4≥a12.已知偶函数()x f 的图象经过()3,2,则函数的图象必经过另一点 ( )A .()32,B .()-23,C .()3-2-,D .()3-2, 二、填空题(本大题共2小题,每小题4分,共8分) 13.求值 0.3log 4.3= .(精确到0.0001) 14.圆柱的母线长和底面直径均为2,其表面积为 .三、解答题(本大题共3小题,共计28分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(满分8分)已知角α的终边经过点(5,12)P -,求sin α,cos α和tan α的值.16.(满分10分)比较下列各组中两个数(式)的大小:(1)222)(x - 与 4254x x --;(2)2log 10 与2log 5.17.(满分10分)已知向量(1,2)a =-,(3,1)b =-,求: (1)2a b +,2(3)a b -; (2)a b ⋅;(3)向量a 与向量b 夹角.第Ⅱ卷(选考题,共16分)说明:在每组题中选一题解答;若都解答,只按其中的一题给分.一、选择题(本大题共3小题,每小题4分,共12分.每题所给的四个选项中,只有一个选项符合要求.)1.[选做题]在1-1和1-2两题中选答一题.1—1.下列给出的赋值语句中正确的是 ( ) A .16x -= B .16x =- C .1x y += D .a b c ==1—2.做“紫菜鸡蛋汤”有以下几道工序:A .破蛋(1分钟);B .洗紫菜(2分钟);C .水中放入紫菜加热至沸腾(3分钟);D .沸腾后倒入鸡蛋加热(1分钟);E .搅蛋(1分钟).需要的最短时间是 ( )A .5B .6C .7D .8 2.[选做题]在2-1和2-2两题中选答一题.2—1.cos()cos sin()sin =αββαββ--- ( ) A .αcos B .βcos C .α2cos D .β2cos2—2.若1212a i bi +=-,则实数a ,b 的值分别为 ( )A .2,2-B .2-,2C .2-,2-D .2,2 3.[选做题]在3-1和3-2两题中选答一题.3—1.参数方程为参数)(t 221⎩⎨⎧+-=+=t y tx 表示的曲线是 ( ) A .圆 B .直线 C .抛物线 D .双曲线3—2.如图,三角形所围成的阴影部分为可行域,使得目标函数2z x y =+取得最小值的点是 ( )A .点()5,3AB .点()1,1BC .点22(1,)5C D .点(0,0)O二、填空题(本大题共1小题,共4分.) 4.[选做题]在4-1和4-2两题中选答一题.4—1.补充完成“按权展开式”:388448108=⨯+⨯ 10410410+⨯+⨯4—2. 某班从甲、乙、丙三名候选人中选举一名学生代表,每张选票上只能选一人或不选.全班50名同学都参加了投票,得票情况如图,则学生乙的得票数是 .xyOC (2215,)A (53,)B (11,)江苏省中等职业学校学业水平考试《数学》试卷(一)参考答案及评分标准本试卷分第Ⅰ卷(必考题)和第Ⅱ卷(选考题)两部分.两卷满分100分,考试时间75分钟.第Ⅰ卷(必考题,共84分)一、选择题(本大题共12小题,每小题4分,共48分.)二、填空题(本大题共2小题,每小题4分,共8分) 13. 1.2115-;6π三、解答题(本大题共3小题,共计28分.解答时应写出必要的文字说明、证明过程或演算步骤)15.解:因为5,12x y ==-,所以13r ==, ---------2分 所以 1212sin 1313y r α-===- ----------4分 5cos 13x r α==, ----------6分 1212tan 55y x α-===-. ---------8分16.解:(1)因为 224242422)(54)(44)(54)(x x x x x x x ----=-+--- ………1分 42424454x x x x =-+-++ …………2分 280x =+> ………4分 所以 22422)(54)(x x x ->-- ……………5分 (2)解法一:22210log 10log 5log 5-= ……………2分 2log 210=>= ……………4分 所以 22log 10log 5> ……………5分解法二:考察函数2log y x = ……………1分21a =>,2log y x =在(0,)+∞上是增函数 ……………3分 105>,22log 10log 5> ……………5分 17. 解:(1)2=2+=a b +---(1,2)(3,1)(5,5) …………2分 2(3)=2 6a b ----(1,2)(3,1)=218,6=2----(,4)()(16,) …………4分 (2)a b ⋅=(1)(3)215-⨯-+⨯= …………2分(3)2||(1)=-+a ; …………1分 2||(3)110=-+=b ; …………2分由cos ||||10θ⋅===⨯a b a b , …………3分 得45θ=︒. …………4分第Ⅱ卷(选考题,共16分)说明:在每组题中选一题解答;若都解答,只按其中的一题给分.一、选择题(本大题共3小题,每小题4分,共12分.每题所给的四个选项中,只有一个选项符合要求.)二、填空题(本大题共1小题,共4分.) 4—1.210 4—2.27。

