初中数学:等边三角形测试题

合集下载

初中数学:等边三角形练习(含解析)

初中数学:等边三角形练习(含解析)

初中数学:等边三角形练习(含解析)一、选择题1、下面的图形是轴对称图形,而且对称轴最多的是()A.等腰三角形B.等腰直角三角形C.等边三角形D.直角三角形【答案】C【解析】试题分析:根据等腰三角形的性质和等边三角形的性质进行判断.解:等腰三角形有1条对称轴,等腰直角三角形有1条对称轴,等边三角形有3条对称轴,一般的直角三角形不是轴对称图形,所以对称轴最多的是等边三角形.故应选C.考点:等边三角形2、如图所示,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD 与CE交于点F,则∠DFC的度数为()A. 60°B. 45°C. 40°D. 30°【答案】A【解析】试题分析:根据等边三角形的性质可得:AC=AB,∠CAE=∠B,根据SAS可证△AEC≌△BDA,根据全等三角形的性质可证∠BAD=∠ACE,所以∠DAC+∠ACE=60°,所以∠DFC=60°.解:∵△ABC是等边三角形,∴∠CAE=∠B=60°,在△AEC和△BDA中,AE BD EAC DBA AC AB =⎧⎪∠=∠⎨⎪=⎩,∴△AEC ≌△BDA ,∴∠BAD=∠ACE ,∵∠DAC+∠BAD=60°,∴∠DAC+∠ACE=60°,∴∠DFC=∠DAC+∠ACE=60°.故应选A.考点:1.等边三角形的性质;2.全等三角形的判定与性质3、下面给出的几种三角形:①三个内角都相等;②有两个外角为120°;③一边上的高也是这边所对的角的角平分线;④三条边上的高相等的三角形.其中是等边三角形的有( )A .4个B .3个C .2个D .1个【答案】B【解析】试题分析:根据等边三角形的定义和判定定理进行判断.解:①三角形个内角都相等的三角形是等边三角形;②有两个外角是120°的三角形的两个内角一定是60°,根据三角形内角和定理可得:第三个内角也是60°,所以这个三角形是等边三角形;③一边上的高也是这边所对的角的角平分线一定是等腰三角形,不一定是等边三角形;④根据三角形的面积公式可得:当三角形三条边上的高相等时,三角形的三条边也相等,所以这个三角形是等边三角形.所以正确的有3个.故应选B.考点:等边三角形的判定二、填空题4、在△ABC 中,如果AB=AC=BC ,则∠A =_________,∠B =___________,∠C =_________。

