2简算——小升初分班课程
人教版六年级下册数学小升初分班考必考专题:运算定律与简便运算

人教版六年级下册数学小升初分班考必考专题:运算定律与简便运算一、选择题1.计算4(x+8)时,错写成4x+8,结果比原来()。
A.多4B.少4C.少24D.多22.计算下列各题时,运用的方法和乘法分配律一样的是()。
A.25×16×15=(25×4)×(4×15)B.计算0.68×3.4后,用3.4×0.68验算C.想360÷12=30,得出36÷1.2=30D.竖式计算125×41(如上图)3.已知:333314444x y z k+=-=⨯=÷=,则x、y、z、k四个数中最大的是()。
A.x B.y C.z D.k 4.546-99用简便方法计算是()。
A.546-100+1B.546-(100+1)C.546-100-1D.546-99-15.下面每个选项都有两道算式,不能用等号连接的一组算式是()。
A.7998⨯和7710088⨯-B.735859⨯⨯()和735859⨯⨯()C.56741313--和56741313-(+)D.651112⨯和235111112⨯⨯二、填空题6.5÷()11344()+===+():24=()%。
7.2.5×(0.19×4)=( )×(( )×( ))。
8.已知△+△+□+□+□=41,△+△+△+□+□=39,那么△=( ),□=( )。
9.如果57a=34b,则a△b=( )△( )(填最简整数比),如果a+b=150,那么a÷38+b÷38=( )。
10.整数运算律对于小数、分数的运算( )。
11.自行车和三轮车共15辆,共有37个轮子,自行车有( )辆,三轮车有( )辆。
12.小红和小华做抽卡片算乘法的游戏,每人手中有四张卡片,小红四张卡片上的数分别是4、15、25、36,小华四张卡片上的数分别是23、29、31、43,每次每人任意抽出自己手中的一张卡片,计算抽出的两张卡片上数的乘积,共可以算出16个不同的乘积。
【小升初】2023-2024学年人教版数学升学分班考真题模拟测试题2套(含解析)

【小升初】2023-2024学年人教版数学升学分班考真题模拟测试题一.计算题(共3小题)1.(2022•周至县)直接写出得数。
12=0.6×1.5==12.5%﹣==5×3÷3×5=2.(2022•舞阳县)计算下面各题,怎样简便就怎样算。
4.7×101﹣4.736×(+)54×60%+45×+0.6(+﹣)×48 3.(2022•怀远县)解方程或比例。
x+= 2.75x﹣25%x=1.5x:18=:10二.选择题(共10小题)4.(2022•讷河市)下面不具有相反意义的量是()A.前进5m和后退5mB.节约3吨水和浪费2吨水C.存入800元和支出500元D.身高增加3cm和体重减少3千克5.(2021秋•白云区期末)六(1)班有学生44人,男生与女生人数的比可能是()A.2:3B.3:4C.4:5D.5:6 6.(2022春•临泉县期中)下面四个圆柱中,表面积最小的是()A.底面半径2厘米,高3厘米B.底面直径4厘米,高1厘C.底面半径3厘米,高2厘米D.底面直径1厘米,高4厘米7.两根同样长的绳子,第一根截去全长的,再截去米;第二根先截去米,再去余下的20%,两根剩下的部分相比()A.第一根长B.第二根长C.一样长D.无法比较8.(2022•龙华区)下面各选项中的两个量,成正比例的是()A.同一时间、同一地点,不同高度竹竿的高和竿影的长B.一个人的体重和年龄C.圆的面积与半径D.路程一定,行驶的速度与时间9.(2022春•兴化市月考)景华小学对五年级学生进行了英语测试,测试结果统计如图,已知及格人数为30人,则优秀的人数为()人。
A.200B.100C.58D.12 10.(2022春•阳原县期中)把4×5=2×10改写成比例可能是()A.4:5=2:10B.4:2=10:5C.5:4=10 11.(2022•东莞市)在地图上,北京在上海的北偏西30°方向上,那么上海在北京的()方向上。
小升初常考简便运算

小学数学简便运算方法归类一、带符号搬家法(根据:加法交换律和乘法交换率)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带 符搬家”。
二、结合律法(一)加括号法1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
)2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。
(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
)c)(二)去括号法1.当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。
但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。
(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)2.当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。
但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。
(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)三、乘法分配律法1.分配法括号里是加或减运算,与另一个数相乘,注意分配24×(1211-83-61-31)2.提取公因式注意相同因数的提取。
0.92×1.41+0.92×8.59516×137-53×1373.注意构造,让算式满足乘法分配律的条件。
257×103-257×2-257 2.6×9.9 四、借来还去法看到名字,就知道这个方法的含义。
小升初常考简便运算