广东省初中毕业生学业考试数学模拟试卷一及答案

广东省初中毕业生学业考试数学模拟试卷一及答案

广东省初中毕业生学业考试数学模拟试卷一及答案广东省初中毕业生学业考试数学模拟试卷一及答案中考试题对于每个考生来说都是很重要的,它影响着考生的高中去向,下面是店铺整理的最新中考模拟试题,希望能帮到你。

广东省初中毕业生学业考试数学模拟试卷一一、选择题(本大题共10小题,每小题3分,共30分)1.下列各式不成立的是( )A.|-2|=2B.|+2|=|-2|C.-|+2|=±|-2|D.-|-3|=+(-3)2.下列各实数中,最小的是( )A.-πB.(-1)0C.3-1D.|-2|3.如图M11,AB∥CD,∠C=32°,∠E=48°,则∠B的度数为( )A.120°B.128°C.110°D.100°图M11 图M124.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.5.下列计算正确的是( )A.2a+3b=5abB.(a2)4=a8C.a3•a2=a6D.(a-b)2=a2-b26.据报道,中国内地首次采用“全无人驾驶”的燕房线地铁有望年底完工,列车通车后将极大改善房山和燕山居民的出行条件,预计年输送乘客可达7300万人次,将7300用科学记数法表示应为( )A.73×102B.7.3×103C.0.73×104D.7.3×1027.如图M12是根据某班50名一周的体育锻炼情况绘制的条形统计图,则这个班50名同学一周参加体育锻炼时间的众数与中位数分别为( )A.9,8B.8,9C.8,8.5D.19,178.已知x的一元二次方程mx2+2x-1=0有两个不相等的实数根,则m的取值范围是( )A.m<-1B.m>1C.m<1,且m≠0D.m>-1,且m≠09.如图M13,在矩形ABCD中,AB=1,AD=2,将AD边绕点A 顺时针旋转,使点D恰好落在BC边上的点D′处,则阴影部分的扇形面积为( )A.πB.π2C.π3D.π4图M13 图M1410.如图M14,已知在Rt△ABC中,∠C=90°,AC=6,BC=8,点E是边AC上一动点,过点E作EF∥BC,交AB边于点F,点D为BC 上任一点,连接DE,DF.设EC的长为x,则△DEF的面积y关于x的函数关系大致为( )A. B. C. D.二、填空题(本大题共6小题,每小题4分,共24分)11.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为________.12.分式方程1x=32x+3的解为________.13.如图M15,自行车的链条每节长为2.5 cm,每两节链条相连接部分重叠的圆的直径为0.8 cm,如果某种型号的自行车链条共有60节,则这根链条没有安装时的总长度为________cm.14.如图M16,菱形ABCD的边长为15,sin∠BAC=35,则对角线AC的长为________.15.如图M17,△ABC与△DEF是位似图形,位似比为2∶3,若AB=6,那么DE=________.16.如图M18,已知S△ABC=8 m2,AD平分∠BAC,且AD⊥BD 于点D,则S△ADC=________ m2.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解方程:x2-2x-4=0.18.先化简,再求值:2xx+1-2x+6x2-1÷x+3x2-2x+1.其中x=3.19.如图M19,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD,BC于点E,F,垂足为点O;(要求用尺规作图,保留作图痕迹,不要求写作法)(2)在(1)中,连接BE和DF,求证:四边形DEBF是菱形.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌上.(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?用树状图(或列表法)表示所有可能出现的结果.这个两位数恰好是4的倍数的概率是多少?21.如图M110,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.(1)求证:①△ABG≌△AFG; ②BG=GC;(2)求△FGC的面积.22.