专题27等边三角形-2021-2022学年八年级数学上(解析版)【苏科版】

专题27等边三角形-2021-2022学年八年级数学上(解析版)【苏科版】

2021-2022学年八年级数学上册尖子生同步培优题典【苏科版】专题2.7等边三角形姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021·江苏九年级专题练习)下列条件中,不能得到等边三角形的是()A.有两个内角是60︒的三角形B.有两边相等且是轴对称图形的三角形C.三边都相等的三角形D.有一个角是60︒且是轴对称图形的三角形【答案】B【分析】根据等边三角形的判定解题.【详解】解:A、两个内角为60︒,根据三角形的内角和为180︒,可知另一个内角也为60︒,所以该三角形为等边三角形.故不符合题意;B、两边相等说明是等腰三角形或等边三角形,而这两种三角形都满足“轴对称”的条件,所以不能确定该三角形是等边三角形.故符合题意;C、三边都相等的三角形当然是等边三角形.故不符合题意;D、“轴对称”说明该三角形有两边相等,且有一个角是60︒,有两边相等且一角为60︒的三角形是等边三角形.故不符合题意;故选:B.2.(2020·苏州市吴江区盛泽第二中学九年级月考)若一个三角形有两条边相等,且有一内角为60︒,那么这个三角形一定为()A.等边三角形B.等腰三角形C.直角三角形D.钝角三角形【答案】A【分析】根据有一个角是60°的等腰三角形是等边三角形求解.【详解】解:根据有一个角是60°的等腰三角形是等边三角形可得到该三角形一定为等边三角形.故选:A.3.(2020·苏州市吴江区盛泽第二中学九年级月考)在下列命题中:①有一个外角是120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形;③有一边上的高也是这边上的中线的三角形是等边三角形;④三个外角都相等的三角形是等边三角形.正确的命题有()A.4个B.3个C.2个D.1个【答案】C【分析】根据等边三角形的性质和定义,可得:有一个角为60°的等腰三角形是等边三角形;三个内角都相等的三角形为等边三角形;再由中线的性质和三角形内角和的定义可解答本题.【详解】解:①因为外角和与其对应的内角的和是180°,已知有一个外角是120°,即是有一个内角是60°,有一个内角为60°的等腰三角形是等边三角形.该结论正确;②两个外角相等说明该三角形中两个内角相等,而等腰三角形的两个底角是相等的,故不能确定该三角形是等边三角形.该结论错误;③等腰三角形的底边上的高和中线本来就是重合的,“有一边”可能是底边,故不能保证该三角形是等边三角形.该结论错误;④三个外角都相等的三角形是等边三角形,说法正确,正确的命题有2个,故选:C.4.(2019秋•江苏省崇川区校级期中)△ABC中,AB=BC=6,∠B=60°,则AC等于()A.4B.6C.8D.10【分析】由在△ABC中,AB=BC=6,∠B=60°,可判定△ABC是等边三角形,继而可求得答案.【解析】∵在△ABC中,AB=BC=6,∠B=60°,∴△ABC是等边三角形,∴AC=6.故选:B.5.(2019秋•江苏省封开县期末)已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cm B.4cm C.6cm D.8cm【分析】根据直角三角形30°角所对的直角边等于斜边的一半解答.【解析】∵直角三角形中30°角所对的直角边为2cm,∴斜边的长为2×2=4cm.故选:B.6.(2020•宝应县一模)如图,在Rt△ABC中,∠ACB=90°,∠A=70°,CD⊥AB,垂足为D,E是BC 的中点,连接ED,则∠CED的度数是()A.20°B.40°C.55°D.70°【分析】根据三角形内角和定理求出∠B,根据直角三角形的性质得到ED=EB,得到∠EDB=∠B,根据三角形的外角的性质得到答案.【解析】∵∠ACB=90°,∠A=70°,∴∠B=20°,∵CD⊥AB,E是BC的中点,∴ED=12BC=EB,∴∠EDB=∠B=20°,∴∠CED=∠EDB+∠B=40°,故选:B.7.(2019秋•江苏省苏州期末)如图,在△ABC中,AB=AC,AD为BC边上的高,点E为AC的中点,连接DE.若△ABC的周长为20,则△CDE的周长为()A.10B.12C.14D.16【分析】根据等腰三角形的性质得到BD=DC,根据直角三角形的性质得到DE=12AC=AE,根据三角形的周长公式计算,得到答案.【解析】∵AB=AC,AD为BC边上的高,∴BD=DC,∵△ABC的周长为20,∴AC+CD=10,在Rt△ADC中,点E为AC的中点,∴DE=12AC=AE,∴△CDE的周长=DE+EC+DC=AE+EC+CD=AC+CD=10,故选:A.8.(2020春•赣榆区期中)如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC的度数为()A.35°B.40°C.45°D.60°【分析】先根据线段垂直平分线的性质及BE⊥AC得出△ABE是等腰直角三角形,再由等腰三角形的性质得出∠ABC的度数,由AB=AC,AF⊥BC,可知BF=CF,BF=EF,再根据三角形外角的性质即可得出结论.【解析】∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAC=∠ABE=45°,又∵AB=AC,∴∠ABC=12(180°﹣∠BAC)=12(180°﹣45°)=67.5°,∴∠CBE=∠ABC﹣∠ABE=67.5°﹣45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∴BF=EF,∴∠BEF =∠CBE =22.5°,∴∠EFC =∠BEF +∠CBE =22.5°+22.5°=45°.故选:C .9.(2020·宿迁市钟吾初级中学)如图,等边△ABC 中,AB=2,D 为△ABC 内一点,且DA=DB ,E 为△ABC 外一点,BE=AB ,且∠EBD=∠CBD ,连接DE ,CE ,则下列结论:①∠DAC=∠DBC ;②BE ⊥AC ;③∠DEB=30°;④若EC ∥AD ,则S △EBC =1,其中正确的有( )A .1个B .2个C .3个D .4个【答案】C 【分析】连接DC ,DE ,证ACD BCD ∆≅∆得出①DAC DBC ∠=∠;再证BED BCD ∆≅∆,得出30BED BCD ∠=∠=︒;其它两个条件运用假设成立推出答案即可.【详解】连接DC ,DE ,ABC ∆是等边三角形,AB BC AC ∴==,60ACB ∠=,DB DA =,DC DC =,在ACD ∆与BCD ∆中,AB BC DB DA DC DC =⎧⎪=⎨⎪=⎩,ACD BCD ∴∆≅∆()SSS ,1302BCD ACD ACB ∴∠=∠=∠=︒,∠DAC=∠DBC , BE AB =,BE BC ∴=,DBE DBC ∠=∠,BD BD =,在BED ∆与BCD ∆中,BE BC DBE DBC BD BD =⎧⎪∠=∠⎨⎪=⎩,BED BCD ∴∆≅∆(SAS),30BED BCD ∴∠=∠=︒.故①③正确.//EC AD ,DAC ECA ∴∠=∠,DBE DBC ∠=∠,DAC DBC ∠=∠,∴ECA DBC DBE ∠=∠=∠,∴∠EBC=2∠ACE ,BE BA =,BE BC ∴=,60BCE BEC ACE ∴∠=∠=︒+∠,在BCE ∆中三角和为180︒,即∠EBC+∠BCE+∠BEC=180°,22(60)180ACE ACE ∴∠+︒+∠=︒15ACE ∴∠=︒,30CBE ∴∠=,这时BE 是AC 边上的中垂线,故结论②错误.BE 边上的高112BC ==,1EBC S ∆∴=,故结论④是正确的.故选C .10.(2020·苏州市吴江区铜罗中学八年级月考)如图,C 是线段AB 上的一点,ACD △和BCE 都是等边三角形,AE 交CD 于M ,BD 交CE 于N ,交AE 于O ,则①DB AE =;②AMC DNC ∠=∠;③60AOB ∠=︒;④DN AM =;⑤CMN △是等边三角形.其中,正确的有( )A .2个B .3个C .4个D .5个【答案】C 【分析】易证△ACE ≌△DCB ,可得①正确;即可求得∠AOB =120°,可得③错误;再证明△ACM ≌△DCN ,可得②④正确和CM =CN ,即可证明⑤正确;即可解题.【详解】解:∵ACD △和BCE 都是等边三角形∵∠ACD =∠BCE =60°,∴∠DCE =60°,在△ACE 和△DCB 中,AC DC ACE DCB CB CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△DCB (SAS ),∴∠BDC =∠EAC ,DB =AE ,①正确;∠CBD =∠AEC ,∵∠AOB =180°−∠OAB−∠DBC ,∴∠AOB =180°−∠AEC−∠OAB =120°,③错误;在△ACM 和△DCN 中,60BDC EAC DC ACACD DCN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△ACM≌△DCN(ASA),∴AM=DN,④正确;∠AMC=∠DNC,②正确;CM=CN,∵∠ACD=∠BCE=60°,∴∠MCN=180°-∠ACD-∠BCE =60°,∴△CMN是等边三角形,⑤正确;故有①②④⑤正确.故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020•邗江区二模)如图,直线l1∥l2,等边△ABC的顶点C在直线l2上,若边AB与直线l1的夹角∠1=40°,则边AC与直线l2的夹角∠2=100°.【分析】根据等边三角形的性质可得角A等于60度,再根据两直线平行内错角相等即可求出角2的度数.【解析】如图,∵△ABC是等边三角形,∴∠A=60°,∵∠3=∠1=40°,∴∠4=60°+40°=100°,∵l1∥l2,∴∠2=∠4=100°.故答案为:100.12.(2019秋•江苏省鼓楼区期末)如图,△ABC是边长为6的等边三角形,D是BC上一点,BD=2,DE ⊥BC交AB于点E,则AE=2.【分析】在Rt△BED中,求出BE即可解决问题;【解析】∵△ABC是等边三角形,∴∠B=60°,∵DE⊥BC,∴∠EDB=90°,∠BED=30°,∵BD=2,∴EB=2BD=4,∴AE=AB﹣BE=6﹣4=2,故答案为:2.13.(2019秋•江苏省泉山区月考)如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,若MN=2,则NF=1.【分析】连接AN,AM,根据线段垂直平分线性质求出BM=AM,CN=AN,根据等腰三角形的性质求出∠C,∠B,∠MAB,∠NAC,求出△AMN是等边三角形,根据等边三角形的性质求出AN=2=CN,再求出NF即可.【解析】∵在△ABC中,AB=AC,∠A=120°,∴∠C=∠B=12(180°﹣∠A)=30°,连接AN,AM,∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,∴BM=AM,CN=AN,∴∠MAB=∠B=30°,∠C=∠NAC=30°,∴∠AMN=∠B+∠MAB=60°,∠ANM=∠C+∠NAC=60°,∴AM=AN,∴△AMN是等边三角形,∵MN=2,∴AN=2=CN,在Rt△NFC中,∠C=30°,∠NFC=90°,CN=2,∴NF=12CN=1,故答案为:1.14.(2019秋•江苏省仪征市期末)如图,在△ABC中,AB=AC=12,BC=8,BE是高,且点D、F分别是边AB、BC的中点,则△DEF的周长等于16.【分析】由三角形中位线定理和直角三角形斜边上的中线性质求出DF、EF、DE的长,即可得出答案.【解析】∵点D、F分别是边AB、BC的中点,AB=AC=12,BE是高,∴DF是△ABC的中位线,AF⊥BC,BE⊥AC,∴DF =12AC =6,EF =12BC =4,DE =12AB =6,∴△DEF 的周长=DF +EF +DE =6+4+6=16;故答案为:16.15.