小学数学简便运算方法归类一、带符号搬家法〔根据:加法交换律和乘法交换率〕当一个计算题只有同一级运算〔只有乘除或只有加减运算〕又没有括号时,我们可以“带号搬家〞。
二、结合律法〔一〕加括号法1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
〔即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
〕2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。
〔即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
〕c)〔二〕去括号法1.当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。
但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。
〔现在没有括号了,可以带符号搬家了哈 ) 〔注:去掉括号是添加括号的逆运算〕2.当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。
但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。
〔现在没有括号了,可以带符号搬家了哈)〔注:去掉括号是添加括号的逆运算〕三、乘法分配律法1.分配法括号里是加或减运算,与另一个数相乘,注意分配24×(11-3-1-1) 128632.提取公因式注意相同因数的提取。
0.92 ×1.41 +0.92 ×16×7-3×75135 13 3.注意构造,让算式满足乘法分配律的条件。
小升初常考简便运算

顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小哦。
3.2×12.5×25 1.25×88 3.6×0.252. 巧变除为乘也就是说,把除法变成乘法,例如:除以41可以变成乘4。
7.6÷0.25 3.5÷0.125七、裂项法分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
分数裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
分数裂项的最基本的公式这一种方法在一般的小升初考试中不常见,属于小学奥数方面的知识。
有余力的孩子可以学一下。
简便运算(一)专题简析:根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
例题1。
计算4.75-9.63+(8.25-1.37)原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1计算下面各题。
1. 6.73-2 817 +(3.27-1 917 ) 2. 759 -(3.8+1 59 )-115小学生小升初数学常见简便计算总结要想提高计算能力,首先要学好各种运算的法则、运算定律及性质,这是计算的基础。
小升初衔接课程内容

小升初衔接课程内容随着教育改革的不断深入,小学阶段的教育内容也得到了相应的调整和改进。
为了更好地适应初中学习的需要,小学阶段的教育不仅要注重知识的传授,更要注重学生的综合素质的培养。
因此,小升初衔接课程内容也越来越受到关注。
小升初衔接课程内容主要包括语文、数学、英语三个科目。
在语文方面,学生需要掌握正确的阅读方法,理解文章表达的意思,提高文章的分析和归纳能力。
此外,学生还需要掌握正确的写作方法,尤其是议论文和应用文的写作技巧。
在这方面,老师可以通过课堂讲解、示范和练习来帮助学生提高写作水平。
在数学方面,小升初衔接课程内容主要涉及整数、分数、小数、百分数、代数等方面的知识。
这些知识不仅是初中数学的基础,也是后续学习的重要环节。
为了帮助学生更好地掌握这些知识,老师可以采用多种教学方法,如抽象、模拟、探究等,让学生在实践中学习,提高学生的思维能力。
英语作为一门重要的外语,也是小升初衔接课程内容的重点。
学生需要掌握基本的英语语法、词汇和句型,能够流利地进行简单的口语交流和书面表达。
在这方面,老师可以通过听、说、读、写等多方面的训练来提高学生的英语水平,同时也可以采用多媒体教学、互动教学等现代化教学手段,让学生更加轻松地掌握英语知识。
除了以上三个科目外,小升初衔接课程内容还包括了科学、社会、艺术等方面的内容。
这些内容不仅能够拓宽学生的视野,还能够提高学生的综合素质,培养学生的兴趣爱好和创造力。
总的来说,小升初衔接课程内容是小学阶段教育改革的重要内容之一,它不仅能够为学生顺利过渡到初中学习打下基础,还能够提高学生的综合素质,帮助学生更好地面对未来的学习和生活挑战。
因此,学生和家长应该认真对待小升初衔接课程内容,积极配合老师的教学,让孩子能够在小学阶段得到全面而有针对性的教育。
第1讲-计算综合(沪教版)学生版——小升初衔接课程

1.综合复习小学阶段的各种计算及巧算方法;2.适度拓展,了解更多的巧算方法.小学阶段,我们学习了整数、小数和简单的分数的计算方法,这些知识会一直影响之后的学习,同时还有一些巧算方法也很有学习的价值。
计算最基本的要求是正确,无论方法是否简便,过程是否复杂,能较快地做出正确的解答才是最关键的。
当然,往往巧算要比死算更快更不容易出错,巧算的主要方法是“凑整”,有加法的凑整、乘法的凑整、通过提取公因数的凑整、拆数补数的抽正等等。
但是不论哪种计算,目前一定要注意的是添/去括号时是否要变号的问题。
练一练:直接写出答案1.5×4=________ 5.8+1.2=________45×0.2=________4.08÷8=________0.54÷0.6=________ 3.1-2.9=________0.12÷3=________0.4×0.7=________0.32×1000=________ 7÷100=________0.8+0.02=________0.84÷0.3=________ 3.68÷0.01=________9+1.5=________0.4×0.5=________ 0.44+0.6=________ 2.5×0.4=________0.125×8=________ 3.6÷0.4=________ 3.92+7.2=________ 1.5÷0.3=________例题1:递等式计算(能巧算的要巧算):(1) 8.7×10.1(2) 7.06×2.4-5.7(3) 2.5×6.8×0.4 (4) 21.36÷0.8×2.9(5) 8.27+7.52+1.73-3.52(6) 0.82×99+0.82试一试:(1)2+4+6+8+……+18+20 (2) 2+4+6+8+……+98+100例题4:从1.5除30.15的商里减去0.12与0.25的积,差是多少?试一试:(1)17.2减去4.5乘3.6的积,所得的差除以0.1,商是多少?(2)18.5与16.5的和是它们差的几倍?让学生回顾本节课所学的重点知识,以学生自我总结为主,学科教师引导为辅,为本次课做一个总结回顾【巩固练习】1.计算(能简算的要简算):(1)13.78-6.99(2)88×25 (3)21.6÷[64.8+(48.6-2.7×2)];(4)0.99×59 (5)8.4÷4×25 (6)1.87÷(2.8×1.87+1.87×6.2+1.87)。
小升初专题复习五-四则混合运算及简便计算(课件)——六年级下册数学+人教版