“关注校车,关儿童”成为今年全社会热议的焦点之一.某幼儿园计划购进一批校车.若单独购买35座校车若干辆,现有的需接送儿童刚好坐满;若单独购买55座校车,则可以少买一辆,且余45个空座位.(1)求该幼儿园现有的需接送儿童人数;(2)已知35座校车的单价为每辆32万元,55座校车的单价为每辆40万元.根据购车资金不超过150万元的预算,学校决定同时购进这两种校车共4辆(可以坐不满),请你计算本次购进小车的费用.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图M111,一次函数y=kx+b的图象与反比例函数y=mx(x>0)的图象交于P(n,2),与x轴交于A(-4,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象有一点D,使得以B,C,P,D为顶点的四边形是菱形,求出点D的坐标.24.⊙O的半径为5,AB是⊙O的直径,点C在⊙O上,点D在直线AB上.(1)如图M112(1),已知∠BCD=∠BAC,求证:CD是⊙O的切线;(2)如图M112(2),CD与⊙O交于另一点E.BD∶DE∶EC=2∶3∶5,求圆心O到直线CD的距离;(3)若图M112(2)中的点D是直线AB上的动点,点D在运动过程中,会出现C,D,E在三点中,其中一点是另外两点连线的中点的情形,问这样的.情况出现几次?25.如图M113(1),矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图M113(2),若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶点Q落在线段AE上,定点M,N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.广东省初中毕业生学业考试数学模拟试卷一答案一、选择题(本大题共10小题,每小题3分,共30分)1.在12,2,4,-2这四个数中,互为相反数的是( )A.12与2B.2与-2C.-2与12D.-2与42.下列四个几何体中,俯视图是圆的几何体共有( )A.1个B.2个C.3个D.4个3.计算(-1)2+20-|-3|的值等于( )A.-1B.0C.1D.54.若m>n,则下列不等式中成立的是( )A.m+ana2 D.a-m5.植树造林可以净化空气、美化环境.据统计一棵50年树龄的树,以累计计算,除去花、果实与木材价值,总计创值约196 000美元.将196 000用科学记数法表示应为( )A.196×103B.19.6×104C.1.96×105D.0.196×1066.如图M21是某市五月份1至8日的日最高气温随时间变化的折线统计图,则这8天的日最高气温的中位数是( )A.22℃B.22.5℃C.23℃D.23.5℃7.如图M22,a∥b,∠3+∠4=110°,则∠1+∠2的度数为( )A.60°B.70°C.90°D.110°8.如图M23,下列四个图形中,既是轴对称图形又是中心对称图形的有( )图M23A.1个B.2个C.3个D.4个9.不等式组x-1≥1,2x-5<1的解集在数轴上表示为( )A. B. C. D.10.如图M24,已知直线AB与反比例函数y=-2x和y=4x交于A,B两点,与y轴交于点C,若AC=BC,则S△AOB=()A.6B.7C.4D.3二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a3-4a2b+4ab2=________.12.已知|a-1|+2a+b-5=0,则ab的值为________.13.一个多边形的每个外角都等于72°,则这个多边形的边数为________.14.如图M25,在△ABC中,D,E分别为AB,AC的中点,延长DE到F,使EF=DE,若AB=10,BC=8,则四边形BCFD的周长=________.图M25 图M26 图M2715.如图M26,△ABC的顶点都在正方形网格的格点上,则cosC=________.16.如图M27,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是________(结果保留π).