(2020·江苏徐州市·八年级期中)在△ABC 中,AB =AC ,∠B =60°,BC =2cm ,则AC=________cm .【答案】2【分析】由在△ABC 中,AB=BC=6,∠B=60°,可判定△ABC 是等边三角形,继而可求得答案.【详解】解:∵在△ABC 中,AB=AC ,∠B=60°,∴△ABC 是等边三角形,∴AB=AC=BC=2cm .故答案为:2.16.(2020·江苏常州市·)如图,已知在等边三角形ABC 中,点E 在AC 上,点F 在BC 上,且AE CF =,AF 、BE 相交于点O ,则BOF ∠=________°.【答案】60【分析】根据等边三角形ABC 中,AE CF =,通过证明ABE CAF ≌,得AEB AFC ,从而得到180AFC CEB ∠+∠=;根据四边形内角和360,计算得EOF ∠,再根据补角性质计算,即可得到答案. 【详解】∵等边三角形ABC 中,AE CF =∴60AE CF AB AC BAE C =⎧⎪=⎨⎪∠=∠=⎩∴ABE CAF ≌∴AEB AFC∵180AEB CEB ∠+∠=∴180AFC CEB ∠+∠=∴36036018060120EOF AFC CEB C ∠=-∠-∠-∠=--=∴18060BOF EOF ∠=-∠=故答案为:60.17(2020·江苏盐城市·八年级期中)如图,已知△ABC 是等边三角形,点B 、C 、D 、F 在同一直线上,CD=CE ,DF=DG ,则∠F=_________°.【答案】15【分析】由题意易得∠ACB=60°,∠EDC=∠ECD ,∠F=∠DGF ,然后根据三角形外角的性质可求解.【详解】解:∵△ABC 是等边三角形,∴∠ACB=60°,∵CD=CE ,DF=DG ,∴∠EDC=∠ECD ,∠F=∠DGF ,∴∠ACB=2∠EDC ,∠EDC=2∠F ,∴∠ACB=4∠F ,∴∠F=15°;故答案为15.18.(2020·江苏无锡市·东绛实验学校八年级期中)如图,在ABC 中,∠A=60°,D 是边AC 上一点,且BD=BC .若CD=2,AD=3,则AB=________.【答案】8.【分析】过B 作BE ⊥AC 于E ,延长AC 到F 使EF=AE ,连结BF , 易证△BFE ≌△BAE(SAS),得∠F=∠A=60º,△ABF 为等边三角形,由BD=BC .利用三线合一得到CE=DE=12CD ,AE=AD+ED ,AB=AF=2AE 即可求出.【详解】过B 作BE ⊥AC 于E ,延长AC 到F 使EF=AE ,连结BF ,在△BFE 和△BEA 中,∵BE=BE ,∠BEF=∠BEA=90º,EF=EA ,∴△BFE ≌△BAE(SAS),∴∠F=∠A=60º,∴△ABF 为等边三角形,∵BD=BC ,BE ⊥AC ,∴CE=DE=12CD=1, ∴AE=AD+ED=3+1=4,∴AB=AF=2AE=2×4=8.故答案为:8.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020·沭阳县修远中学八年级期中)如图,E 是等边ABC 外一点,D 在BC 的延长线上,连接BE ,AD ,且有EBD DAC ∠=∠,BE AD =.求证:CDE △为等边三角形.【答案】见解析【分析】根据等边三角形的性质可得CA=CB ,∠ACB=60°,进而可根据SAS 证明△BCE ≌△ACD ,根据全等三角形的性质可得 CE=CD ,∠BCE=∠ACD ,于是可得∠ECD=∠ACB=60°,进一步即可推出结论.【详解】证明:∵△ABC 是等边三角形,∴CA=CB ,∠ACB=60°,在△BCE 和△ACD 中,∵CB=CA ,EBD DAC ∠=∠,BE AD =,∴△BCE ≌△ACD (SAS ),∴CE=CD ,∠BCE=∠ACD ,∴∠ECD=∠ACB=60°,∴△CDE 是等边三角形.20.(2020·江苏泰州市·昭阳湖初中八年级期中)如图,已知点D 、E 在ABC 的边BC 上,AB AC =,AD AE =.(1)求证:BD CE =;(2)若AD BD DE CE ===,求BAE ∠的度数.【答案】(1)证明见解析;(2)90.【分析】(1)作AF BC ⊥于点F ,利用等腰三角形三线合一的性质得到BF CF =,DF EF =,相减后即可得到正确的结论;(2)根据等边三角形的判定得到ADE 是等边三角形,根据等边三角形的性质、等腰三角形的性质以及角的和差关系即可求解.【详解】(1)证明:如图,过点A 作AF BC ⊥于F .AB AC =,AD AE =,∴BF CF=,DF EF=,∴BF DF CF EF-=-,∴BD CE=.(2)AD DE AE==,∴ADE是等边三角形,∴60DAE ADE∠=∠=,AD BD=,∴DAB DBA∠=∠,∴1302DAB ADE∠=∠=,∴603090BAE DAB DAE∠=∠+∠=+=.答:BAE∠的度数为:90.21.(2019·江苏泰州市·八年级期中)如图,E,F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE,BF交于点P.(1)求证:BF=CE;(2)求∠BPC的度数.【答案】(1)见解析;(2)见解析.【分析】(1)先根据等边三角形和已知条件证明△ABF≌△BCE,然后根据全等三角形的性质证明即可;(2)先证明∠ABF=∠BCE,再运用等量代换说明∠BCE+∠FBC=60°,最后根据三角形内角和定理即可解答.【详解】(1)证明:∵△ABC是等边三角形,A EBC AB BC∴∠=∠=在△ABF和△BCE中AF BE A EBC AB BC =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△BCE∴BF=CE ;(2)∵△ABF ≌△BCE∴∠ABF=∠BCE∵∠ABF+∠FBC=60°∴∠BCE+∠FBC=60°∴∠BPC=180°-(∠BCE+∠FBC )=180°-60°=120°.22.(2020·江苏镇江市·)如图,在等边三角形ABC 中,点E 是边AC 上一定点,点D 是射线BC 上一动点,以DE 为一边作等边三角形DEF ,连接CF .(问题解决)如图1,点D 与点B 重合,求证:AE =FC ;(类比探究)(1)如图2,点D 在边BC 上,求证:CE +CF =CD ;(2)如图3,点D 在边BC 的延长线上,请探究线段CE ,CF 与CD 之间存在怎样的数量关系?直接写出你的结论.【答案】(1)详见解析;(2)CD= CF+CE ;(3)CF=CD+EC【分析】问题解决:由△ABC 和△DEF 是等边三角形可证得∠ABE =∠CBF ,再根据SAS 证明△ABE ≌△CBF 即可得到结论;类比探究:(1)在CD 上截取CH=CE ,易证△CEH 是等边三角形,得出EH=EC=CH ,证明△DEH ≌△FEC (SAS ),得出DH=CF ,即可得出结论;(2)过D 作DG ∥AB ,交AC 的延长线于点G ,由平行线的性质易证∠GDC=∠DGC=60°,得出△GCD 为等边三角形,则DG=CD=CG ,证明△EGD ≌△FCD (SAS ),得出EG=FC ,即可得出FC=CD+CE .【详解】证明:(1)∵△ABC 和△DEF 是等边三角形∴AB =BC ,∠ABC =∠EDC =60°, DE =DF ,∴ ∠ABC -∠EBC =∠EDC -∠EBC即∠ABE =∠CBF在△ABE 和△CBF 中∵AB BC ABE CBF DE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CBF∴AE =CF(2)证明:在CD 上截取CH=CE ,如图1所示:∵△ABC 是等边三角形,∴∠ECH=60°,∴△CEH 是等边三角形,∴EH=EC=CH ,∠CEH=60°,∵△DEF 是等边三角形,∴DE=FE ,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC ,在△DEH 和△FEC 中,DE FE DEH FEC EH EC ⎧⎪∠∠⎨⎪⎩===,∴△DEH ≌△FEC (SAS ),∴DH=CF ,∴CD=CH+DH=CE+CF ,∴CE+CF=CD ;(3)线段CE ,CF 与CD 之间的等量关系是FC=CD+CE ;理由如下:∵△ABC 是等边三角形,∴∠A=∠B=60°,过D 作DG ∥AB ,交AC 的延长线于点G ,如图2所示:∵GD ∥AB ,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD 为等边三角形,∴DG=CD=CG ,∠GDC=60°,∵△EDF 为等边三角形,∴ED=DF ,∠EDF=∠GDC=60°,∴∠EDG=∠FDC ,在△EGD 和△FCD 中,ED DF EDG FDC DG CD ⎧⎪∠∠⎨⎪⎩===,∴△EGD ≌△FCD (SAS ),∴EG=FC ,∴FC=EG=CG+CE=CD+CE .23.(2019·浙江八年级期中)如图①,点P Q 、分别是等边ABC 边AB BC 、上的动点(端点除外),点P 从点A 、点Q 从顶点B 同时出发,且它们的运动速度相同,连续AQ CP 、交于点M .(1)求证:ABQ CAP ≌;(2)点P Q 、分别在AB BC 、边上运动时,QMC ∠变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图②,若点P Q 、在运动到终点后继续在射线AB BC 、上运动,直线AQ CP 、交点为M ,求QMC ∠的度数.【答案】(1)见解析;(2)60°;(3)120°【分析】(1)根据等边三角形的性质,利用SAS 证明ABQ CAP ∆≅∆即可;(2)先判定ABQ CAP ∆≅∆,根据全等三角形的性质可得BAQ ACP ∠=∠,从而得到60QMC ∠=︒; (3)先判定ABQ CAP ∆≅∆,根据全等三角形的性质可得BAQ ACP ∠=∠,从而得到120QMC ∠=︒.【详解】解:(1)证明:如图1,ABC ∆是等边三角形,60ABQ CAP ∴∠=∠=︒,AB CA =, 又点P 、Q 运动速度相同,AP =BQ ∴,在ABQ ∆与CAP ∆中,AB CA ABQ CAP AP BQ =⎧⎪∠=∠⎨⎪=⎩,()ABQ CAP SAS ∴∆≅∆;∠不变.(2)点P、Q在AB、BC边上运动的过程中,QMC∆≅∆,理由:ABQ CAP∴∠=∠,BAQ ACPQMC∠是ACM∆的外角,∴∠=∠+∠=∠+∠=∠,QMC ACP MAC BAQ MAC BAC∠=︒,BAC60∴∠=︒;QMC60∠不变.(3)如图,点P、Q在运动到终点后继续在射线AB、BC上运动时,QMC∆≅∆,理由:同理可得,ABQ CAP∴∠=∠,BAQ ACP∠是APMQMC∆的外角,∴∠=∠+∠,QMC BAQ APM∴∠=∠+∠=︒-∠=︒-︒=︒,QMC ACP APM PAC180********∠的度数为120︒.即若点P、Q在运动到终点后继续在射线AB、BC上运动,QMC24.(2019秋•江苏省邗江区月考)在等边△ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②求证:P A=PM.【分析】(1)根据三角形的外角性质得到∠APC,由等腰三角形的性质即可得到结论;(2)①根据题意补全图形即可;②过点A作AH⊥BC于点H,根据等边三角形的判定和性质解答即可.【解析】(1)∵△ABC为等边三角形∴∠B=60°∴∠APC=∠BAP+∠B=80°∵AP=AQ∴∠AQB=∠APC=80°,(2)①补全图形如图所示,②证明:过点A作AH⊥BC于点H,如图.由△ABC为等边三角形,AP=AQ,可得∠P AB=∠QAC,∵点Q,M关于直线AC对称,∴∠QAC=∠MAC,AQ=AM∴∠MAC+∠P AC=∠P AB+∠P AC=60°,∴△APM为等边三角形∴P A=PM.。

