高三数学数列求和1
高三数学考点-数列求和及应用

6.4 数列求和及应用1.数列求和方法 (1)公式法:(Ⅰ)等差数列、等比数列前n 项和公式. (Ⅱ)常见数列的前n 项和:①1+2+3+…+n =;②2+4+6+…+2n =;③1+3+5+…+(2n -1)=;④12+22+32+…+n 2=;⑤13+23+33+…+n 3=⎣⎡⎦⎤n (n +1)22.(2)分组求和:把一个数列分成几个可以直接求和的数列. (3)倒序相加:如等差数列前n 项和公式的推导方法.(4)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.等比数列{a n }前n 项和公式的推导方法就采用了错位相减法.(5)裂项相消:有时把一个数列的通项公式分成二项差的形式,相加消去中间项,只剩有限项再求和. 常见的裂项公式:①1n (n +1)=-1n +1; ②1(2n -1)(2n +1)=⎝⎛⎭⎫12n -1-12n +1;③1n (n +1)(n +2)=⎣⎡⎦⎤1n (n +1)-1(n +1)(n +2);④1a +b=(a -b );⑤n (n +1)!=-1(n +1)!; ⑥C m -1n= ; ⑦n ·n != !-n !; ⑧a n =S n -S n -1(n ≥2). 2.数列应用题常见模型 (1)单利公式利息按单利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = . (2)复利公式利息按复利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = .(3)产值模型原来产值的基础数为N ,平均增长率为p ,对于时间x ,总产值y = . (4)递推型递推型有a n +1=f (a n )与S n +1=f (S n )两类.(5)数列与其他知识综合,主要有数列与不等式、数列与三角、数列与解析几何等.自查自纠1.(1)①n (n +1)2 ②n 2+n ③n 2 ④n (n +1)(2n +1)6(2)①1n ②12 ③12 ④1a -b ⑤1n !⑥C m n +1-C mn ⑦(n +1) 2.(1)a (1+xr ) (2)a (1+r )x (3)N (1+p )x数列{1+2n -1}的前n 项和为( ) A .1+2n B .2+2n C .n +2n -1 D .n +2+2n 解:由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n -1.故选C .若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12 D .-15解:记b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15.故选A . 数列{|2n -7|}的前n 项和T n =( ) A .6n -n 2 B .n 2-6n +18C.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3)n 2-6n +18(n >3)D.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3)n 2-6n (n >3) 解:设a n =2n -7,n ≤3时,a n <0;n >3时,a n >0,a 1=-5,a 2=-3,a 3=-1,且易得{a n }的前n 项和S n=n 2-6n ,所以T n =⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n +18(n >3).故选C .数列{a n }满足a n =n (n +1)2,则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解:1a n =2⎝⎛⎭⎫1n -1n +1,则数列⎩⎨⎧⎭⎬⎫1a n 的前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111=2(1-111)=2011.故填2011. 有一种细菌和一种病毒,每个细菌在每秒杀死一个病毒的同时将自身分裂为2个.现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要________秒. 解: 设至少需要n 秒,则1+2+22+…+2n -1≥100,即1-2n1-2≥100,所以n ≥7.故填7.类型一 基本求和问题(1)设数列1,(1+2),…,(1+2+22+…+2n -1),…的前n 项和为S n ,则S n 等于( ) A .2n B .2n -nC .2n +1-n D .2n +1-n -2(2)求和:1+11+2+11+2+3+…+11+2+…+n ;(3)设f (x )=x 21+x 2,求:f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫12 016+…+f (1)+f (2)+…+f (2 017); (4)求和:S n =1a +2a 2+3a 3+…+na n .解:(1)解法一:特殊值法,易知S 1=1,S 2=4,只有选项D 适合. 解法二:研究通项a n =1+2+22+…+2n -1=2n -1, 所以S n =(21-1)+(22-1)+…+(2n -1)=(21+22+…+2n )-n =2n +1-n -2.故选D .(2)设数列的通项为a n ,则a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,所以S n =a 1+a 2+…+a n =2[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1]=2⎝⎛⎭⎫1-1n +1=2n n +1.(3)因为f (x )=x 21+x 2,所以f (x )+f ⎝⎛⎭⎫1x =1. 令S =f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫12 016+…+f (1)+f (2)+…+f (2 017),①则S =f (2 017)+f (2 016)+…+f (1)+f ⎝⎛⎭⎫12+…+f ⎝⎛⎭⎫12 016+f (12 017),② ①+②得:2S =1×4 033=4 033,所以S =4 0332.(4)(Ⅰ)当a =1时,S n =1+2+…+n =n (n +1)2.(Ⅱ)当a ≠1时,S n =1a +2a 2+3a 3+…+na n ,①1a S n =1a 2+2a 3+…+n -1a n +nan +1,② 由①-②得⎝⎛⎭⎫1-1a S n =1a +1a 2+1a 3+…+1a n -n a n +1=1a ⎝⎛⎭⎫1-1a n 1-1a-na n +1, 所以S n =a (a n -1)-n (a -1)a n (a -1)2.综上所述,S n =⎩⎪⎨⎪⎧n (n +1)2(a =1),a (a n -1)-n (a -1)a n (a -1)2(a ≠1).【点拨】研究通项公式是数列求和的关键.数列求和的常用方法有:公式法、分组求和法、倒序相加法、错位相减法、裂项相消法等,在选择方法前分析数列的通项公式的结构特征,避免盲目套用、错用求和方法.运用等比数列求和公式时,注意对公比是否等于1进行讨论.本例四道题分别主要使用了分组求和法、裂项相消法、倒序相加法、错位相减法.(1)求数列9,99,999,…的前n 项和S n ;(2)求数列122-1,132-1,142-1,…,1(n +1)2-1的前n 项和;(3)求sin 21°+sin 22°+sin 23°+…+sin 289°的值; (4)已知a n =n +12n +1,求{a n }的前n 项和T n .解:(1)S n =9+99+999+…+99…9n 个 =(101-1)+(102-1)+(103-1)+…+(10n -1) =(101+102+103+…+10n )-n=10(1-10n )1-10-n =10n +1-109-n .(2)因为1(n +1)2-1=1n 2+2n =1n (n +2)=12⎝⎛⎭⎫1n -1n +2, 所以122-1+132-1+142-1+…+1(n +1)2-1=12⎝⎛⎭⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝⎛⎭⎫32-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2. (3)令S n =sin 21°+sin 22°+sin 23°+…+sin 289°,① 则S n =sin 289°+sin 288°+sin 287°+…+sin 21° =cos 21°+cos 22°+cos 23°+…+cos 289°.②①与②两边分别相加得2S n =(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(sin 289°+cos 289°)=89.所以S n =892.(4)T n =222+323+424+…+n +12n +1,①12T n =223+324+425+…+n +12n +2,② ①-②得12T n =222+123+124+125+…+12n +1-n +12n +2 =12+123×⎝⎛⎭⎫1-12n -11-12-n +12n +2=34-12n +1-n +12n +2, 所以T n =32-12n -n +12n +1=32-n +32n +1.类型二 可用数列模型解决的实际问题用分期付款的方式购买一批总价为2 300万元的住房,购买当天首付300万元,以后每月的这一天都交100万元,并加付此前欠款的利息,设月利率为1%.若从首付300万元之后的第一个月开始算分期付款的第一个月,问分期付款的第10个月应付________万元.解:购买时付款300万元,则欠款2000万元,依题意分20次付清,则每次交付欠款的数额依次购成数列{a n },故a 1=100+2 000×0.01=120(万元), a 2=100+(2 000-100)×0.01=119(万元), a 3=100+(2 000-100×2)×0.01=118(万元), a 4=100+(2 000-100×3)×0.01=117(万元), …a n =100+[2 000-100(n -1)]×0.01=121-n (万元) (1≤n ≤20,n ∈N *). 