三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解方程组x-2y=8,①2x+y=1.②18.先化简,再求值:2x+1x2+6x+9-13+x÷x-2x2+3x,其中x=3-3.19.如图M28,在△ABC中,AB=AC,点M在BA的延长线上.(1)按下列要求作图,并在图中标明相应的字母.①作∠CAM的平分线AN;②作AC的中点O,连接BO,并延长BO交AN于点D,连接CD.(2)在(1)的条件下,判断四边形ABCD的形状.并证明你的结论.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?21.某市某校在推进体育学科新课改的过程中,开设的选修课有A:篮球;B:排球;C:羽毛球;D:乒乓球.学生可根据自己的爱好选修一门学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图M29).(1)求出该班的总人数,并补全频数分布直方图;(2)求出B,D所在扇形的圆心角的度数和;(3)如果该校共有学生3000名,那么选修乒乓球的学生大约有多少名?22.如图M210,已知矩形ABCD,动点E从点B沿线段BC向点C运动,连接AE,DE,以AE为边作矩形AEFG,使边FG过点D.(1 )求证:△ABE∽△AGD;(2)求证:矩形AEFG与矩形ABCD的面积相等;(3)当AB=2 3,BC=6时,①求BE为何值时,△AED为等腰三角形?②直接写出点E从点B运动到点C时,点G所经过的路径长.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图M211,二次函数y=12x2+bx+c的图象交x轴于A,D 两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).(1)求二次函数的解析式;(2)求函数图象的顶点坐标及D点的坐标;(3)二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.24.已知:AD,BC是⊙O的两条互相垂直的弦,垂足为点E,点H是弦BC的中点,AO是∠DAB的平分线,半径OA交弦CB于点M.图M212 图M213 图M214(1)如图M212,延长OH交AB于点N,求证:∠ONB=2∠AON;(2)如图M213,若点M是OA的中点,求证:AD=4OH;(3)如图M214,延长HO交⊙O于点F,连接BF,若CO的延长线交BF于点G,CG⊥BF,CH=3,求⊙O的半径长.25.操作:如图M215,将一把直角三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,设A,P两点间的距离为x.探究:(1)当点Q在边CD上时,线段PQ与线段PB之间有的大小关系?试证明你观察到的结论;(2) 当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x 之间的函数关系式,并写出x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应x的值;如果不可能,试说明理由.图M215广东省初中毕业生学业考试数学模拟试卷一答案1.C2.A3.D4.C5.B6.B7.B8.D9.C 10.D11.8 12.x=3 13.102.8 14.24 15.9 16.417.解:由原方程移项,得x2-2x=4.等式两边同时加上一次项系数一半的平方,得x2-2x+1=5.配方,得(x-1)2=5.∴x=1±5.∴x1=1+5,x2=1-5.18.解:原式=2xx+1-2x+3x+1x-1•x-12x+3=2xx+1-2x-1x+1=2x+1.当x=3时,原式=23+1=3-1.19.(1)解:如图D160,EF即为所求.图D160(2)证明:如图,∵四边形ABCD为矩形,∴AD∥BC.∴∠ADB=∠CBD.∵EF垂直平分线段BD,∴BO=DO.在△DEO和△BFO中,∵∠ADB=∠CBD,BO=DO,∠DOE=∠BOF,∴△DEO≌△BFO(ASA).∴EO=FO.∴四边形DEBF是平行四边形.又∵EF⊥BD,∴四边形DEBF是菱形.20.解:(1)∵将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌上,∴P(抽到奇数)=23.