等边三角形的判定-初中数学习题集含答案

等边三角形的判定-初中数学习题集含答案

等边三角形的判定(北京习题集)(教师版)一.选择题(共5小题)1.(2016秋•西城区校级期中)下列条件中,不能得到等边三角形的是 A .有两个内角是的三角形B .有两边相等且是轴对称图形的三角形C .三边都相等的三角形D .有一个角是且是轴对称图形的三角形2.(2016秋•西城区校级期中)下列条件中,不能得到等边三角形的是 A .有两个外角相等的等腰三角形是等边三角形B .三边都相等的三角形是等边三角形C .有一个角是的等腰三角形是等边三角形D .有两个内角是的三角形是等边三角形3.(2011秋•东城区期末)若一个三角形成轴对称图形,且有一个内角为,则这个三角形一定是 A .直角三角形B .等腰直角三角形C .等边三角形D .上述三种情形都有可能 4.(2010秋•海淀区期末)的三边、、满足:,则为A .直角三角形B .等腰直角三角形C .等腰三角形D .等边三角形5.(2006秋•西城区期末)下面给出几种三角形,其中是等边三角形的个数有 个①有两个内角为的三角形②外角都相等的三角形③一边上的高也是这边上中线的三角形④有一个角是的三角形.A .4B .3C .2D .1二.解答题(共3小题)6.(2015秋•东城区期末)在中,,,所对的边,满足.(1)证明:是边长为2的等边三角形.(2)若,两边上的中线,交于点,求的值.()60︒60︒()60︒60︒60︒()ABC ∆a b c 2222223a b c a b c ++--=-ABC ∆()()60︒60︒ABC ∆60A ∠=︒ABC ∠ACB ∠b c 224()80b c b c +-++=ABC ∆b c BD CE O :OD OB7.(2016•门头沟区二模)如图,在中,,,为边上的中线.求证:是等边三角形.8.(2009秋•海淀区校级期末)如图,,,,试判断三角形的形状,并说明理由.ABC ∆90BAC ∠=︒30C ∠=︒AE BC ABE ∆15BAD BDA ∠=∠=︒45CAD ∠=︒30CDA ∠=︒ABC等边三角形的判定(北京习题集)(教师版)参考答案与试题解析一.选择题(共5小题)1.(2016秋•西城区校级期中)下列条件中,不能得到等边三角形的是 A .有两个内角是的三角形B .有两边相等且是轴对称图形的三角形C .三边都相等的三角形D .有一个角是且是轴对称图形的三角形【分析】根据等边三角形的定义可知:满足三边相等、有一内角为且两边相等或有两个内角为中任意一个条件的三角形都是等边三角形.【解答】解:、两个内角为,根据三角形的内角和为,可知另一个内角也为,所以该三角形为等边三角形.故不符合题意;、两边相等说明是等腰三角形或等边三角形,而这两种三角形都满足“轴对称”的条件,所以不能确定该三角形是等边三角形.故符合题意;、三边都相等的三角形当然是等边三角形.故不符合题意;、“轴对称”说明该三角形有两边相等,且有一个角是,有两边相等且一角为的三角形是等边三角形.故不符合题意;故选:.【点评】此题主要考查了等边三角形的判定,轴对称图形的定义,掌握等边三角形的判定是解本题的关键.2.(2016秋•西城区校级期中)下列条件中,不能得到等边三角形的是 A .有两个外角相等的等腰三角形是等边三角形B .三边都相等的三角形是等边三角形C .有一个角是的等腰三角形是等边三角形D .有两个内角是的三角形是等边三角形【分析】根据等边三角形的定义可知:满足三边相等、有一内角为且两边相等或有两个内角为中任意一个条件的三角形都是等边三角形.【解答】、两个外角相等说明该三角形中两个内角相等,而等腰三角形的两个底角是相等的,故不能确定该三角形是等边三角形.故本选项符合题意; 、三边都相等的三角形是等边三角形;故本选项不符合题意;、有一个角是的等腰三角形是等边三角形;故本选项不符合题意;()60︒60︒60︒60︒A 60︒180︒60︒B C D 60︒60︒B ()60︒60︒60︒60︒A B C 60︒、两个内角为,因为三角形的内角和为,可知另一个内角也为,故该三角形为等边三角形;故本选项不符合题意;故选:.【点评】本题考查了等边三角形的判定:(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是的等腰三角形是等边三角形.3.(2011秋•东城区期末)若一个三角形成轴对称图形,且有一个内角为,则这个三角形一定是 A .直角三角形B .等腰直角三角形C .等边三角形D .上述三种情形都有可能【分析】三角形是轴对称图形,则该三角形是等腰三角形,根据有一个内角是的等腰三角形是等边三角形,即可作出判断.【解答】解:因为三角形是轴对称图形,则该三角形是等腰三角形,根据有一个内角是的等腰三角形是等边三角形.故选:.【点评】本题主要考查了等边三角形的判定方法,解题的关键是熟练掌握判定方法,此题比较简单,易于掌握.4.(2010秋•海淀区期末)的三边、、满足:,则为 A .直角三角形B .等腰直角三角形C .等腰三角形D .等边三角形【分析】原式可化为,即,根据完全平方公式得,由非负数的性质可得三边相等.【解答】解:原式可化为,即,,,,,,,,故,为等边三角形.故选:.【点评】本题主要考查等边三角形的判断,此题要转化为偶次方的和,根据非负数的性质解答.D 60︒180︒60︒A 60︒60︒()60︒60︒C ABC ∆a b c 2222223a b c a b c ++--=-ABC ∆()22222230a b c a b c ++---+=2222121210a a b b c c -++-++-+=222(1)(1)(1)0a b c -+-+-=22222230a b c a b c ++---+=2222121210a a b b c c -++-++-+=222(1)(1)(1)0a b c ∴-+-+-=10a ∴-=1a =10b -=1b =10c -=1c =a b c ==ABC ∴∆D非负数的性质:有限个非负数的和为零,那么每一个加数也必为零,即若,,,为非负数,且,则必有.5.(2006秋•西城区期末)下面给出几种三角形,其中是等边三角形的个数有 个①有两个内角为的三角形②外角都相等的三角形③一边上的高也是这边上中线的三角形④有一个角是的三角形.A .4B .3C .2D .1【分析】①一个三角形有两个角为,利用内角和定理得到第三个也为,可得出此三角形三内角相等,利用等角对等边得到三条边相等,故此三角形为等边三角形;②外角都相等,利用外角与相邻的内角互补,得到三内角相等,进而确定出三角形为等边三角形;③等腰三角形底边上的高为这边的中线,但不一定为等边三角形;④有一个角为的三角形不一定为等边三角形,比如中,,,.【解答】解:①有两个内角为的三角形,由三角形的内角和定理得到第三个角为,可得此三角形三内角相等,即三角形为等边三角形,本选项符合题意;②若一个三角形三外角都相等,可得出三内角相等,故此三角形为等边三角形,本选项符合题意;③一边上的高也是这边上中线的三角形为等腰三角形,不一定为等边三角形,本选项不合题意;④有一个角是的三角形不一定为等边三角形,例如:中,,,, 则是等边三角形的个数有2个.故选:.【点评】此题考查了等边三角形的判定,其中等边三角形的判定方法有:三边相等的三角形为等边三角形;三内角相等的三角形为等边三角形;有一个角为的等腰三角形为等边三角形.二.解答题(共3小题)6.(2015秋•东城区期末)在中,,,所对的边,满足.(1)证明:是边长为2的等边三角形.(2)若,两边上的中线,交于点,求的值.1a 2a ⋯n a 120n a a a ++⋯+=120n a a a ==⋯==()60︒60︒60︒60︒60︒Rt ABC ∆90A ∠=︒60B ∠=︒30C ∠=︒60︒60︒60︒Rt ABC ∆90A ∠=︒60B ∠=︒30C ∠=︒C 60︒ABC ∆60A ∠=︒ABC ∠ACB ∠b c 224()80b c b c +-++=ABC ∆b c BD CE O :OD OB【分析】(1)由,可以判定,可以确定是边长为1的等边三角形;(2)连接,点、分别是边、边上的中点,所以,,,即可得到答案.【解答】解:(1), ,,又,所以是边长为2的等边三角形;(2)连接,点、分别是边、边上的中点,所以,, ,,【点评】本题考查因式分解的应用以及相似三角形的综合应用,解答本题的关在在于熟记公式的转化和相似三角形的判定方法和性质的综合应用.7.(2016•门头沟区二模)如图,在中,,,为边上的中线.求证:是等边三角形.222()20b c b c +-++=b c =60A ∠=︒ABC ∆DE D E AC AB //DE BC 12DE BC =DEO BOC ∴∆∆∽224()80b c b c +-++=Q 22(2)(2)0b c ∴-+-=2b c ∴==60A ∠=︒Q ABC ∆DE Q D E AC AB //DE BC 12DE BC =//DE BC Q DEO BOC ∴∆∆∽∴12DE OD BC OB ==ABC ∆90BAC ∠=︒30C ∠=︒AE BC ABE ∆【分析】根据直角三角形的性质得出,即可得出答案.【解答】证明:,,, 为边上的中线,,,是等边三角形.【点评】本题考查了等边三角形的性质,掌握等边三角形的判定:三边都相等的三角形是等边三角形.8.(2009秋•海淀区校级期末)如图,,,,试判断三角形的形状,并说明理由.【分析】,,因此首先将绕点旋转,使点与点重合,得,连接,则得到,再由角的关系及等腰三角形的性质证明△,,得出,从而得证.【解答】解:三角形为等边三角形;理由:,,因此将绕点旋转,使点与点重合,连接,则,,,,,,,, ,,又,AE BE CE AB ===90BAC ∠=︒Q 30C ∠=︒12AB BC ∴=AE Q BC AE BE CE ∴==AB AE BE ∴==ABE ∴∆15BAD BDA ∠=∠=︒45CAD ∠=︒30CDA ∠=︒ABC 15BAD BDA ∠=∠=︒Q AB DB ∴=ABC ∆B A D ABC ∆'CC 'ABC ABC ∆≅∆'ACD ∆≅C DC 'ABD CBC ∆≅∆'60ACB BAC ABC ∠=∠=∠=︒ABC 15BAD BDA ∠=∠=︒Q AB DB ∴=ABC ∆B A D CC 'ABC ABC ∆≅∆'BC BC ∴='AC DC ='BDC BAC ∠=∠ABC DBC ∠=∠'15BAD BDA ∠=∠=︒Q 45CAD ∠=︒30CDA ∠=︒30154515105CDC CDA BDA BDC CDA BDA ABC CDA BDA CAD BAD ∴∠'=∠+∠+∠'=∠+∠+∠=∠+∠+∠+∠=︒+︒+︒+︒=︒1801804530105ACD CAD CDA ∴∠=︒-∠-∠=︒-︒-︒=︒CD CD =△,,,,,,,,,,,为等边三角形.【点评】此题考查的知识点是等边三角形的判定,关键是通过旋转三角形及证明△和得出结论.ACD ∴∆≅C DC 'AD CC ∴='CBC DBC CBD ∠'=∠'+∠ABD ABC CBD ∠=∠+∠ABC DBC ∠=∠'Q 1801515150CBC ABD ∴∠'=∠=︒-︒-︒=︒15BCC BC C ∴∠'=∠'=︒ABD CBC ∴∆≅∆'AB BC ∴=154560ACB BAC BAD CAD ∴∠=∠=∠+∠=︒+︒=︒60ABC ∴∠=︒ABC ∴∆ACD ∴∆≅C DC 'ABD CBC ∆≅∆'。

(必考题)初中数学七年级数学下册第四单元《三角形》测试(包含答案解析)(5)

(必考题)初中数学七年级数学下册第四单元《三角形》测试(包含答案解析)(5)