因此{a n }是首项为120,公差为-1的等差数列. 故a 10=121-10=111(万元).故填111.【点拨】将实际问题转化为数列问题的一般步骤是:①审题,②建模,③求解,④检验,⑤作答.增长率模型是比较典型的等比数列模型,实际生活中的银行利率、企业股金、产品利润、人口增长、工作效率、浓度问题等常常利用增长率模型加以解决.某气象学院用3.2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n +4910元(n ∈N *),使用它直至报废最合算(所谓报废最合算是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( ) A .600天B .800天C .1 000天D .1 200天解:设一共使用了n 天,则使用n 天的平均耗资为32 000+⎝⎛⎭⎫5+n 10+4.9n 2n=32 000n +n 20+4.95,当且仅当32 000n=n20时,取得最小值,此时n =800.故选B . 类型三 数列综合问题(2017·山东)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .解:(1)设{a n }的公比为q .依题意,a 1(1+q )=6,a 21q =a 1q 2.又a n >0,解得a 1=2,q =2,所以a n =2n .(2)依题意,S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1.又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b na n ,则c n =2n +12n .因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n .又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减,得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1=32+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n -11-12-2n +12n +1=52-2n +52n +1. 所以T n =5-2n +52n .【点拨】错位相减法适用于等差数列与等比数列的积数列的求和,写出“S n ”与“qS n ”的表达式时,应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式.(2017·全国卷Ⅲ)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n .(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和.解:(1)因为a 1+3a 2+…+(2n -1)a n =2n ,故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1).两式相减得(2n -1)a n =2,所以a n =22n -1(n ≥2).又由题设可得a 1=2,所以{a n }的通项公式为a n =22n -1.(2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n .由(1)知a n 2n +1=2(2n +1)(2n -1)=12n -1-12n +1.则S n =11-13+13-15+…+12n -1-12n +1=2n2n +1.1.数列的通项公式及前n 项和公式都可以看作项数n 的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n 项和S n 可视为数列{S n }的通项.通项及求和是数列中最基本也是最重要的问题之一.2.对于一般数列的求和问题,应先观察数列通项的结构特征,再对通项公式进行化简变形,改变原数列的形式,尽可能将其转化为等差数列、等比数列等常见数列,从而达到求和的目的. 3.等差或等比数列的求和直接用公式计算,要注意求和的项数,防止疏漏.4.最好能记忆一些常见数列的求和公式,如正整数列、正奇数列、正偶数列、正整数的平方构成的数列等. 5.数列的实际应用题要注意分析题意,将实际问题转化为常用的数列模型.6.数列的综合问题涉及到的数学思想:函数与方程思想(如:求最值或基本量)、转化与化归思想(如:求和或应用)、特殊到一般思想(如:求通项公式)、分类讨论思想(如:等比数列求和,分q =1或q ≠1)等.1.已知等差数列{a n }的前n 项和为S n ,且满足a 5=4-a 3,则S 7=( ) A .7 B .12 C .14 D .21解:由a 5=4-a 3,得a 5+a 3=4=a 1+a 7,所以S 7=7(a 1+a 7)2=14.故选C .2.(2016·新余三校联考)数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( ) A .-200 B .-100 C .200 D .100解:根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100.故选D .3.设函数f (x )=x m +ax 的导函数为f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1C.nn -1D.n +1n解:由f ′(x )=mx m -1+a =2x +1得m =2,a =1.所以f (x )=x 2+x ,则1f (n )=1n (n +1)=1n -1n +1.所以S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1.故选A . 4.已知正数组成的等差数列{a n }的前20项的和是100,那么a 6·a 15的最大值是( )A .25B .50C .100D .不存在解:由条件知,a 6+a 15=a 1+a 20=110S 20=110×100=10,a 6>0,a 15>0,所以a 6·a 15≤⎝⎛⎭⎫a 6+a 1522=25,等号在a 6=a 15=5时成立,即当a n =5(n ∈N *)时,a 6·a 15取最大值25.故选A .5.设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( ) A.a 5a 3 B.S 5S 3 C.a n +1a n D.S n +1S n解:数列{a n }为等比数列,由8a 2+a 5=0,知8a 2+a 2q 3=0,因为a 2≠0,所以q =-2,a 5a 3=q 2=4;S 5S 3=1-q 51-q 3=113;a n +1a n =q =-2;S n +1S n =1-q n +11-q n ,其值与n 有关.故选D . 6.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n年的累计产量为f (n )=12n (n +1)(2n +1)(单位:t),但如果年产量超过150 t ,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是( ) A .5年 B .6年 C .7年 D .8年解:由已知可得第n 年的产量a n =f (n )-f (n -1)=3n 2.当n =1时也适合,据题意令a n ≥150⇒n ≥52,即数列从第8项开始超过150,即这条生产线最多生产7年.故选C .7.已知数列{a n }满足a n =1+2+3+…+nn ,则数列⎩⎨⎧⎭⎬⎫1a n a n +1 的前n 项和为________.解:a n =1+2+3+…+n n =n +12,1a n a n +1=4(n +1)(n +2)=4⎝⎛⎭⎫1n +1-1n +2,所求的前n 项和为4(12-13+13-14+…+1n +1-1n +2)=4⎝⎛⎭⎫12-1n +2=2n n +2.故填2nn +2.8.已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n +2S n -1=n ,则S 2 017的值为________.解:当n ≥2时,a n +2S n -1=n ,又a n +1+2S n =n +1,两式相减,得a n +1+a n =1(n ≥2).又a 1=1,所以S 2 017=a 1+(a 2+a 3)+…+(a 2 016+a 2 017)=1 009.故填1 009.9.已知等差数列{a n }满足:a n +1>a n (n ∈N *),a 1=1,该数列的前三项分别加上1,1,3后成等比数列,a n +2log 2b n =-1.(1)分别求数列{a n },{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .解:(1)设d 为等差数列{a n }的公差,且d >0,由a 1=1,a 2=1+d ,a 3=1+2d ,分别加上1,1,3成等比数列,得(2+d )2=2(4+2d ), d >0,所以d =2,所以a n =1+(n -1)×2=2n -1, 又因为a n +2log 2b n =-1,所以log 2b n =-n ,即b n =12n .(2)T n =121+322+523+…+2n -12n ①,12T n =122+323+524+…+2n -12n +1②, ①-②,得12T n =12+2⎝⎛⎭⎫122+123+124+…+12n -2n -12n +1. 所以T n =1+1-12n -11-12-2n -12n =3-12n -2-2n -12n =3-2n +32n .10.在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;(2)设S n 是数列{|a n |}的前n 项和,求S n .