(2)画树状图(如图D161)得图D161∴能组成的两位数是12,13,21,23,31,32.∵共有6种等可能的结果,这个两位数恰好是4的倍数的有2种情况,∴这个两位数恰好是4的倍数的概率为26=13.21.(1)证明:①在正方形ABCD中,AD=AB,∠D=∠B=∠DCB=90°,又∵△ADE沿AE对折至△AFE,延长EF交边BC于点G,∴∠AFG=∠AFE=∠D=90°,AF=AD.即有∠B=∠AFG=90°,AB=AF,AG=AG.在Rt△ABG和Rt△AFG中,AB=AF,AG=AG,∴△ABG≌△AFG.②∵AB=6,点E在边CD上,且CD=3DE,∴DE=FE=2,CE=4.不妨设BG=FG=x,(x>0),则CG=6-x,EG=2+x,在Rt△CEG中,(2+x)2=42+(6-x)2 ,解得x=3,于是BG=GC=3.(2)解:∵GFFE=32,∴GFGE=35.∴S△FGC=35S△EGC=35×12×4×3=185.22.解:(1)设单独租用35座客车需x辆.由题意,得35x=55(x-1)-45.解得x=5.∴35x=35×5=175.答:该幼儿园现有的需接送儿童人数为175人.(2)设租35座客车y辆,则租55座客车(4-y)辆.由题意,得35y+554-y≥175,32y+404-y≤150.解这个不等式组,得114≤y≤214.∵y取正整数,∴y=2.∴4-y=4-2=2.∴购进小车的费用为32×2+40×2=144(万元).答:本次购进小车的费用是144万元.23.解:(1)∵AC=BC,CO⊥AB,A(-4,0),∴O为AB的中点,即OA=OB=4.∴P(4,2),B(4,0).将A(-4,0)与P(4,2)代入y=kx+b,得-4k+b=0,4k+b=2.解得k=14,b=1.∴一次函数解析式为y=14x+1.将P(4,2)代入反比例函数解析式得m=8,即反比例函数解析式为y=8x.(2)如图D162,图D162当PB为菱形的对角线时,∵四边形BCPD为菱形,∴PB垂直且平分CD.∵PB⊥x轴,P(4,2),∴点D(8,1).当PC为菱形的对角线时,PB∥CD,此时点D在y轴上,不可能在反比例函数的图象上,故此种情形不存在.综上所述,点D(8,1).24.(1)证明:如图D163,连接OC.∵OA=OC,∴∠OAC=∠OCA.又∵AB是⊙O的直径,∴∠ACB=90°.又∵∠BCD=∠BAC=∠OCA,∴∠BCD+∠OCB=90°,即OC⊥CD.∴CD是⊙O的切线.图D163 图D164(2)解:∵∠ADE=∠CDB,∠BCD=∠EAD,∴△BCD∽△EAD.∴CDAD=BDED.∴CE+EDAB+BD=BDED.又∵BD∶DE∶EC=2∶3∶5,⊙O的半径为5,∴BD=2,DE=3,EC=5.如图D164,连接OC,OE,则△OEC是等边三角形,作OF⊥CE于F,则EF=12CE=52,∴OF=5 32.∴圆心O到直线CD的距离是5 32.(3)解:这样的情形共有出现三次,当点D在⊙O外时,点E是CD中点,有以下两种情形,如图D165、图D166;当点D在⊙O内时,点D是CE中点,有以下一种情形,如图D167.图D165 图D166 图D16725.(1)证明:由矩形和翻折的性质可知AD=CE,DC=EA.在△ADE与△CED中,AD=CE,DE=ED,DC=EA,∴△DEC≌△EDA(SSS).(2)解:∵∠ACD=∠BAC,∠BAC=∠CAE,∴∠ACD=∠CAE.∴AF=CF.设DF=x,则AF=CF=4-x.在Rt△ADF中,AD2+DF2=AF2,即32+x2=(4-x)2.解得x=78,即DF=78.(3)解:如图D168,由矩形PQMN的性质得PQ∥CA,图D168∴PECE=PQCA.又∵CE=3,AC=AB2+BC2=5.设PE=x(0过点E作EG⊥AC于G,则PN∥EG,∴CPCE=PNEG.又∵在Rt△AEC中,EG•AC=AE•CE,解得EG=125,∴3-x3=PN125,即PN=45(3-x).设矩形PQMN的面积为S,则S=PQ•PN=-43x2+4x=-43x-322+3(0所以当x=32,即PE=32时,矩形PQMN的面积最大,最大面积为3.【广东省初中毕业生学业考试数学模拟试卷一及答案】。