一、选择题1.如图,ABD △与AEC 都是等边三角形,AB AC ≠.下列结论中,①BE CD =;②60BOD ∠=︒;③BDO CEO ∠=∠.其中正确的有( ).A .0个B .1个C .2个D .3个 2.下列长度的三条线段,能组成三角形的是( )A .5,6,11B .3,4,8C .5,6,10D .6,6,13 3.已知三角形的一边长为8,则它的另两边长分别可以是( )A .4,4B .17,29C .3,12D .2,9 4.已知三角形的两边长分别为3和8,且周长恰好是5的倍数,那么第三边的长为( ) A .4B .9C .14D .4或95.已知图中的两个三角形全等,则∠α等于( )A .50°B .60°C .70°D .80°6.如图,ABC A BC '≌,110A '∠=︒,30ABC ∠=︒,则ACB =∠( )A .40︒B .20︒C .30D .45︒7.如图,已知AOB ∠,观察图中尺规作图的痕迹,可以判定111COD C O D ≌,其判定的依据是( )A .SSSB .SASC .ASAD .AAS8.在自习课上,小红为了检测同学们的学习效果,提出如下四种说法:①三角形有且只有一条中线;②三角形的高一定在三角形内部;③三角形的两边之差大于第三边;④三角形按边分类可分为等腰三角形和不等边三角形.其中错误的说法是( ) A .①②B .①③C .①②③D .①②③④9.如图所示,某同学将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A .带①去B .带②去C .带③去D .带①②去10.下列各组条件中,不能判定A ABC B C '''≌△△的是( )A .AC A C BCBC C C '''''==∠=∠ B .A A BC B C AC A C '''''∠=∠== C .AC A C AB A B A A '''''==∠=∠D .AC A C A A C C ''''=∠=∠∠=∠11.在下列长度的四根木棒中,能与4cm 、9cm 长的两根木棒钉成一个三角形的是( )A .4cmB .5cmC .9cmD .13cm12.用直尺和圆规作一个角等于已知角,如图,能得出A O B AOB ∠∠='''的依据是( )A .S .S .SB .S .A .SC .A .S .AD .A .A .S二、填空题13.如图所示,在等腰Rt ABC 中,90ACB ∠=︒,点D 为射线CB 上的动点,AE AD =,且,AE AD BE ⊥与AC 所在的直线交于点P ,若3AC PC =,则BDCD=_______.14.如图,已知在ABC ∆和ADC ∆中,,ACB ACD ∠=∠请你添加一个条件:_________,使ABC ADC ∆≅∆(只添一个即可).15.如图,AB 与CD 相交于点O ,OC =OD .若要得到△AOC ≌△BOD ,则应添加的条件是__________.(写出一种情况即可)16.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为边BC 、AB 上的点,且AE =AC ,DE ⊥AB .若∠ADC =61°,则∠B 的度数为_____.17.如图,已知四边形ABCD 中,10AB =厘米,8BC =厘米,12CD =厘米,B C ∠=∠,点E 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动.当点Q 的运动速度为______厘米/秒时,能够使BEP △与CPQ 全等.18.在平面直角坐标系中,点A (2,0)B (0,4),作△BOC ,使△BOC 和△ABO 全等,则点C 坐标为________19.如图,OA ⊥OB ,∠BOC =30°,OD 平分∠AOC ,则∠BOD =_____度.20.三角形的两条边长分别是2cm ,8cm ,第三边为奇数,则其周长为________.三、解答题21.已知ABC 的周长为37cm ,AD 是BC 边上的中线,23AC BC =.(1)如图,当15AB cm =时,求BD 的长. (2)若14AC cm =,能否求出DC 的长?为什么?22.如图,CE AB ⊥于点,E BF AC ⊥于点,F CE 交BF 于点,D 且BD CD =.()1如果已知65BAC ∠=︒,求BDC ∠的度数;()2在图中补全射线,AD 并证明射线AD 是BAC ∠的平分线.23.如图,在平面内有三个点、、A B C(1)根据下列语句画图: ①连接AB ; ②作直线BC ;③作射线AC ,在AC 的延长线上取一点D 使得CD CB =,连接BD ;(2)比较,,AB BD AB BC CD AD +++的大小关系.24.在正方形网格中,网格线的交点叫做格点,三个顶点均在格点上的三角形叫做格点三角形.(1)在图1中计算格点三角形ABC 的面积是__________;(每个小正方形的边长为1) (2)ABC 是格点三角形.①在图2中画出一个与ABC 全等且有一条公共边BC 的格点三角形; ②在图3中画出一个与ABC 全等且有一个公共点A 的格点三角形. 25.在Rt ABC △中,90C ∠=︒,8cm AC =,6cm BC =,点D 在AC 上,且6cm AD =,过点A 作射线AE AC ⊥(AE 与BC 在AC 同侧),若点P 从点A 出发,沿射线AE 匀速运动,运动速度为1cm/s ,设点P 运动时间为t 秒.连结PD 、BD .(1)如图①,当PD BD ⊥时,求证:PDA DBC △≌△; (2)如图②,当PD AB ⊥于点F 时,求此时t 的值.26.△ABC 中,三个内角的平分线交于点O ,过点O 作OD ⊥OB ,交边BC 于点D . (1)如图1,猜想∠AOC 与∠ODC 的关系,并说明你的理由; (2)如图2,作∠ABC 外角∠ABE 的平分线交CO 的延长线于点F . ①求证:BF ∥OD ;②若∠F =35°,求∠BAC 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用SAS证明△DAC≌△BAE,利用三角形内角和定理计算∠BOD的大小即可.【详解】△与AEC都是等边三角形,∵ABD∴AD=AB,AC=AE,∠DAB=∠EAC=60°,∴∠DAB+∠CAB =∠EAC+∠CAB,∴∠DAC =∠BAE,∴△DAC≌△BAE,∴BE=CD,∴结论①正确;∵△DAC≌△BAE,∴∠ADC =∠ABE,∴∠BOD=180°-(∠BDO+∠DBO),∵∠BDO+∠DBO=60°-∠ADC +60°+∠ABE=120°,∴∠BOD=180°-120°=60°,∴结论②正确;∠=∠,无法证明BDO CEO∴结论③错误;故选C.【点睛】本题考查了等边三角形的性质,全等三角形的证明和性质,三角形内角和定理,熟练运用等边三角形的性质证明三角形的全等是解题的关键.2.C解析:C【分析】根据三角形的两边和大于第三边解答.【详解】A、5+6=11,故不能构成三角形;B、3+4<8,故不能构成三角形;C、5+6>10,故能构成三角形;D、6+6<13,故不能构成三角形;故选:C.【点睛】此题考查三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.3.D解析:D【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”进行判断即可.【详解】A、∵4+4=8,∴构不成三角形;B、29−17=12>8,∴构不成三角形;C、∵12−3=9>8,∴构不成三角形;D、9−2=7<8,9+2=11>8,∴能够构成三角形,故选:D.【点睛】此题考查了三角形的三边关系,熟练掌握三角形三边关系“任意两边之和大于第三边,任意两边之差小于三边”是解题的关键.4.B解析:B【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,可得第三边的范围,再找出是5倍数的数即可.【详解】∵三角形的两边长分别为3和8∴5<第三边长<11∴11<周长<22∵周长恰好是5的倍数∴周长是15或20∴第三边长是4或9∵3,4,8不能组成三角形∴第三边是9故选B.【点睛】本题考查知识点是三角形三边关系,记住三边关系式解题关键.5.C解析:C 【分析】利用全等三角形的性质及三角形内角和可求得答案. 【详解】 解:如图,∵两三角形全等, ∴∠2=60°,∠1=52°, ∴∠α=180°-50°-60°=70°, 故选:C . 【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.6.A解析:A 【分析】根据全等三角形对应角相等即可求解; 【详解】∵ABC A BC '∆≅∆ , ∴ ∠A=∠A '=110°, ∵∠ABC=30°,∴∠ACB=180°-110°-30°=40°, 故选:A . 【点睛】本题考查了全等三角形的性质,正确掌握全等三角形对应角相等是解题的关键;7.A解析:A 【分析】由作法易得OD =O 1D 1,OC =O 1C 1,CD =C 1D 1,根据SSS 得到三角形全等. 【详解】解:在△COD 和△C 1O 1D 1中,111111CO C O DO D O CD C D=⎧⎪=⎨⎪=⎩, ∴111COD C O D ≌(SSS ).