解:(1)由2a n +1=a n +2+a n 可得{a n }是等差数列,且公差d =a 4-a 14-1=2-83=-2.所以a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.即当n ≤5时,a n ≥0,n ≥6时,a n <0. 所以当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5) =-(-n 2+9n )+2×20=n 2-9n +40,所以S n =⎩⎪⎨⎪⎧-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式; (2)设b n =log 2a 2na 2n -1,n ∈N *,求数列{b n }的前n 项和.解:(1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4),即a 4-a 2=a 5-a 3, 所以a 2(q -1)=a 3(q -1),又因为q ≠1,故a 3=a 2=2,由a 3=a 1q ,得q =2, 当n =2k -1(k ∈N *)时,a n =a 2k -1=2k -1=2n -12,当n =2k (k ∈N *)时,a n =a 2k =2k =2n 2,所以{a n }的通项公式为a n =⎩⎪⎨⎪⎧2n -12,n 为奇数,2n 2,n 为偶数.(2)b n =log 2a 2n a 2n -1=n2n -1,设数列{b n }的前n 项和为S n ,则S n =1+221+322+…+n2n -1.所以12S n =121+222+323+…+n 2n .两式相减得12S n =1+121+122+123+…+12n -1-n2n=1-12n1-12-n 2n =2-n +22n .所以S n =4-n +22n -1.1.数列{a n }的通项公式为a n =1n +n +1,若{a n }的前n 项和为24,则n =( )A .25B .576C .624D .625解:a n =n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1,令S n =24得n =624.故选C .2.在等差数列{a n }中,若a 1,a 2 019为方程x 2-10x +16=0的两根,则a 2+a 1 010+a 2 018=( ) A .10 B .15 C .20 D .40解:由题意知,a 1+a 2 019=a 2+a 2 018=2a 1 010=10,所以a 2+a 1 010+a 2 018=3a 1 010=15.故选B . 3.已知数列{a n }中,a 1=2,a n +1-2a n =0,b n =log 2a n ,那么数列{b n }的前10项和等于( ) A .130 B .120 C .55 D .50解:因为a 1=2,a n +1=2a n ,故{a n }是首项、公比均为2的等比数列.故a n =2·2n -1=2n ,b n =log 22n =n .所以b 1+b 2+…+b 10=1+2+3+…+10=1+102×10=55.故选C .4.已知数列{a n }中的前n 项和S n =n (n -9),第k 项满足7<a k <10,则k 等于( ) A .7 B .8 C .9 D .10解:当k ≥2时,a k =S k -S k -1=k 2-9k -(k -1)2+9(k -1)=2k -10,k =1时也适合. 由7<a k <10,得7<2k -10<10,所以172<k <10,所以k =9.故选C .5.设直线nx +(n +1)y =2(n ∈N *)与两坐标轴围成的三角形面积为S n ,则S 1+S 2+…+S 2 018的值为 ( ) A.2 0152 016 B.2 0162 017 C.2 0172 018 D.2 0182 019解:直线与x 轴交于⎝⎛⎭⎫2n ,0,与y 轴交于⎝ ⎛⎭⎪⎫0,2n +1,所以S n =12·2n ·2n +1=1n (n +1)=1n -1n +1.所以原式=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫12 018-12 019 =1-12019=20182019.故选D .6.已知函数f (n )=n 2cos(n π),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( ) A .0 B .-100 C .100 D .10 200解:因为a n =f (n )+f (n +1),所以a 1+a 2+a 3+…+a 100=[f (1)+f (2)]+[f (2)+f (3)]+…+[f (100)+f (101)]=(-12+22)+(22-32)+…+(1002-1012)=3+(-5)+7+(-9)+…+199+(-201),共100项,故所求为-2×50=-100.故选B .7.(2017·江苏)等比数列{a n }的各项均为实数,其前n 项的和为S n ,已知S 3=74,S 6=634,则a 8=________.解:当q =1时,显然不符合题意;当q ≠1时,⎩⎪⎨⎪⎧a 1(1-q 3)1-q =74,a 1(1-q 6)1-q=634,解得⎩⎪⎨⎪⎧a 1=14,q =2,则a 8=14×27=32.故填32.8.(2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解:设该等比数列的公比为q ,则q =a 2+a 4a 1+a 3=12,可得a 1+14a 1=10,得a 1=8,所以a n =8·⎝⎛⎭⎫12n -1=⎝⎛⎭⎫12n -4.所以a 1a 2…a n =⎝⎛⎭⎫12-3-2-1+0+…+(n -4)=⎝⎛⎭⎫12n 2-7n2,易知当n =3或n =4时,12(n 2-7n )取得最小值-6,故a 1a 2…a n 的最大值为⎝⎛⎭⎫12-6=64.故填64.9.在等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,公比为q ,且b 2+S 2=12,q =S 2b 2.(1)求a n 与b n ;(2)证明:13≤1S 1+1S 2+…+1S n <23.解:(1)设数列{a n }的公差为d .因为⎩⎪⎨⎪⎧b 2+S 2=12,q =S 2b 2, 所以⎩⎪⎨⎪⎧q +6+d =12,q =6+dq .解得q =3或q =-4(舍),d =3.故a n =3+3(n -1)=3n ,b n =3n -1. (2)证明:因为S n =n (3+3n )2,所以1S n =2n (3+3n )=23⎝⎛⎭⎫1n -1n +1.故1S 1+1S 2+…+1S n =23[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1]=23⎝⎛⎭⎫1-1n +1.因为n ≥1,所以0<1n +1≤12,所以12≤1-1n +1<1,所以13≤23⎝⎛⎭⎫1-1n +1<23,即13≤1S 1+1S 2+…+1S n <23. 10.(2016·山东)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n .求数列{c n }的前n 项和T n .解:(1)因为数列{a n }的前n 项和S n =3n 2+8n ,所以a 1=11,当n ≥2时,a n =S n -S n -1=3n 2+8n -3(n -1)2-8(n -1)=6n +5, 又a n =6n +5对n =1也成立,所以a n =6n +5.又因为{b n }是等差数列,设公差为d ,则a n =b n +b n +1=2b n +d .当n =1时,2b 1=11-d ;当n =2时,2b 2=17-d ,解得d =3,所以数列{b n }的通项公式为b n =a n -d2=3n +1.(2)由c n =(a n +1)n +1(b n +2)n =(6n +6)n +1(3n +3)n =(3n +3)·2n +1, 于是T n =6×22+9×23+12×24+…+(3n +3)×2n +1, 两边同乘以2,得2T n =6×23+9×24+…+(3n )×2n +1+(3n +3)×2n +2, 两式相减,得-T n =6×22+3×23+3×24+…+3×2n +1-(3n +3)×2n +2=3×22+3×22(1-2n )1-2-(3n +3)×2n +2,所以T n =-12+3×22(1-2n )+(3n +3)×2n +2=3n ·2n +2.已知数列{a n }满足a 1=35,a n +1=3a n2a n +1,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -1为等比数列.(2)是否存在互不相等的正整数m ,s ,t ,使m ,s ,t 成等差数列,且a m -1,a s -1,a t -1成等比数列?如果存在,求出所有符合条件的m ,s ,t ;如果不存在,请说明理由.解:(1)证明:因为a n +1=3a n 2a n +1,所以1a n +1=13a n +23,所以1a n +1-1=13⎝⎛⎭⎫1a n -1. 因为a 1=35,所以1a 1-1=23,所以数列⎩⎨⎧⎭⎬⎫1a n -1是首项为23,公比为13的等比数列.(2)由(1)知,1a n -1=23×⎝⎛⎭⎫13n -1=23n ,所以a n =3n 3n +2.假设存在互不相等的正整数m ,s ,t 满足条件,则有⎩⎪⎨⎪⎧m +t =2s ,(a s -1)2=(a m -1)(a t -1).由a n =3n3n +2与(a s -1)2=(a m -1)(a t -1),得⎝⎛⎭⎫3s 3s +2-12=⎝⎛⎭⎫3m 3m +2-1⎝⎛⎭⎫3t 3t +2-1, 即3m +t +2×3m +2×3t =32s +4×3s . 因为m +t =2s ,所以3m +3t =2×3s .又3m +3t ≥23m +t =2×3s ,当且仅当m =t 时,等号成立, 这与m ,s ,t 互不相等矛盾,所以不存在互不相等的正整数m ,s ,t 满足条件.