山东省威海市高区2022届初中数学学业考试第一次质量检测试题【含答案】

山东省威海市高区2022届初中数学学业考试第一次质量检测试题【含答案】

山东省威海市高区2022届初中数学学业考试第一次质量检测试题注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页.第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,70分;共100分.考试时间为120分钟.2.答题前,考生务必先核对条形码上的姓名、准考证号和座号,然后用0.5毫米黑色签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置.3.答第Ⅰ卷时,必须使用2B 铅笔把答题卡上相应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.4.答第Ⅱ卷时,必须使用0.5毫米黑色签字笔在答题卡上书写.务必在题号所指示的答题区域内作答.5.填空题请直接将答案填写在答题卡上,解答题应写出文字说明、证明过程或演算步骤.6.考试结束后,将本试卷和答题卡一并交回一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求.)1.据宜宾市旅游局公布的数据,今年“五一”小长假期间,全市实现旅游总收入330000000元.将330000000用科学记数法表示为( ) A .3.3×108B .3.3×109C .3.3×107D .0.33×10102.不等式组的解集表示在数轴上,正确的是( )A .B .C .D .3.已知m=1+ 2,n=1-2,则代数式223m n mn +-的值为( ) A .9B .±3C .3D .54.若关于x 的一元二次方程x 2﹣3x+p=0(p ≠0)的两个不相等的实数根分别为a 和b ,且a 2﹣ab+b 2=18,则+的值是( )A .3B .﹣3C .5D .﹣55.一个正方形和两个等边三角形的位置如图所示,则∠1+∠2+∠3的度数为( ) A .1500B .1200C .900D .1806.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是( ) A . B .C .D .7.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有( ) A .4B .5C .6D .78.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )A .15.5,15.5B .15.5,15C .15,15.5D .15,159. 如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点, 且∠ACD=45°,DF⊥AB 于点F,EG⊥AB 于点G,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是第8题第9题第5题第6题第7题10.如图,在Rt△AOB 中,两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A′O′B.若反比例函数的图象恰好经过斜边A′B 的中点C ,S △ABO =4,tan∠BAO=2,则k 的值为( )A .3B .4C .6D .811.如图,平行四边形ABCD 中,AB :BC=3:2,∠DAB=60°,E 在AB 上,且AE :EB=1:2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则DP :DQ 等于( ) A .3:4 B .13:25 C .13:26 D .2:12.勾股定理是几何中的一个重要定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中毕业生学业考试数学卷及答案一、填空题(每小题3分,共30分) 1、计算:(a -b )-(a+b )= 。

2、计算:(a 2b )2÷a 4 = 。

3、函数y 中,自变量x 的取值范围是 。

4、北京与巴黎两地的时差是-7小时(带正号的数表示同一时间比北京早的时间数),如果现在北京时间是7∶00,那么巴黎的时间是 。

5、求值:sin 230°+cos 230°= 。

6、根据图1中的抛物线,当x 时,y 随x当x时,y 随x 的增大而减小,当x 时,y 7、如图2,将一副直角三角板叠在一起,使直角顶点重合于点O ∠AOB+∠DOC= 。

8、已知一个三角形的三边长分别是6㎝,8㎝,10㎝,则这个 三角形的外接圆面积等于 ㎝2。

9、如图3,扇子的圆心角为α,余下扇形的圆心角为β的外形美观,通常情况下α与β的比按黄金比例设计,若取黄金比为则α= 度。

10、如图4是我市城乡居民储蓄存款余额的统计图,请你根据该图写出两条正确的信息: ① ; ② 。

二、选择题(每小题3分,共15分)11、已知⊙O 的半径为5㎝,⊙O 1的半径为3㎝, 两圆的圆心距为7㎝,则它们的位置关系是………………………………………( )A 、相交B 、外切C 、相离D 、内切12、方程x 2-5x -1=0 …………………………………………………………( )A 、有两个相等实根B 、有两个不等实根C 、没有实根D 、无法确定13、一组对边平行,并且对角线互相垂相等的四边形是……………………( ) A 、菱形或矩形 B 、正方形或等腰梯形C 、矩形或等腰梯形D 、菱形或直角梯形14、设a 是实数,则|a|-a 的值………………………………………………( ) A 、可以是负数 B 、不可能是负数C 、必是正数D 、可以是正数也可以是负数15、由梅州到广州的某一次列车,运行途中停靠的车站依次是:梅州——兴宁——华城——河源——惠州——东莞——广州,那么要为这次列车制作的火车票有……( )A 、6种B 、12种C 、21种D 、42种 三、解答下列各题(每小题6分,共24分)16、计算:210(2)(1---50 017、在“创优”活动中,我市某校开展收集废电池的活动,该校初二(1)班为了估计四月份收集电池的个数,随机抽取了该月某7天收集废旧电池的个数,数据如下:(单位:个):48,51,53,47,49,50,52。