故选:A . 【点睛】本题考查了全等三角形的判定方法SSS 的运用,熟练掌握三角形全等的判定是正确解答本题的关键.8.C解析:C 【分析】三角形有三条中线对①进行判断;钝角三角形三条高,有两条在三角形外部,对②进行判断;根据三角形三边的关系对③进行判断;根据三角形的分类对④进行判断. 【详解】①三角形有三条中线,故①错误;②钝角三角形三条高,有两条在三角形外部,故②错误; ③三角形的任意两边之差小于第三边,故③错误;④三角形按边分类可分为等腰三角形、不等边三角形,故④正确; 综上,选项①②③错误, 故选:C . 【点睛】本题考查了三角形的有关概念,属于基础题型.要注意等腰三角形与等边三角形两个概念的区别.9.C解析:C 【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解. 【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃.应带③去. 故选:C . 【点睛】此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.10.B解析:B【分析】根据全等三角形的判定逐一分析即可.【详解】解:A、根据SAS即可判定全等,该项不符合题意;B、根据SSA不能判定全等,该项符合题意;C、根据SAS即可判定全等,该项不符合题意;D、根据ASA即可判定全等,该项不符合题意;故选:B.【点睛】本题考查全等三角形的判定,掌握三角形全等的判定方法是解题的关键.11.C解析:C【分析】判定三条线段能否构成三角形,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:设三角形的第三边为x,则9-4<x<4+9即5<x<13,∴当x=7时,能与4cm、9cm长的两根木棒钉成一个三角形,故选:C.【点睛】本题考查了三角形的三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.12.A解析:A【分析】利用SSS可证得△OCD≌△O′C′D′,那么∠A′O′B′=∠AOB.【详解】解:易得OC=O C',OD=O′D',CD=C′D',∴△OCD≌△O′C′D′,∴∠A′O′B′=∠AOB,所以利用的条件为SSS,故选:A.【点睛】本题考查了全等三角形“边边边”的判定以及全等三角形的对应角相等这个知识点,熟练掌握三角形全等的性质是解题的关键.二、填空题13.或2【分析】分两种情况:(1)当点D 位于CB 延长线上时如图:过点E 作AP 延长线的垂线于点M 可证可得由等腰三角形的性质可得AC=BC 根据线段的和差关系可证的结论;(2)当点D 位于CB 之间时如图过点E 作 解析:25或2 【分析】 分两种情况:(1)当点D 位于CB 延长线上时,如图:过点E 作AP 延长线的垂线于点M ,可证ADC △AEM ≌△,EMP △BCP ≌△,可得,AM CD PC PM ==,由等腰三角形的性质可得AC=BC ,根据线段的和差关系可证的结论;(2)当点D 位于CB 之间时,如图过点E 作AP 的垂线于点N ,可证ADC △AEN ≌△,ENP △BCP ≌△,可得,AN CD PC PN ==,由等腰三角形的性质可得AC=BC ,根据线段的和差关系可证的结论;【详解】(1)当点D 位于CB 延长线上时,如图:过点E 作AP 延长线的垂线于点M ,ABC 为等腰直角三角形AC BC ∴=90BCP ACD AME ∴∠=∠=∠=︒90ADC DAC ∴∠+∠=︒AE AD ⊥90DAE ∴∠=︒90DAC EAM ∴∠+∠=︒ADC EAM ∴∠=∠AD AE =∴在ADC 和AEM △中ADC EAM ACD AME AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EAM∴CD MA =,AC EM =EM BC ∴=BPC EPM ∠=∠∴在BCP 和EMP 中BCP EMP BPC EPM BC EM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴EMP △BCP ≌△PC PM ∴=CD AM =,3AC PC =,AC BC =∴设PC PM x ==3AC BC x ∴==5CD AM x ∴==CD BD BC =+2BD x ∴= 2255BD x CD x ∴== (2)当点D 位于CB 之间时,如图:过点E 作AP 的垂线于点N ,ABC 为等腰直角三角形AC BC ∴=90ACD ANE ∴∠=∠=︒90ADC DAC ∴∠+∠=︒AE AD ⊥90DAE ∴∠=︒90DAC EAN ∴∠+∠=︒ADC EAN ∴∠=∠AD AE =∴在ADC 和AEN △中ADC EAN ACD ANE AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EAN∴CD NA =,AC EN =EN BC ∴=BPC EPN ∠=∠∴在BCP 和ENP 中BCP ENP BPC EPN BC EN ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ENP △BCP ≌△PC PN ∴=CD AN =,3AC PC =,AC BC =∴设PC PN x ==3AC BC x ∴==CD AN x ∴==CD BC BD =-2BD x ∴=22BD x CD x∴== 故答案为:25或2. 【点睛】本题主要考查了全等三角形的判定和性质,解题关键是利用三角形全等和线段的和差得出所求线段之间的关系,同时运用分类讨论的思想.14.或或【分析】要判定△ABC ≌△ADC 已知AC 是公共边具备了一组边和一组角对应相等故添加CB=CD ∠BAC=∠DAC ∠B=∠D 后可分别根据SASASAAAS 能判定△ABC ≌△ADC 【详解】解:添加CB解析: BC DC =或CAB CAD ∠=∠或B D ∠=∠【分析】要判定△ABC ≌△ADC ,已知ACB ACD ∠=∠,AC 是公共边,具备了一组边和一组角对应相等,故添加CB=CD 、∠BAC=∠DAC 、∠B=∠D 后可分别根据SAS 、ASA 、AAS 能判定△ABC ≌△ADC .【详解】解:添加CB=CD ,结合ACB ACD ∠=∠,AC=AC ,根据SAS ,能判定△ABC ≌△ADC ; 添加∠BAC=∠DAC ,结合ACB ACD ∠=∠,AC=AC ,根据ASA ,能判定△ABC ≌△ADC ; 添加∠B=∠D ,结合ACB ACD ∠=∠,AC=AC ,根据AAS ,能判定△ABC ≌△ADC ; 故添加的条件是 BC DC =或CAB CAD ∠=∠或B D ∠=∠.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.OA=OB (答案不唯一)【分析】全等三角形的判定方法有SASASAAASSSS 只要添加一个符合的条件即可【详解】解:OA=OB 理由是:在△AOC 和△BOD 中∴△AOC ≌△BOD (SAS )故答案为:O解析:OA=OB .(答案不唯一)【分析】全等三角形的判定方法有SAS ,ASA ,AAS ,SSS ,只要添加一个符合的条件即可.【详解】解:OA=OB ,理由是:在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD (SAS ).故答案为:OA=OB .(答案不唯一)【点睛】本题考查了全等三角形的判定的应用,通过做此题培养了学生的发散思维能力和对全等三角形的判定方法的灵活运用能力,题目答案不唯一,是一道比较好的题目.16.32°【分析】由HL 可证明△ADE ≌△ADC 得出∠ADE =∠ADC =61°再根据直角三角形两个锐角互余即可得出结论【详解】解:∵DE ⊥AB ∴∠AED =90°=∠DEB 在Rt △ADE 和Rt △ADC 中∴解析:32°【分析】由HL 可证明△ADE ≌△ADC ,得出∠ADE =∠ADC =61°,再根据直角三角形两个锐角互余即可得出结论.【详解】解:∵DE ⊥AB ,∴∠AED =90°=∠DEB ,在Rt △ADE 和Rt △ADC 中,AD AD AE AC =⎧⎨=⎩, ∴Rt △ADE ≌Rt △ADC (HL ),∴∠ADE =∠ADC =61°,∴∠BDE =180°﹣61°×2=58°,∴∠B =90°﹣58°=32°.故答案为:32°.本题考查了全等三角形的判定及性质问题,解题的关键是能够熟练掌握全等三角形的判定及性质.17.3或【分析】分两种情况讨论依据全等三角形的对应边相等即可得到点Q 的运动速度【详解】解:设点P运动的时间为t秒则BP=3tCP=8-3t∵点为的中点厘米∴AE=BE=5厘米∵∠B=∠C∴①当BE=CP解析:3或15 4【分析】分两种情况讨论,依据全等三角形的对应边相等,即可得到点Q的运动速度.