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1 D .6解:由等差数列的性质知a 2,a 4,a 6成等差数列,所以a 2+a 6=2a 4,所以a 6=2a 4-a 2=0.故选B . 2.已知数列{a n }为2,0,2,0,…,则下列各项不可以作为数列{a n }通项公式的是( )A .a n =1+(-1)n +1B .a n =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数C .a n =1-cos n πD .a n =2sinn π2解:若a n =2sin n π2,则a 1=2sin π2=2,a 2=2sinπ=0,a 3=2sin 3π2=-2,不符合题意.故选D .3.在数列{a n }中,“对任意的n ∈N *,a 2n +1=a n a n +2”是“数列{a n }为等比数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解:若a n =0,满足a 2n +1=a n ·a n +2,但{a n }不是等比数列.故选B .4.(2015·全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为a n 的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192C .10D .12 解: 因为公差d =1,S 8=4S 4,所以8a 1+12×8×7=4(4a 1+6),解得a 1=12,所以a 10=a 1+9d =12+9=192.故选B .5.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( ) A .n (n +1) B .n (n -1)C.n (n +1)2D.n (n -1)2解:因为d =2,a 2,a 4,a 8成等比数列,所以a 24=a 2a 8,即(a 2+2d )2=a 2(a 2+6d ),解得a 2=4,a 1=2.所以利用等差数列的求和公式可求得S n =n (n +1).故选A .6.(2016·江西八校联考)数列{a n }的前n 项和S n =2n 2+3n (n ∈N *),若p -q =5(p ,q ∈N *),则a p -a q =( ) A .10 B .15 C .-5 D .20解:当n ≥2时,a n =S n -S n -1=2n 2+3n -[2(n -1)2+3(n -1)]=4n +1,当n =1时,a 1=S 1=5,符合上式,所以a n =4n +1,所以a p -a q =4(p -q )=20.故选D .7.已知公差不为零的等差数列{a n }与公比为q 的等比数列{b n }有相同的首项,同时满足a 1,a 4,b 3成等比数列,b 1,a 3,b 3成等差数列,则q 2=( ) A.14 B.16 C.19 D.18解:设数列的首项为a ,等差数列{a n }的公差为d ,⎩⎪⎨⎪⎧2a 3=b 1+b 3,a 24=a 1·b 3, 将a ,d ,q 代入得⎩⎪⎨⎪⎧2(a +2d )=a +aq 2, ①(a +3d )2=a ·aq 2, ② 化简得(a +3d )2=a (a +4d ),解得a =-92d (d ≠0),代入①式得q 2=19.故选C .8.执行如图所示的程序框图,如果输入n =3,则输出的S =( )A.37B.67C.89D.49解:第一次循环后S =11×3=13,i =2;第二次循环后S =11×3+13×5=12×⎝⎛⎭⎫1-13+13-15=25,i =3;第三次循环后S =11×3+13×5+15×7=12×(1-13+13-15+15-17)=37,此时i =4>3,退出循环,输出结果S =37.故选A .9.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 2 017=( )A .lg2 018B .lg2 017C .-lg2 018D .-lg2 017解:因为y ′=(n +1)x n ,所以曲线y =x n +1在点(1,1)处的切线斜率为n +1,切线方程为y -1=(n +1)(x -1),令y =0,得x n =1-1n +1=n n +1.则a n =lg x n =lg n n +1,所以a 1+a 2+…+a 2 017=lg ⎝⎛⎭⎫12×23×…×2 0172 018=lg 12 018=-lg2 018.故选C .10.已知在数列{a n }中,a n =n 2+λn ,且{a n }是递增数列,则实数λ的取值范围是( ) A .(-2,+∞) B .[-2,+∞) C .(-3,+∞) D .[-3,+∞)解:由题意可知a n +1>a n 对任意正整数n 恒成立,即(n +1)2+λ(n +1)>n 2+λn 对任意正整数n 恒成立,即λ>-2n -1对任意正整数n 恒成立,故λ>-3.另解,由对称轴-λ2<32求解.故选C .11.已知a n =⎝⎛⎭⎫13n ,把数列{a n }的各项排列成如下的三角形形状,a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9……记A (m ,n )表示第m 行的第n 个数,则A (10,12)=( )A.⎝⎛⎭⎫1393B.⎝⎛⎭⎫1392C.⎝⎛⎭⎫1394D.⎝⎛⎭⎫13112解:前9行一共有1+3+5+…+17=81个数,而A (10,12)表示第10行的第12个数,所以n =93,即A (10,12)=a 93=⎝⎛⎭⎫1393.故选A . 12.设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中,正数的个数是( )A .25B .50C .75D .100解:当1≤n ≤24时,a n >0,当26≤n ≤49时,a n <0,但其绝对值要小于1≤n ≤24时相应的值,当51≤n ≤74时,a n >0,当76≤n ≤99时,a n <0,但其绝对值要小于51≤n ≤74时相应的值,所以当1≤n ≤100时,均有S n >0.故选D .二、填空题:本题共4小题,每小题5分,共20分.13.(2017·北京)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解:-1+3d =-q 3=8⇒d =3,q =-2⇒a 2b 2=-1+3-1×(-2)=1.故填1.14.(2017·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 解:因为{a n }为等比数列,设公比为q . ⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3, 即⎩⎪⎨⎪⎧a 1+a 1q =-1, ①a 1-a 1q 2=-3, ②显然q ≠1,a 1≠0, ②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.故填-8.15.(2015·武汉调研)《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加________尺.解:设每天增加的数量为x 尺,则5×30+30×(30-1)x 2=390,所以x =1629.故填1629.16.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=2S n +n +1(n ∈N *),则数列{a n }的通项公式a n =________. 解:因为S n +1=2S n +n +1, 当n ≥2时,S n =2S n -1+n ,两式相减得,a n +1=2a n +1,所以a n +1+1=2(a n +1),即a n +1+1a n +1=2.又S 2=2S 1+1+1,a 1=S 1=1,所以a 2=3,所以a 2+1a 1+1=2,所以a n +1=2×2n -1=2n , 所以a n =2n -1.故填2n -1.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)数列{a n }的前n 项和为S n ,且满足S n =4a n -3(n ∈N *),求a n . 解:S n =4a n -3,则S n -1=4a n -1-3,两式相减,得a n a n -1=43.又a 1=4a 1-3,所以a 1=1,所以a n =⎝⎛⎭⎫43n -1.18.(12分)已知等比数列{a n }中,a 1=13,公比q =13.(1)S n 为{a n }的前n 项和,证明:S n =1-a n2;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.解:(1)证明:因为a n =13×⎝⎛⎭⎫13n -1=13n ,S n =13⎝⎛⎭⎫1-13n 1-13=1-13n 2,所以S n =1-a n 2.(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n (n +1)2.所以{b n }的通项公式为b n =-n (n +1)2.19.(12分)(2016·北京)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n = a n + b n ,求数列{c n }的前n 项和.解:(1)等比数列{b n }的公比q =b 3b 2=93=3,所以b 1=b 2q =1,b 4=b 3q =27.设等差数列{a n }的公差为d . 因为a 1=b 1=1,a 14=b 4=27,所以1+13d =27,即d =2.所以a n =2n -1. (2)由(1)知,a n =2n -1,b n =3n -1. 因此c n =a n +b n =2n -1+3n -1. 从而数列{c n }的前n 项和S n =1+3+…+()2n -1+1+3+…+3n -1 =n ()1+2n -12+1-3n 1-3=n 2+3n -12.20.