求这七天该班收集废旧电池个数的平均数,并估计四月份(30天计)该班收集废旧电池的个数。

18、解方程:2211x x x x++=+19、如图5,Rt ΔABC 中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形的等腰三角形。

(保留作图痕迹,不要求写作法和证明)四、(20、21两题各7分,22、23两题各8分,24小题10分,25小题11分) 20、如图6,四边形ABCD 是矩形,O 是它的中心,E 、F 是对角线AC 上的点。

(1)如果 ,则ΔDEC ≌ΔBFA (请你填上能使结论成立的一个条件);(2)证明你的结论。

21、为节约用电,某学校于本学期初制定了详细的用电计划。

如果实际每天比计划多用2度电,那么本学期的用电量将会超过2530度;如果实际每天比计划节约2度电,那么本学期用电量将会不超过2200度电。

若本学期的在校时间按110天计算,那么学校每天用电量应控制在什么范围内?22、如图7,Rt ΔABC 中,∠ACB=90°,AC=4,BA=5,点P 是AC 上的动点(P 不与A 、C重合)设PC=x,点P到AB的距离为y。

(1)求y与x的函数关系式;(2)试讨论以P为圆心,半径为x的圆与AB所在直线的位置关系,并指出相应的x的取值范围。

数据,在图8中的直角坐标系中描出相应的点,观察连结各点所得的图形,判断p与x的函数关系式;(2)如果这种运动服的买入件为每件40元,试求销售利润y(元)与卖出价格x(元/件)的函数关系式(销售利润=销售收入-买入支出);(3)在(224、如图9,已知C、D是双曲线myx在第一象限分支上的两点,直线CD分别交x轴、y轴于A、B两点。

设C(x1,y1)、D(x2,y2),连结OC、OD(O是坐标有点),若∠BOC=∠AOD=α,且tanα=13,(1)求C、D的坐标和m的值;(2)双曲线上是否存在一点P,使得ΔPOC和ΔPOD的面积相等?若存在,给出证明,若不存在,说明理由。

25、已知,如图10(甲),正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点,P 不运动到M 和C,以AB 为直径做⊙O ,过点P 作⊙O 的切线交AD 于点F,切点为E.(1)求四边形CDFP 的周长;(2)试探索P 在线段MC 上运动时,求AF ·BP 的值;(3)延长DC 、FP 相交于点G,连结OE 并延长交直线DC 于H(如图乙),是否存在点P, 使△EFO ∽△EHG?如果存在,试求此时的BP 的长;如果不存在,请说明理由。

试卷答案一、填空题:1、-2b ;2、 b 2;3、x ≤2;4、0:00;5、1;6、x <2,x >2,x=2;7、180;8、25π;9、135°;10、①从1978年起,城乡居民储蓄存款不断增长,②2000年到2003年城乡居民储蓄存款的增长速度较快。

(答案不唯一) 二、选择题:11、A ; 12、B ; 13、B ; 14、B ; 15、C 三、解答下列各题 16、解:原式=413=; 17、这7天收集电池的平均数为:48515347495052507++++++=(个)50×30=1500(个)∴这七天收集的废旧电池平均数为50个,四月份该班收集的废电池约1500个。

18、解:解法一:原方程可化为:212(1)1x x x x ++=+, ∴ x (2x+1)=2 (X+1)2 解得:23x =- 经检验可知,23x =-的原方程的解。

解法二:设1xy x =+,则原方程化为:y 2+y -2=0 , ∴ (y+2)(y -1)=0 ∴y=-2或y=1当y=-2时,21x x =-+,解得: 23x =- 当y=1时,11xx =+,方程无解 经检验可知,23x =-的原方程的解。