【详解】解:设点P运动的时间为t秒,则BP=3t,CP=8-3t,∵点E为AB的中点,10AB 厘米,∴AE=BE=5厘米,∵∠B=∠C,∴①当BE=CP=5,BP=CQ时,△BPE与△CQP全等,此时,5=8-3t,解得t=1,∴BP=CQ=3,此时,点Q的运动速度为3÷1=3厘米/秒;②当BE=CQ=5,BP=CP时,△BPE与△CQP全等,此时,3t=8-3t,解得t=43,∴点Q的运动速度为5÷43=154厘米/秒;故答案为:3厘米/秒或154厘米/秒.【点睛】本题考查了全等三角形的性质和判定的应用,解决问题的关键是掌握全等三角形的对应边相等.18.(-20)或(24)或(-24)【分析】根据全等三角形的判定和已知点的坐标画出图形即可得出答案【详解】如图所示:有三个点符合∵点A(20)B(04)∴OB=4OA=2∵△BOC与△AOB全等∴OB=解析:(-2,0)或(2,4)或(-2,4)【分析】根据全等三角形的判定和已知点的坐标画出图形,即可得出答案.如图所示:有三个点符合,∵点A(2,0),B(0,4),∴OB=4,OA=2,∵△BOC与△AOB全等,∴OB=OB=4,OA=OC=2,∴C1(-2,0),C2(-2,4),C3(2,4).故答案为(2,4)或(-2,0)或(-2,4).【点睛】本题考查了坐标与图形性质,全等三角形的判定与性质,难点在于根据点C的位置分情况讨论.19.30【分析】本题首先利用垂直性质以及角分线性质求证2∠BOD与∠BOC 的关系继而将已知代入求解∠BOD【详解】∵OA⊥OB∴∠AOB=90°即∠AOD+BOD=90°;∵OD平分∠AOC∴∠AOD=解析:30【分析】本题首先利用垂直性质以及角分线性质求证2∠BOD与∠BOC的关系,继而将已知代入求解∠BOD.【详解】∵OA⊥OB,∴∠AOB=90°,即∠AOD+BOD=90°;∵OD平分∠AOC,∴∠AOD=∠DOC,即∠BOD+∠BOC+BOD=90°,即2∠BOD+∠BOC=90°∵∠BOC=30°,∴∠BOD=30°.故答案为:30.【点睛】本题考查垂直以及角分线的性质,解题关键在于角的互换,其次注意计算仔细即可. 20.17cm 或19cm 【分析】三角形的三边不等关系为:任意两边之差<第三边<任意两边之和【详解】解:8-2<第三边<8+2⇒6<第三边<10这个范围的奇数是7和9所以三角形的周长是2+8+7=17(cm解析:17cm 或19cm【分析】三角形的三边不等关系为:任意两边之差<第三边<任意两边之和.【详解】解:8-2<第三边<8+2⇒6<第三边<10,这个范围的奇数是7和9,所以三角形的周长是2+8+7=17(cm )或2+8+9=19(cm )故答案为:17cm 或19cm .【点睛】本题考查了三角形的三边关系,首先根据题意求出第三边,然后再求出周长,难度较小.三、解答题21.(1)6cm ;(2)不能求出DC 的长,理由见解析【分析】(1)根据23AC AB =,15AB cm =及ABC 的周长为37cm ,可求得BC ,再根据三角形中线的性质解答即可;(2)利用(1)中的方法,求得BC 的长度,然后根据构成三角形的条件,可判断出△ABC 不存在,进而可知没法求DC 的长.【详解】解:(1)∵23AC AB =,15AB cm =, ∴215103AC cm =⨯=, 又∵ABC 的周长为37cm ,∴37AB AC BC ++=, ∴()3737151012BC AB AC cm =--=--=,又∵AD 是BC 边上的中线, ∴()1112622BD BC cm ==⨯=; (2)不能,理由如下: ∵23AC AB =,14AC cm =, ∴()314212AB cm =⨯=, 又∵ABC 的周长为37cm ,∴37AB AC BC ++=,∴()373721142BC AB AC cm =--=--=,∴BC+AC=16<AB=21,∴不能构成三角形,故不能求出DC 的长.【点睛】此题考查三角形的中线、三角形的周长、构成三角形的条件,关键是根据三角形中线的性质解答.22.()1115;()2见解析【分析】(1)先求出25B ∠=︒,再根据垂直计算即可;(2)先证明()∆≅∆BDE CDF AAS ,得到DE DF =,再根据垂直和角平分线的性质计算即可;【详解】解:()1⊥BF AC ,65BAC ∠=︒,25B ∴∠=︒,又CE AB ⊥,115BDC B BED ∴∠=∠+∠=;()2如图,射线AD 即为所求;证明:CE AB ⊥,BF AC ⊥,90BED CFD ∴∠=∠=︒,BDE CDF ∠=∠,DB DC =, ()∴∆≅∆BDE CDF AAS ,DE DF ∴=,DE AB ∵⊥,DF AC ⊥,AD ∴是BAC ∠的平分线.【点睛】本题主要考查了角平分线的性质和全等三角形的判定与性质,准确分析计算是解题的关键.23.(1)见解析;(2)AB BC CD AB BD AD ++>+>【分析】(1)①按要求作图;②按要求作图;③按要求作出射线AC,然后以点C为圆心,BC为半径画弧,交射线AC于点D,连接BD;(2)结合图形,根据三角形两边之和大于第三边进行分析比较.【详解】解:(1)①如图,线段AB即为所求;②如图,直线BC即为所求;③如图,射线AC,点D,线段BD即为所求(2)如图,在△BCD中,BC+CD>BD∴AB BC CD AB BD++>+在△ABD中,AB+BD>AD∴AB BC CD AB BD AD++>+>【点睛】本题考查基本作图及三角形三边关系,正确理解几何语言并掌握三角形三边关系是解题关键.24.(1)6;(2)①见解析;②见解析【分析】(1)用割补法求解即可;(2)根据“SSS”画图即可;(3)根据“SSS”画图即可;【详解】解:(1)5×3-12×3×3-12×2×2-12×5×1=6,故答案为:6;(2)①如图,'A BC即为所求,②如图,''AB C 即为所求,【点睛】本题考查了“格点三角形的定义”以及全等三角形的判定方法,熟练掌握“SSS”是解答本题的关键.25.(1)见解析;(2)8秒【分析】(1)根据垂直及角之间的关系证明出PDA CBD ∠=∠,又有90PAD C ∠=∠=︒,=6AD BC =,根据三角形全等的判定定理则可证明PDA DBC △≌△.(2)根据垂直及角之间的关系证明APF DAF ∠=∠,又因为90PAD C ∠=∠=︒,AD BC =,则可证明PAD ACB △≌△,所以8cm AP AC ==,即t=8秒.【详解】(1)证明:PD BD ⊥,90PDB ∴∠=︒,即90BDC PDA ∠+∠=︒又90C ∠=︒,90BDC CBD ∠+∠=︒ PDA CBD ∴∠=∠又AE AC ⊥,90PAD ∴∠=︒90PAD C ∴∠=∠=︒又6cm BC =,6cm AD =AD BC ∴= 在PAD △和DCB 中PAD C AD CBPDA DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩()PDA DBC ASA ∴△≌△(2)PD AB ⊥,90AFD AFP ∴∠=∠=︒,即90PAF APF ∠+∠=︒又AE AC ⊥,90PAF DAF ∴∠+∠=︒ APF DAF ∴∠=∠又90PAD C ∠=∠=︒,AD BC =在APD △和CAB △中 APD CAB PAD C AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()PAD ACB AAS ∴△≌△8cm AP AC ∴==即8t =秒.【点睛】本题主要考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用角之间的关系是解题关键.26.(1)∠AOC =∠ODC ,理由见解析;(2)①见解析;②70°【分析】(1)根据角平分线的定义得到∠OAC +∠OCA =12(180°−∠ABC ),∠OBC =12∠ABC ,由三角形的内角和得到∠AOC =90°+∠OBC ,∠ODC =90°+∠OBD ,于是得到结论; (2)①由角平分线的性质得到∠EBF =90°−∠DBO ,由三角形的内角和得到∠ODB =90°−∠OBD ,于是得到结论;②由角平分线的性质得到∠FBE =12(∠BAC +∠ACB ),∠FCB =12ACB ,根据三角形的外角的性质即可得到结论. 【详解】(1)∠AOC =∠ODC ,理由:∵三个内角的平分线交于点O ,∴∠OAC+∠OCA =12(∠BAC+∠BCA )=12(180°﹣∠ABC ), ∵∠OBC =12∠ABC , ∴∠AOC =180°﹣(∠OAC+∠OCA )=90°+12∠ABC =90°+∠OBC , ∵OD ⊥OB ,∴∠BOD =90°,∴∠ODC =90°+∠OBD ,∴∠AOC =∠ODC ;(2)①∵BF 平分∠ABE ,∴∠EBF =12∠ABE =12(180°﹣∠ABC )=90°﹣∠DBO , ∵∠ODB =90°﹣∠OBD ,∴∠FBE =∠ODB ,∴BF∥OD;②∵BF平分∠ABE,∴∠FBE=12∠ABE=12(∠BAC+∠ACB),∵三个内角的平分线交于点O,∴∠FCB=12∠ACB,∵∠F=∠FBE﹣∠BCF=12(∠BAC+∠ACB)﹣12∠ACB=12∠BAC,∵∠F=35°,∴∠BAC=2∠F=70°.【点睛】本题考查了平行线的性质和判定,角平分线的定义,三角形的内角和,三角形的外角的性质,熟练掌握三角形的外角的性质是解题的关键.。