(12分)已知数列{a n }与{b n },若a 1=3且对任意正整数n 满足a n +1-a n =2,数列{b n }的前n 项和S n =n 2+a n .(1)求数列{a n },{b n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .解:(1)由题意知{a n }是以3为首项,2为公差的等差数列. 所以a n =2n +1. 当n =1时,b 1=S 1=4;当n ≥2时,b n =S n -S n -1=(n 2+2n +1)-[(n -1)2+2(n -1)+1]=2n +1,对b 1=4不成立.所以数列{b n }的通项公式为b n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.(2)由(1)知当n =1时,T 1=1b 1b 2=120.当n ≥2时, 1b n b n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3, 所以T n =120+12[⎝⎛⎭⎫15-17+⎝⎛⎭⎫17-19+…+(12n +1-12n +3)]=120+12⎝⎛⎭⎫15-12n +3=120+n -110n +15=6n -120(2n +3). 当n =1时仍成立,所以T n =6n -120(2n +3).21.(12分)(2017·天津)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2.所以b n =2n . 由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16,②联立①②,解得a 1=1,d =3,由此可得a n =3n -2.所以,数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n . (2)设数列{a 2n b 2n -1}的前n 项和为T n ,由a 2n =6n -2,b 2n -1=2×4n -1,有a 2n b 2n -1=(3n -1)×4n , 故T n =2×4+5×42+8×43+…+(3n -1)×4n ,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1, 上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1 =12×(1-4n )1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.得T n =3n -23×4n +1+83.所以,数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.22.(12分)(2017·山东)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2),…,P n +1(x n +1, n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .解:(1)设数列{x n }的公比为q ,由已知q >0.由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2, 所以3q 2-5q -2=0,因为q >0,所以q =2,x 1=1, 因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,P 3,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,Q 3,…,Q n +1, 由(1)得x n +1-x n =2n -2n -1=2n -1.记梯形P n P n +1Q n +1Q n 的面积为b n . 由题意b n =(n +n +1)2×2n -1=(2n +1)×2n -2,所以T n =b 1+b 2+b 3+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2① 又2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1,② ①-②得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+2(1-2n -1)1-2-(2n +1)×2n -1. 所以T n =(2n -1)×2n +12.。
高三数学数列的求和

三、小结 1.掌握各种求和基本方法; 2.利用等比数列求和公式时注意 分 q 1或q 1讨论。
四、作业
优化设计
优游 / 优游
lqu24hmo
一点寒光,看到这是个面目狰狞的牛头面具,仿佛来自地狱的勾魂使者一般,苍白的面庞,血红色的獠牙,黑色的牛角坚硬粗犷。我 不会又要死了吧,脊背的汗把衣服浸湿了,风一吹黏在皮肤上很难受,我逼迫自己冷静下来,想着接下来该怎么办,我缓缓开口: “你们可能找错人了,我只是个凡人”。说完就想抽自己个嘴巴,声音中的颤抖连自己都听出来了。连双手都在控制不住的发抖。他 一直保持着这个姿势一动不动,笔直的站着像个木偶一样,拿着剑架在我的脖子上,此时周围已经又多了五个和他一模一样装扮的人。 此时头脑一片空白,但心里有个声音再说“快想办法,不能这样束手就擒。”又有一个声音说:“先别跑,看看他们怎么弄,他们到 底想干嘛,万一你逃跑不成反而将他们激怒了直接把你宰了怎么办。”正在犹豫时,电光一闪般,箭矢以流星坠地般的速度直抵剑士 的心脏,拿剑指着我的那人突然倒地死了。又一支箭飞过来,我对面的面具人马上极速侧身一偏,还来不及回转身来,另一只箭击中 了左肩膀并在一瞬间发出暴雷般的巨响,左肩膀直接炸开了,血直接溅到我的脸上,我在想怎么回事,赶紧反应过来,赶紧往树林里 跑去,后面又有一个倒下了,剩下的两个朝我这边追过来。突然间狂风怒号,呼呼作响,乌云密布,电闪雷鸣,仿佛是天在嘶吼,在 咆哮,云层越来越厚,压得人喘不过气来,空间大片开裂。轰的一声伴随着狂风,瀑布形成了一个巨大的漩涡,旋涡越卷越大,此时 天和地仿佛初开时,一片混沌,瀑布所有的水汇集在一起形成了一只巨大的乌龟朝我这边扑来。可仔细看才发现那并不是乌龟,虽然 有乌龟的壳,但它的头却是龙头,速度快的根本就不是乌龟嘛,闪电在嘶吼着,巨龟踏着闪电而来,我现在才知道什么是气场全开, 巨龟瞬间来到我面前,它的犄角触碰到我的鼻尖,在那么近的距离,它全是水形成的。水在它的全身奔走流动,我清晰的看到这就是 龙的头,细长的胡须随风摆动,它张开嘴呼出得起都是冰冷清冽的,它的眼神一直在上下打量我。然后伸出石头舔了我的脸庞,与之 前不同的是,它的舌头又软又暖,像小狗一样。快速的转过身张开大口吞噬了剩余的两个面具人,瞬间消失不见,天空又恢复成之前 的样子面具人也随着消失了。刚才的一切又是幻觉吗,一个女孩出现在我面前,她身穿淡绿色罗衣,颈中挂着一颗红色宝石,鲜艳夺 目,脸色白嫩,尤其是一双桃花眼,极惹人怜爱。随意散落的青丝随风散落。她看着我说:“烦人的家伙都消失了,你好,我是婠青, 这里的桫椤树妖。”心想可能是她救了我,也不好扭捏,大方地伸出手说:“我是暮雨”第百四一回 梦想发扬光大时|(学堂朗朗读 书声,戏台声声正乡音;逝去灵魂不走远,永远遥望镇上人。)在“
高中数学数列求和方法

高中数学数列求和方法数列是数学中常见的概念之一,它是由一系列有序的数所构成的集合。
数列求和是数列中的重要问题之一,可分为等差数列和等比数列求和两类。
一、等差数列求和1.表达式法对于等差数列,其通项公式为an=a1+(n-1)d,其中a1表示首项,d表示公差。
若已知数列的首项、末项和项数,则可以根据求和公式Sn=n(a1+an)/2来求和,其中Sn表示数列的和。
这种方法适用于已知数列的前n项求和。
2.规律法有些等差数列存在规律,可通过分组进行求和。
例如,对于等差数列1,4,7,…,97,可将其分解为(1+97)+(4+94)+(7+91)+…+(49+49),共有25组,每组的和都是98、因此,该数列的和等于25×98=2450。
3.差分法等差数列的求和还可以利用差分法进行求解。
首先将数列的前n项依次相减得到一个新的数列,然后再对新数列进行求和,即可得到原数列的和。
例如,对于等差数列1,2,3,…,100的和,首先得到的差分数列为1,1,1,…,1,接着对差分数列进行求和,得到的和等于100。
二、等比数列求和1.通项公式法等比数列的通项公式为an=a1×q^(n-1),其中a1表示首项,q表示公比。
已知数列的首项、末项和项数时,可以利用求和公式Sn=a1(q^n-1)/(q-1)来求和。
这种方法适用于已知数列的前n项求和。
2.等比中项法对于等比数列,若首项和第三项已知,则可以求出公比q=(第3项/首项)^(1/2),从而求得数列的和。
这种方法适用于已知数列的首项和第三项求和。
3.分组求和法对于一些等比数列,可以通过合理的分组求和来得到数列的和。
例如,对于等比数列1,3,9,…,6561,可以发现这个数列可以分解为(1+3)+(3+9)+(9+27)+…+(2187+6561),共有10组,每组的和为4、因此,该数列的和等于10×4=40。
三、求和公式的推导1.等差数列求和公式的推导我们将等差数列的前n项分别记作a1,a2,…,an。
数列求和课件-2025届高三数学一轮复习

(2)设 =
,数列{ }的前项和为 ,若 = ,求的值.
+
【解】 由(1)知, =
=
=
−
,
+
− +
−
+
所以 = − + − + ⋯ +
−
−
+
= −
=
.
+
×[− ]
−
−×
错位相减法求和的注意事项
(1)掌握解题的“3个步骤”
(2)注意解题的“3个关键”
①要善于识别题目类型,特别是等比数列的公比为负数的情形.
②在写出“ ”与“ ”的表达式时应特别注意将两式“错项对齐”以便下一
步准确写出“ − ”的表达式.
③在应用错位相减法求和时,若等比数列的公比为参数,应分公比 = 和
− = − = .故
2.在数列{ }中, =
2 023
_______.
解析:由题意得 =
所以 =
= .
−
+ −
+
,若数列{ }的前项和为
,则
= −
,
+
+
+ ⋯+ −
=
或可求和的数列组成的,则求和时可用分组求和法,分别求和后再相加减.