19、解:作法一:作AB 边上的中线; 作法二:作∠CBA 的平分线;上取一点D ,使CD=CB。

20、解:(1)AE=CF (OE=OF ;DE ⊥AC ;BF ⊥AC ;DE ∥BF 等等)(2)∵四边形ABCD 是矩形,∴AB=CD ,AB ∥CD ,∠DCE=∠BAF 又∵AE=CF ,∴AC -AE=AC -CF ,∴AF=CE ,∴ΔDEC ≌ΔBAF 21、解:设学校每天用电量为x 度,依题意可得:110(2)2530110(2)2200x x +>⎧⎨-≤⎩解得:2122x <≤,即学校每天用电量应控制在21度~22度范围内。

22、解:(1)过P 作PQ ⊥AB 于Q ,则PQ=y∵∠A=∠A ,∠ACB=∠AQP=90°∴Rt ΔAQP ≌ΔRt ΔACB , ∴PQ ∶BC=AP ∶AB依题意可得:BC=3,AP=4-x∴435y x -= 化简得:312(04)55y x x =-+<< (2)令x ≤y ,得:31255x x ≤-+,解得:32x ≤∴当302x <<时,圆P 与AB 所在直线相离;32x =时,圆P 与AB 所在直线相切;342x <<时,圆P 与AB 所在直线相交。

23、解:(1)p 与x 成一次函数关系。

设函数关系式为p=kx+b ,则5005049051k bk b=+⎧⎨=+⎩解得:k=-10,b=1000 , ∴ p=-10x+1000经检验可知:当x=52,p=480,当x=53,p=470时也适合这一关系式 ∴所求的函数关系为p=-10x+1000(2)依题意得:y=px -40p=(-10x+1000)x -40(-10x+1000)∴ y=-10x 2+1400x -40000A AB A(3)由y=-10x 2+1400x -40000 可知,当1400702(10)x =-=⨯-时,y 有最大值∴ 卖出价格为70元时,能花得最大利润。

24、解:(1)过点C 作CG ⊥x 轴于G ,则CG=y 1,OG=x 1 ,在Rt ΔOCG 中,∠GCO=∠BOC=α,∵1tan 3OG CG α==∴1113x y = 即113y x =又∵ OC =∴ 221110x y +=,即2211(3)10x x +=, 解得:x 1=1或x 1=-1(不合舍去) ∴x 1=1,y 1=3,∴点C 的坐标为C (1,3)。

又点C 在双曲线上,可得:m=3过D 作DH ⊥y 轴于H ,则DH=y 2,OH=x 2 在Rt ΔODH 中, 1tan 3DHOH α==,∴2213x y = 即223y x = 又∵ x 2y 2=3 解得:y 2=1或y 2=-1(不合舍去) ∴x 2=3,y 2=1,∴点D 的坐标为D (3,1)(2)双曲线上存在点P ,使得POC POD S S ∆∆=,这个点就是∠COD 的平分线与双曲线的3y x=交点 ∵点D (3,1),∴OD=OC点P 在∠COD 的平分线上,则∠COP=∠POD ,又OP=OP ∴ΔPOC ≌ΔPOD ,∴ POC POD S S ∆∆=25、解(1)∵四边形ABCD 是正方形∴∠A=∠B=90°,∴AF 、BP 都是⊙O 的切线, 又∵PF 是⊙O 的切线 ∴FE=FA,PE=PB∴四边形CDFP 的周长为: AD+DC+CB=2×3=6(2 ) 连结OE,PF 是⊙O 的切线∴OE ⊥PF.在 Rt △AOF 和Rt △EOF 中, ∵AO=EO,OF=OF∴Rt △AOF ≌Rt △EOF ∴∠AOF=∠EOF,同理∠BOP=∠EOP,∴∠EOF+∠EOP=12⨯180°=90°,∠FOP=90°即OF ⊥OP ,∴AF ·BP=EF ·PE=OE 2=1(3 )存在。

∵∠EOF=∠AOF,∴∠EHG=∠AOE=2∠EOF,∴当∠EFO=∠EHG=2∠EOF, 即∠EOF=30°时,Rt △EFO ∽Rt △EHG此时,∠EOF=30°, ∠BOP=∠EOP=90°-30°=60°∴BP=OB ·0tan60沁园春·雪 <毛泽东>北国风光,千里冰封,万里雪飘。

相关文档
最新文档