232×[1112÷(56-34)] =232×[1112÷112] =232×11 =32
基本运算定律及简便计算 (湖北·黄冈)简算。
5
2
(1)7+3.76+7+6.24
(2)89×101
思路点拨:(1)运用加法的交换律和结合律。
57+27=1
3.76+6.24=10
1+10=11
(2)
运用乘法的分配律
四、将下列算式改写成一道综合算式。(15 分)
1.8×3=24 30-24=6 6×1.8=10.8
综合算式:((3300--88××33))××1.18.=8=101.08.8
2.576-385=191 84÷6=14 191×14=2674 综合算式:((557766--338855))××((848÷4÷6)6=)=26276474
运算规律
1.积的变化规律:两数相乘,一个因数不变,另一个因数乘(或除以) 一个不为 0 的数,积也要乘(或除以)同一个数。2.商的变化规律:在 除法里,被除数乘(或除以)一个不为 0 的数,若除数不变,商也要乘 (或除以)同一个数;若被除数不变,除数乘(或除以)一个不为 0 的数,
商反而要除除以以或或乘乘同一个数。
3.(广东·东莞)下面四个算式的计算结果,最大的是( B )。 A.77×(1+18) B.77÷(1-18) C.77÷(1+18) D.77×(1-18)
4.小马虎在计算 5(x+4)时没有看见括号,按 5x+4 计算,结果比原来
( D )。
A.少 18 B.多 x C.多 6 D.少 16
3
1
3.27÷5=45 45×3=15 15-2.6=12.4
31 综合算式:2277÷÷×5×-32-.2.6=61=2.142.4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、计算
例1 定义新运算
(1)对于任意自然数a,b ,如果a*b=2a+4b ,已知x*(5*6)=2008,那么自然数x=______。
(2)规定:a ★b=a ×b+2a ,例如:2★3=2×3+2×2=10,那么10★2=______。
(3)定义A ☆B 为A 的3倍减去B 的2倍,即A ☆B=3A-2B ,已知x ☆(4☆1)=7,则x=____。
(4)如果a △b=(a-2)×b ,那么,当a △5=30时,a=______。
例2 加乘原理
(1)有红黄蓝三面旗,把这些旗挂在一个旗杆上做成各种信号,如果按照挂旗的面数及从上到下颜色的顺序区分信号,那么利用这三面旗能表示____种不同信号。
(不算不挂旗情况)
(2)如左图有5个点,取不同的三个点就可以组合一个三角形,问可以组成____个三角形。
如果是右上这样的5×3个点呢,可以组成____个三角形。
(3)2016的因数个数有____个。
一个数的因数个数是6个,这个数最小是_________。
例3 等差数列
(1)1968,1978,1988,1998,2008,2018这六个数的和是多少? (2)1+3+5+7+…+97+99
(3)3+4+5+6+…2017+2018 (4)(1+3+5+…+2015+2017)-(2+4+6+…+2014+2016)
(5)科学家进行一次实验,每隔5小时作一次记录,他做第12次记录时,时钟正好九点整,问第一次记录时,时钟是____点。
例4 整数、小数简算
(1)2017×2018201820182018-2018×2017201720172017 (2)99+99×99+99×99×99
(3)77×13+255×999+510 (4)1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01
(5)12+32+52+…+192[求从1开始连续自然数的平方和公式是S=1/6×n ×(n+1) ×(2n+1)]
A ·
B ·
C ·
D ·
E ·
例5 分数简算
(1)2018+
(2)(3)
(4)
(5)1+3+5
(6)
(7)
练习:
1.运算符号※能使下面算式成立:2※4=8,5※3=13,3※5=11,9※7=25,求7※3=____。
2.4+7+10+13+…+43+46 3.4000-5-10-15-…-95-100
4.168.54+368.54+568.54+768.54+968.54 5.12+22+42+52+72+82+102+112+132+142+162 6.7.
8.
9.10.
11.
12.。