高三数学数列求和1

厮杀……战斗结束了,校霸们的队伍全军覆灭,垂死挣扎的芝麻毒脖鬼如同蜡像一样迅速熔化……双方斗士残碎的肢体很快变成金币和各种各样的兵器、珠宝、奇书… …纷纷从天落下!蘑菇王子:“哈哈!我找到太阳红钻石啦!”知知爵士:“咱们终于得到红烧巨乌贼颗太阳红钻石!”蘑菇王子:哈哈!真不错!!外力又长一层, 现在咱们的外力已经是第四十四层啦!”知知爵士:“嗯嗯!我感觉很舒服!看来咱们支票上的宇宙币也该增加了……”第五章第二天一早喷薄而出、光芒四射的闪灯 柱梦幻滩极似一个勤劳的农夫。极目远方,在闪灯柱梦幻滩的南方,隐蔽着若有若无的非常像铁砧模样的碳黑色的秀雅的仙岛,凝目看去,那里的风光非常像宁静的夜 蛾,那里的风貌真的很神妙,一定会有很多不为人知的秘密。在闪灯柱梦幻滩的后边,竖卧着说不清楚的非常像一片梨妖模样的浅绿色的梦幻迷蒙的瀑布,游目四望, 那里的景致非常像怪异的花海,那里的风光好有趣,只是路有些不好走。在闪灯柱梦幻滩的左方,漫步着怪异的特别像一片云梯模样的亮蓝色的风流的峰峦,极目远视 ,那里的景象宛如兴致颇高的按钮,那里的景致有点怪怪的,真像一个好去处。在闪灯柱梦幻滩的西北方向,晃动着隐隐约约的极像一片标签模样的墨绿色的闪耀的海 景,举目观瞧,那里的景象酷似宁静的兔子,那里的景观真像一个好去处,只是路途有些遥远。在闪灯柱梦幻滩上面,飘浮着隐隐约约的纯灰色奇云,那模样好像漂浮 着很多大街,眺望远方,天空的景象好像宁静的葵花,样子十分的恬淡。闪灯柱梦幻滩四周闪烁着一种空气中艺术的药味,这种味道出奇的浓烈,不用鼻子也能用手摸 到……忽然,闪灯柱梦幻滩靠近地平线之处荡过来美妙藓香,没多久,若有若无的芬芳渐渐远去,只留下一丝清凉晨风的余香……不一会儿,闪灯柱梦幻滩迷蒙处又游 荡过来一阵蛙鸣,那是一种十分神奇的声音,能让你体验到一种飘飘欲仙的动感……飘入闪灯柱梦幻滩后,身上就有一种痒痒的,非常温柔的感觉。整个闪灯柱梦幻滩 让人感到一种挥之不去的、深浅莫测的明亮和神妙……壮扭公主:“是这里吗?”月光妹妹:“应该就是这里了!估计那两个魔鬼和校妖很快就要到了……”壮扭公主 :“嘿嘿!那还等什么?赶快做笼子吧,到时候我负责安排那两个老魔鬼,你还是修理那些校精……”月光妹妹:“OK!这回咱们弄一个先进的玩玩!”于是月光妹 妹和壮扭公主立刻悬空念起了咒语,只见一道很像蘑菇模样的墨蓝色亮光从天而降,威猛地在方圆五百公里内形成了只有月光妹妹和壮扭公主才能看见的五层蘑菇形的 光钵……不一
高三数学数列的求和

13 23 33 n3 [ n(n 1) ]2 2
二、倒序求和法
倒序求和法在教材中是推导等差数列前n 项和的方法
例1.设f
x
4x 4x 2
,求f
1 2008
f
例3:求Sn
1 1 2
1 23
n
1 (n
1)
练习
.求和
1 Sn=2×5
1 +5×8
1 +8×11
1 + …+(3n-1) (3n+2)
常见的拆项公式
1. 1 1 1 n(n 1) n n 1
2. 1 1 ( 1 1 ) n(n k ) k n n k
3. 1
11
1
(
)
(2n 1)(2n 1) 2 2n 1 2n 1
4.
1
1[ 1
1
]
n(n 1)(n 2) 2 n(n 1) (n 1)(n 2)
三、错位相消法
“错位相减法”求和,常应用于型如
{anbn}的数列求和,其中{an}为等差数 列, {bn} 为等比数列.
例2.求数列 x, 2x2,3x3, … nxn , …
的前n项和
练习: 求和Sn
1 2
2 4
3 8
n 2n
.
Sn
2
2n 2n
四、裂项相消法
“裂项相消法”,此法常用于形如 {1/f(n)g(n)}的数列求和,其中f(n),g(n) 是关于n(n∈N)的一次函数。把数列中的每 一项都拆成两项或几项的差,从而产生一些 可以相消的项,最后剩下有限的几项
高三数学数列的求和

11
1
(
)
(2n 1)(2n 1) 2 2n 1 2n 1
4.
1
1[ 1
1
]
n(n 1)(n 2) 2 n(n 1) (n 1)(n 2)
5. 1 1 ( a b ) a b ab
五、分组求和法
通过把数列的通项分解成几项,从而出现 几个等差数列或等比数列,再根据公式进 行求和。关键是分析通项
一、公式法 1. 等差数列求和公式:
Sn
na1
2
an
na1
nn 1
d 2
2. 等比数列求和公式:
Sn
na1 a1 1
qn
1 q
q 1 a1 anq q 1
1q
一、公式法
常见数列的前n项和公式
1 2 3 n n(n 1) ; 2
1 23
1 n (n
1)练习Leabharlann .求和1 Sn=2×5
1 +5×8
1 +8×11
1 + …+(3n-1) (3n+2)
常见的拆项公式
1. 1 1 1 n(n 1) n n 1
2. 1 1 ( 1 1 ) n(n k ) k n n k
3. 1
把通项分解成几项,从而出现 几个等差数列或等比数列进行 求和。
练习
1、求数列5,55,555, …,555…5的和
n个
an
5 9
10n
1
Sn
5 81
10n1
高考数学 第四节 数列求和教材

高考数学 第四节 数列求和教材考 点 串 串 讲 1.公式法求和 常用求和公式 Sn =n a1+an 2=na1+nn -12d ; Sn =⎩⎪⎨⎪⎧na1 q =1a11-qn 1-q =a1-anq1-q q≠1; ∑k =1nk =12n(n +1); ∑k =1nk2=16n(n +1)(2n +1); ∑k =1nk3=[12n(n +1)]2.2.错位相减法求和这是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{an·bn}的前n 项和,其中{an}、{bn}分别是等差数列和等比数列. 用乘公比错位相减法求和时,应注意:①要善于识别题目类型,特别是等比数列公比为负数的情形更值得注意. ②在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确写出“Sn -qSn”的表达式.③应用等比数列求和公式必须注意公比q≠1这一前提条件.如果不能确定公比q 是否为1,应分两种情况讨论,这在高考中经常考查. 3.倒序相加法求和将一个数列倒过来排列(倒序),当它与原数列相加时,若有公因式可提,并且剩余的项的和易于求得,则这样的数列可用倒序相加法求和.等差数列的求和公式Sn =na1+an2就是用倒序相加法推导出来的. 4.分组转化法求和 有一类数列,既不是等差数列,也不是等比数列.若将这类数列适当拆开,可分为几个等差、等比或常见的数列,即能分别求和,然后再合并. 5.裂项相消法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的某些项分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 常见的裂项公式有:(1)1n n +1=1n -1n +1(2)12n -12n +1=12(12n -1-12n +1) (3)1n n +1n +2=12⎣⎡⎦⎤1n n +1-1n +1n +2(4)1a +b =1a -b(a -b) (5)Cm -1n =Cm n +1-Cm n (6)n·n !=(n +1)!-n! (7)an =Sn -Sn -1(n≥2) (8)1n n +k =1k (1n -1n +k )(9)1n +k +n =1k(n +k -n)如果数列的通项公式可转化为f(n +1)-f(n)的形式,常采用裂项求和的方法.特别地,当数列形如{1anan +1},其中{an}是等差数列,可尝试采用此法.使用裂项法,要注意正负项相消时,消去了哪些项,保留了哪些项;你是否注意到由于数列{an}中每一项an 均裂成一正一负两项,所以互为相反数的项合并为零后,所剩正数项与负数项的项数必是一样多的,切不可漏写未被消去的项,未被消去的项有前后对称的特点. 实质上,正负项相消是此法的根源和目的.典 例 对 对 碰 题型一 公式法求和 例1设数列1,(1+2),…,(1+2+22+…+2n -1),…的前n 项和为Sn ,则Sn 的值为( ) A .2n B .2n -nC .2n +1-nD .2n +1-n -2 解析 解法一:特殊值法. 由原数列知 S1=1,S2=4.在选项中,满足S1=1,S2=4的只有选项D.解法二:看通项an =1+2+22+…+2n -1=2n -1, ∴Sn =22n -12-1-n =2n +1-n -2.故选D.答案 D点评 解法一对解答复杂的选择题有简化计算的作用,解法二利用通项an 求Sn ,为求和的通法.变式迁移1数列{an}的通项an =n2-n ,求前n 项和Sn. 解析 Sn =(12-1)+(22-2)+…+(n2-n) =(12+22+…+n2)-(1+2+…+n) =n n +12n +16-n n +12=n n +1n -13.题型二 倒序相加法求和例2设f(x)=12x +2,求f(-5)+f(-4)+…+f(0)+f(1)+…+f(5)+f(6)的值.解析 ∵f(x)=12x +2,∴f(x)+f(1-x)=12x +2+121-x +2=12x +2+122x +2=12x +2+2x2+2·2x=2+2x 2x +2×2=22.设S =f(-5)+f(-4)+…+f(0)+f(1)+…+f(5)+f(6), 则S =f(6)+f(5)+…+f(1)+f(0)+…+f(-4)+f(-5). ∴2S =[f(-5)+f(6)]+[f(-4)+f(5)]+…+[f(6)+f(-5)].∴原式=12{[f(-5)+f(6)]+[f(-4)+f(5)]+…+[f(0)+f(1)]+…+[f(6)+f(-5)]}=12×12×22=3 2.点评 对等差数列倒序相加求和时利用了an +a1=an -1+a2=…,对于f(x)=12x +2,由于f(x)+f(1-x)=22,也可产生以上效果.可见类似这种可以将若干项和转化为某项积的求和方法实际上是抓住了数列(或解析式)的特点,利用“整体”运算简化求和的一种方法.变式迁移2数列{an}是公差为d ,a0=d 的等差数列,求Sn =a0C0n +a1C1n +…+anCn n (n ∈N*). 解析 Sn =dC0n +2dC1n +3dC2n +…+ndCn n ,① Sn =ndCn n +(n -1)dCn -1n +(n -2)dCn -2n +…+dC0n ,② ①+②得2Sn =(n +1)d(C0n +C1n +C2n +…+Cn n ) =2n(n +1)d.∴Sn =(n +1)2n -1d.题型三 错位相减法求和例3求和Sn =1+2x +3x2+…+nxn -1(x≠1). 解析 ∵Sn =1+2x +3x2+…+nxn -1, ① ∴xSn =x +2x2+…+(n -1)xn -1+nxn , ② ①-②得(1-x)Sn=1+x +x2+…+xn -1-nxn=1-xn 1-x -nxn (注:当x =0时仍成立) =1-1+n xn +nxn +11-x,∴Sn =1-1+n xn +nxn +11-x 2.变式迁移3求和Sn =12+34+58+…+2n -12n .解析 ∵Sn =12+34+58+…+2n -12n ,①∴12Sn =14+38+516+…+2n -12n +1,② ①-②得12Sn =12+24+28+…+22n -2n -12n +1 =12+24-22n +11-12-2n -12n +1=12+1-42n +1-2n -12n +1 =32-2n +32n +1, ∴Sn =3-2n +32n.题型四 分组求和法例4数列{an}的前n 项和Sn =2an -1,数列{bn}满足:b1=3,bn +1=an +bn(n ∈N*). (1)求证:数列{an}为等比数列; (2)求数列{bn}的前n 项和Tn.解析 (1)证明:∵Sn =2an -1,n ∈N*, ∴Sn +1=2an +1-1.两式相减得 an +1=2an +1-2an. ∴an +1=2an ,n ∈N*. 由a1=1,知an≠0, ∴an +1an=2.由定义知{an}是首项为1,公比为2的等比数列. (2)由(1)知an =2n -1,bn +1=2n -1+bn , ∴bn +1-bn =2n -1.∴b2-b1=20,b3-b2=21,b4-b3=22,… bn -bn -1=2n -2,等式左右两边相加得bn =b1+20+21+…+2n -2=3+1-2n -11-2=2n -1+2.∴Tn =(20+2)+(21+2)+…+(2n -1+2) =(20+21+…+2n -1)+2n =2n +2n -1. 变式迁移4(1)求数列32,94,258,6516,…的前n 项和Sn ;(2)求数列9,99,999,9999,…的前n 项和Sn. 解析 (1)将各项变形,使其呈现出某种特点, 如32=1+12,94=2+14,258=3+18,…. Sn =n2+n 2+1-12n .(2)∵an =10n -1, ∴Sn =10n +1-10-9n9.题型五 裂项法求和例5已知数列{an}:1,11+2,11+2+3,…,11+2+3+…+n ,…求它的前n 项和.分析 我们先看通项an =11+2+3+…+n =2nn +1,然后将2n n +1分裂成2(1n-1n +1),求和. 解析 ∵an =2n n +1=2(1n -1n +1).∴Sn =a1+a2+…+an=2[(1-12)+(12-13)+(13-14)+…+(1n -1n +1)]=2(1-1n +1)=2nn +1.变式迁移5已知数列{an}的通项公式an =12n -12n +1,求前n 项和Sn.解析 ∵an =12(12n -1-12n +1)∴Sn =a1+a2+…+an =12[(1-13)+(13-15)+(15-17)+…+(12n -1-12n +1)] =12(1-12n +1)=n 2n +1题型六 与数列求和有关的综合题例6设数列{an}满足a1=a ,an +1=can +1-c ,n ∈N*,其中a ,c 为实数,且c≠0. (1)求数列{an}的通项公式;(2)设a =12,c =12,bn =n(1-an),n ∈N*,求数列{bn}的前n 项和Sn ;(3)若0<an <1对任意n ∈N*成立,证明:0<c≤1.解析 (1)解法一 ∵an +1-1=c(an -1),∴当a≠1时{an -1}是首项为a -1,公比为c 的等比数列. ∴an -1=(a -1)cn -1, 即an =(a -1)cn -1+1.当a =1时,an =1仍满足上式,∴数列{an}的通项公式为an =(a -1)cn -1+1(n ∈N*). 解法二 由题设得:当n≥2时,an -1=c(an -1-1)=c2(an -2-1)=…=cn -1(a1-1)=(a -1)cn -1, ∴an =(a -1)cn -1+1,n =1时,a1=a 也满足上式.所以{an}的通项公式为an =(a -1)cn -1+1(n ∈N*). (2)由(1)得bn =n(1-a)cn -1=n(12)n.Sn =b1+b2+…+bn =12+2(12)2+…+n(12)n , ①12Sn =(12)2+2(12)3+…+(n -1)(12)n +n(12)n +1,② 由①-②得12Sn =12+(12)2+…+(12)n -n(12)n +1, ∴Sn =1+12+(12)2+…+(12)n -1-n(12)n =2[1-(12)n]-n(12)n ,∴Sn =2-(2+n)(12)n.(3)由(1)知an =(a -1)cn -1+1. 若0<(a -1)cn -1+1<1, 则0<(1-a)cn -1<1.∵0<a1=a <1,∴0<cn -1<11-a(n ∈N*).由cn -1>0对任意n ∈N*成立,知c >0. 下证c≤1,用反证法.证法一 假设c >1,由函数f(x)=cx 的函数图象知,当n 趋于无穷大时, cn -1趋于无穷大.∴cn -1<11-a 不能对n ∈N*恒成立,导致矛盾,∴c≤1,∴0<c≤1.证法二 假设c >1,∵cn -1<11-a ,∴logccn -1<logc 11-a.即n -1<logc 11-a (n ∈N*)恒成立.(*)∵a ,c 为常数,∴(*)式对n ∈N*不能恒成立,导致矛盾. ∴c≤1. ∴0<c≤1. 变式迁移6已知函数g(x)=(x +2)2,(x≥0),数列{an}满足a1=1,an +1=g(an)(n ∈N*). (1)求数列{an}的通项公式;(2)记Tn =1a1+1a2+…+1an (n≥2),求证:Tn +122n +1>76.解析 (1)an +1=g(an)=(an +2)2,即an +1-an =2(n ∈N*).∴数列{an}是以a1=1为首项,2为公差的等差数列. ∴an =1+2(n -1)=2n -1, 即an =(2n -1)2(n ∈N*).(2)证明:∵1an =12n -12>12n -12n +1=12(12n -1-12n +1)(n≥2), ∴Tn =1a1+1a2+…+1an >1+12[(13-15)+…+(12n -1-12n +1)]=76-122n +1.∴Tn +122n +1>76.方 法 路 路 通1.求一般数列的前n 项和,无通法可循,需掌握求某些特殊数列前n 项和的方法,达到触类旁通.对等比数列的求和,勿忘对公比q 讨论.如果已知数列{an}、{bn}分别为等差、等比数列,求{an·bn}的前n 项和Sn ,则可用“错位相减法”——写出Sn 的表达式,两边乘公比得另一等式,然后两式相减即可.2.变换通项就是对通项公式进行一些有目的处理,像裂项就是一种常用方法:通过裂项而转化为等差、等比或自然数次方幂来求和.3.两相邻项的代数和为常数时可用“并项法”,此法往往要分n 为奇数、偶数两种情况进行讨论.另外数列求和还可用周期性求和,数学归纳法求和等. 4.求Sn 实质上是求{Sn}的通项公式,应注意对其涵义的理解. 5.数列求和时注意以下几点(1)直接用公式求和时,注意公式的应用范围和公式的推导过程.(2)注意观察数列特点和规律,在分析数列通项的基础上,或分解为基本数列求和,或转化为基本数列求和.正 误 题 题 辨例已知两个等差数列{an},{bn}的前n 项和为Sn ,Tn ,且Sn Tn =7n +14n +27(n ∈N*),求a11b11.错解Sn Tn =7n +14n +27, 可设Sn =(7n +1)k ,Tn =(4n +27)k ,k≠0, 则a11=S11-S10 =(7×11+1)k -(7×10+1)k =7k , b11=T11-T10 =(4×11+27)k -(4×10+27)k =4k , ∴a11b11=7k 4k =74. 点击 错解问题出在 “∵Sn Tn =7n +14n +27, 可设Sn =(7n +1)k ,Tn =(4n +27)k”上, 这种设法虽然可以保证“Sn Tn =7n +14n +27”成立,但因等差数列的前n 项和Sn(当公差d≠0时)不是n 的一次函数,而是n 的二次函数, 即S =d 2n2+(a1-d2)n(d≠0),错解设法把Sn ,Tn 变成了n 的一次函数, 从而改变了公式的本质特征导致错误, 或许你会问“为什么不设为Sn =(7n +1)(kn +c),Tn =(4n +27)(kn +c)呢?”, 只要你注意到表达式中没有常数项就行了,看来,深刻理解公式的结构特征为我们正确使用公式提供了有力的保证. 正解 由等差数列的性质有: a11=a1+a212,b11=b1+b212,∴a11b11=a1+a212b1+b212=a1+a212×21b1+b212×21=S21T21=7×21+14×21+27=43.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习9:求满足下列前 4项条件的数列的通项公 式 及前n项和的公式。 1 3 7 15 1 ) 、、、 2 4 8 16 1 1 1 1 2 ) 1 、 3 、 5 、 7 2 4 8 16
练习10: 已知Sn=-1+3-5+7+…+(-1)n(2n-1),
练习5: 1 1 1 1 ..... 1 1 2 1 2 3 1 2 3 4 .... n
练习6: 数列{ 1 n n 1 }的前n项和为 10 ,则n ?
4、分组求和
典型4:(书本第一册133页6) 数列{an}的通项an=2n+2n-1,求该数列的前n项和。
3)a3=3/2,S3=9/2,求an与q
1、倒序相加
典型1: Cn1+2Cn2+3Cn3+…+nCnn=? 练习1: 已知数列{an}的前n项和Sn=(n-1)2n+1,是否存 在等差数列{bn}使an=b1Cn1+b2Cn2+…+bnCnn 对一切自然数n成立。
2、错位相减
典型2 1+2×3+3×32+4×33+…+n×3n-1=? 练习2:
; https:/// 零动漫
twd81twu
处都是汪洋一片了,连小镇也已经不见了踪影,我们可去哪里寻找爹啊?”这个大坝的库容量实在太大了,连日来断断续续的降雨使婉转延绵数 十里的山涧沟壑里蓄满了水。大坝溃口的洪水直到日头正午了还在不停地倾泻着。慢慢地,水势不像先前那样凶猛了,但依然毫无泻完的迹象。 从山顶往下望去,沟里边的水也略微低下去了一些,但那条人工开凿的小路却不再是原来的样子了:在半山腰的地方,不但小路不见了,而且山 的侧壁上还骇然出现了一个巨大的窟窿!吃惊和绝望让兄妹三人目瞪口呆!悲痛欲绝的心和满脸的泪水一起冻结了在烈日的烘烤下,失水太多的 他们已经再也流不出眼泪,悲痛欲绝的心慢慢地变得麻木不仁了。终于,三个人无力地跌坐在了行李卷的旁边。他们必须地接受这个残酷的现实 了:爹爹已经不在人世了!今后的路,他们只能自己走了!长兄如父。刚满十八岁的耿正心里非常明白,自己以后就是弟弟和妹妹的主心骨了! 从此之后,耿家人闯荡江南创建家业,光宗耀祖造福乡里的重担,已经全部落在了自己和弟弟妹妹的肩上!看着弟弟和妹妹干裂的嘴唇,耿正咬 咬牙说:“咱们走哇!客栈掌柜的说过,十里外才有村庄呢”98第四十四回 改道前往景德镇|(江南沿岸行数日,始终难找立足地;入夏以后雨 水增,改道前往景德镇。)在朗朗晴日里金色朝阳的照耀下,耿家父子四人告别白家母女和东伢子,肩挑背扛一步步走出武昌镇,沿着离长江边 儿不远的一条大道,往东南方向而去了。这一次长途跋涉可不比先前离家直奔汉口镇时。那个时候,他们有驴拉平板车,所以相对来说省劲不少; 而此时,父子们却只能用双腿来丈量前方的道路了。好在时间过去已经一年半还多一些了,耿正兄妹三个都又长大了一些,也更能吃苦了。大家 一心盼望着前面不远,也许就会有一个适合于父子们再次落脚发展的地方,就鼓足勇气向前走去。耿老爹挑着两个大箩筐颤悠悠地一边往前走着, 一边还兴致勃勃地对耿正兄妹三人说:“你们看哪,这如今正是江南春日好风光呢!咱父子们就当是长途游玩儿了。好好儿地看一看这美丽的江 南景色,回去了给大家伙儿说起来,咱们可是有的说喽!”如此,也就以苦为乐了。当然,耿老爹心里很清楚,长途跋涉不可以太劳累的;因此, 父子们一直都是不紧不慢地往前走。没用几天,耿家父子们就来到了一个美丽的江南大镇——水南镇(今黄石市境界)。早在汉口镇的时候,耿 老爹就听人说起过,这里不但盛产水稻、小麦、玉米等粮食作物,而且蔬菜和水果的种类也很多,油菜、菠菜、大白菜、四季豆、黄瓜、南瓜、 莲藕;柑橘、桃子、梨子、李子、柿子等等应有尽有。此外,镇子上的人家,养猪、养鸡、养鸭的,以及以打鱼为生的也不
1)求S20,S21
2)求Sn
综合练习1
求下列n2个正整数之和: 1 ,2 ,3 ,4……n
2 ,3
3 ,4
,4 ,5……n-1
,5 ,6……n-2
.
.
n ,n+1,n+2,n+3…..2n-1
综合练习2
题题通第20练40页17
已知等差数列{an}的第二项为5,前10项和为 120,若从数列{an}中依次取出第2项、第4项、 第8项…第2n项,按原来的顺序组成一个新数 列{bn},且这个数列的前n项之和为Tn,试比较 Tn+1与2Tn的大小
数列求和
复习: 1、数列和的定义 Sn=a1+a2+a3+…+an
数列{an}的前n项和Sn=2n2-3n+1,则a4+a5+a6+…+a10=____
2、等差、等比数列的前n项和的公式
3、在等差、等比数列的前n项和的公式中运用了
哪些求思想:
①(等差数列)倒序相加 ②(等比数列)错位相减
1、{an}是等差数列,求满足下列条件的数列的和。 1)an=3n-2,求sn=? 2)a1+a2+a3+a98+a99+a100=15,求S100=? 2、{an}是等比数列,求满足下列条件的数列的和。 1)a6=3,q=1/2,求S6=? 2)a1=8,q=2,an=1/2,求Sn=?
10同类性质的数列归于一组,目的 是为便于运用常见数列的求和公式
典型5: 1-22+32-42+…+(2n-1)2-(2n)2=?
20局部重组转化为常见数列
练习7:
5、55、555、5555…求满足前4项条件的数列的 通项公式及前n项和公式。 练习8:
Sn=1+(1+2)+(1+2+22)+(1+2+22+23)+
1、20、300、4000、… 求满足前四项数列 的通项公式及前n项和的公式。
练习3(课本第一册142页6) 求和Байду номын сангаасS=1+2x+3x2+…+nxn-1
3、裂项相消
典型3 : 1 1 1 1 ? 1 2 2 3 n(n 1)
练习4: 已知数列 {a n }为等差数列, a1 1, 公差d 2, 1 1 1 则 ... ? a1a 2 a 2 a3 a n1a n