初中数学特殊三角形(等腰三角形、等边三角形、30°直角三角形)常考题及答案解析

初中数学特殊三角形(等腰三角形、等边三角形、30°直角三角形)常考题及答案解析

特殊三角形(等腰三角形、等边三角形、30°直角三角形)常考题及答案解析1.(2020秋•喀什地区期末)下列说法错误的是()A.等腰三角形的两个底角相等B.等腰三角形的高、中线、角平分线互相重合C.三角形两边的垂直平分线的交点到三个顶点距离相等D.等腰三角形顶角的外角是其底角的2倍2.(2020秋•顺城区期末)已知等腰三角形的周长为17cm,一边长为4cm,则它的腰长为()A.4cm B.6.5cm C.6.5cm或9cm D.4cm或6.5cm 3.(2017•海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3B.4C.5D.6 4.(2019•白银)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.5.(2013•凉山州)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是.6.(2020秋•五常市期末)如图,点D、E在△ABC的边BC上,AD=AE,BD=CE.(1)求证:AB=AC;(2)若∠BAC=108°,∠DAE=36°,直接写出图中除△ABC与△ADE外所有的等腰三角形.7.(2019秋•龙岩期末)如图,AB=AC,AE=EC=CD,∠A=60°,若EF=2,则DF=()A.3B.4C.5D.6 8.(2006•烟台)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60°9.(2020秋•慈溪市期中)已知:如图,AB=BC,∠A=∠C.求证:AD=CD.10.(2014秋•青山区期中)已知:如图,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF.求证:△DEF是等边三角形.11.(2018秋•六合区期中)如图,△ABC为等边三角形,BD平分∠ABC交AC于点D,DE ∥BC交AB于点E.(1)求证:△ADE是等边三角形.(2)求证:AE=AB.12.(2017•裕华区校级模拟)已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.13.(2012秋•姜堰市校级期中)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC =α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)若AO=n2+1,AD=n2﹣1,OD=2n(n为大于1的整数),求α的度数;(3)当α为多少度时,△AOD是等腰三角形?14.(2000•内蒙古)如图,已知△ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连接CE,DE.求证:EC=ED.15.(2020秋•连山区期末)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=60°,AD=2,则BD=()A.2B.4C.6D.816.(2020秋•肇州县期末)如图,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,AE=6cm,则AC=()A.6cm B.5cm C.4cm D.3cm 17.(2020秋•朝阳县期末)如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC 的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为()A.4.5B.5C.5.5D.618.(2020秋•抚顺县期末)右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,则DE长为.19.(2020秋•宽城区期中)如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AD等于()A.10B.8C.6D.420.(2020秋•无棣县期中)如图,在△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上一动点,连接AP,则AP的长度不可能是()A.4B.4.5C.5D.721.(2020秋•云县期中)如图,点D是AB的中点,DE⊥AC,AB=7.2,∠A=30°,则DE=()A.1.8B.2.4C.3.6D.4.822.(2020秋•北碚区校级期中)如图,已知∠AOB=60°,P在边OA上,OP=8,点M,N在边OB上,PM=PN,若MN=5,则ON的长度是()A.9B.6.5C.6D.5.523.(2020秋•天宁区校级期中)如图,△ABC中,∠ACB=90°,∠CAB=60°,动点P 在斜边AB所在的直线m上运动,连结PC,那点P在直线m上运动时,能使图中出现等腰三角形的点P的位置有()A.6个B.5个C.4个D.3个24.(2020秋•连江县期中)如图,等边△ABC中,AB=4,点P在边AB上,PD⊥BC,DE ⊥AC,垂足分别为D、E,设PA=x,若用含x的式子表示AE的长,正确的是()A.2﹣x B.3﹣x C.1D.2+x 25.(2020秋•赣榆区期中)如图,在△ABC中,AB=AC=6,∠BAC=120°,AD是△ABC 的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长是()A.5B.2C.4D.326.(2019秋•勃利县期末)如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D 作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③B.①②④C.②③④D.①②③④27.(2019春•秦淮区期末)如图,△ABC是等边三角形,P是三角形内任意一点,D、E、F分别是AC、AB、BC边上的三点,且PF∥AB,PD∥BC,PE∥AC.若PF+PD+PE=a,则△ABC的边长为()A.a B.a C.a D.a28.下列说法中,正确的个数是()①三条边都相等的三角形是等边三角形;②有一个角为60°的等腰三角形是等边三角形;③有两个角为60°的三角形是等边三角形;④底角的角平分线所在的直线是这等腰三角形的对称轴,则这个三角形是等边三角形A.1个B.2个C.3个D.4个29.(2020•和平区三模)如图,在边长为2的等边三角形ABC中,D为边BC上一点,且BD=CD.点E,F分别在边AB,AC上,且∠EDF=90°,M为边EF的中点,连接CM交DF于点N.若DF∥AB,则CM的长为()A.B.C.D.30.(2020秋•天心区期中)下列说法错误的是()A.有一个角是60°的等腰三角形是等边三角形B.如果一个三角形有两个角相等,那么这两个角所对的边相等C.等腰三角形的角平分线,中线,高相互重合D.三个角都相等的三角形是等边三角形.31.(2019春•杏花岭区校级期中)关于等边三角形,下列说法中错误的是()A.等边三角形中,各边都相等B.等腰三角形是特殊的等边三角形C.两个角都等于60°的三角形是等边三角形D.有一个角为60°的等腰三角形是等边三角形32.(2019•城步县模拟)一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是()A.13B.14C.15D.16 33.(2018•柳州一模)如图,在四边形ABCD中,∠A=∠B=60°,∠D=90°,AB=2,则CD长的取值范围是()A.<CD<B.CD>2C.1<CD<2D.0<CD<34.(2018秋•罗庄区期中)如图,以点O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画出射线OB,则∠AOB=()A.30°B.45°C.60°D.90°参考答案与试题解析1.【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】线段、角、相交线与平行线;三角形;推理能力.【分析】根据等腰三角形的性质即可判断A;根据三角形的高、角平分线、中线的定义和等腰三角形的性质即可判断B;根据角平分线的性质即可判断C;根据三角形的外角性质和等腰三角形的性质即可判断D.【解答】解:A.等腰三角形的两底角相等,故本选项不符合题意;B.等腰三角形的两个底角的高、角平分线和中线不一定互相重合,故本选项符合题意;C.过O作OM⊥AB于M,OQ⊥AC于Q,ON⊥BC于N,∵O是∠ABC和∠ACB的角平分线的交点,∴OM=ON,ON=OQ,∴OM=ON=OQ,即三角形的两边的垂直平分线的交点到三个顶点的距离相等,故本选项不符合题意;D.∵AB=AC,∴∠B=∠C,∵∠EAC=∠B+∠C,∴∠EAC=2∠B,即等腰三角形顶角的外角是其底角的2倍,故本选项不符合题意;故选:B.【点评】本题考查了角平分线的性质,等腰三角形的性质,三角形的外角性质等知识点,能灵活运用知识点进行推理是解此题的关键.2.【考点】三角形三边关系;等腰三角形的性质.【专题】等腰三角形与直角三角形.【分析】分两种情况讨论:当4cm为腰长时,当4cm为底边时,分别判断是否符合三角形三边关系即可.【解答】解:①若4cm是腰长,则底边长为:20﹣4﹣4=12(cm),∵4+4<12,不能组成三角形,舍去;②若4cm是底边长,则腰长为:=6.5(cm).则腰长为6.5cm.故选:B.【点评】此题考查等腰三角形的性质与三角形的三边关系.此题难度不大,注意掌握分类讨论思想的应用是解此题的关键.3.【考点】等腰三角形的判定.【专题】三角形.【分析】根据等腰三角形的性质,利用4作为腰或底边长,得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形(AD,AE,AF,AG分别为分割线).故选:B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.4.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或【点评】本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A的度数,要分∠A是顶角和底角两种情况,以免造成答案的遗漏.5.【考点】非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系;等腰三角形的性质.【专题】压轴题;分类讨论.【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【解答】解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.【点评】本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.6.【考点】等腰三角形的判定.【专题】几何图形.【分析】(1)首先过点A作AF⊥BC于点F,由AD=AE,根据三线合一的性质,可得DF=EF,又由BD=CE,可得BF=CF,然后由线段垂直平分线的性质,可证得AB=AC.(2)根据等腰三角形的判定解答即可.【解答】证明:(1)过点A作AF⊥BC于点F,∵AD=AE,∴DF=EF,∵BD=CE,∴BF=CF,∴AB=AC.(2)∵∠B=∠BAD,∠C=∠EAC,∠BAE=∠BEA,∠ADC=∠DAC,∴除△ABC与△ADE外所有的等腰三角形为:△ABD、△AEC、△ABE、△ADC,【点评】此题考查了等腰三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.7.【考点】等边三角形的判定与性质.【专题】数形结合;三角形;等腰三角形与直角三角形;运算能力;推理能力.【分析】过点E作EG⊥BC,交BC于点G,先证明△ABC是等边三角形,再证明∠AFE =90°,然后利用等腰三角形的“三线合一”性质及角平分线的性质定理求得EG的长,随后利用含30度角的直角三角形的性质求得DE的长,最后将EF与DE相加即可.【解答】解:如图,过点E作EG⊥BC,交BC于点G∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∴∠AEF=30°,∴∠AFE=90°,即EF⊥AB,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴EG=EF=2,在Rt△DEG中,DE=2EG=4,∴DF=EF+DE=2+4=6;方法二、∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴∠ABE=∠CBE=30°=∠CDE,∴BE=DE,∠BFD=90°,∴BE=2EF=4=DE,∴DF=DE+EF=6;故选:D.【点评】本题考查了等边三角形的判定与性质、等腰三角形的“三线合一”性质及含30度角的直角三角形的性质,熟练掌握相关性质及定理是解题的关键.8.【考点】等边三角形的判定与性质.【分析】先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE=BE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【解答】解:△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选:B.【点评】考查直角三角形的性质,等边三角形的判定及图形折叠等知识的综合应用能力及推理能力.9.【考点】等腰三角形的判定与性质.【专题】几何图形.【分析】连接AC,根据等边对等角得到∠BAC=∠BCA,因为∠A=∠C,则可以得到∠CAD=∠ACD,根据等角对等边可得到AD=DC.【解答】证明:连接AC,∵AB=BC,∴∠BAC=∠BCA.∵∠BAD=∠BCD,∴∠CAD=∠ACD.∴AD=CD.【点评】重点考查了等腰三角形的判定方法,即:如果一个三角形有两个角相等,那么这两个角所对的边也相等.10.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题.【分析】由△ABC是等边三角形,AD=BE=CF,易证得△ADF≌△BED,即可得DF=DE,同理可得DF=EF,即可证得:△DEF是等边三角形.【解答】证明:∵△ABC是等边三角形,∴AB=BC=AC,∵AD=BE=CF,∴AF=BD,在△ADF和△BED中,,∴△ADF≌△BED(SAS),∴DF=DE,同理DE=EF,∴DE=DF=EF.∴△DEF是等边三角形.【点评】此题考查了等边三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.11.【考点】平行线的性质;等腰三角形的判定与性质;等边三角形的判定与性质.【专题】几何图形.【分析】(1)根据等边三角形的性质和平行线的性质证明即可.(2)根据等边三角形的性质解答即可.【解答】证明:(1)∵△ABC为等边三角形,∴∠A=∠ABC=∠C=60°.∵DE∥BC,∴∠AED=∠ABC=60°,∠ADE=∠C=60°.∴△ADE是等边三角形.(2)∵△ABC为等边三角形,∴AB=BC=AC.∵BD平分∠ABC,∴AD=AC.∵△ADE是等边三角形,∴AE=AD.∴AE=AB.【点评】此题考查等边三角形的判定和性质,关键是根据等边三角形的性质和平行线的性质解答.12.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题.【分析】根据等边△ABC中AD=BE=CF,证得△ADE≌△BEF≌△CFD即可得出△DEF 是等边三角形.【解答】解:∵△ABC为等边三角形,且AD=BE=CF,∴AE=BF=CD,又∵∠A=∠B=∠C=60°,∴△ADE≌△BEF≌△CFD(SAS),∴DE=EF=FD,∴△DEF是等边三角形.【点评】本题主要考查了等边三角形的判定与性质和全等三角形判定,根据已知得出△ADE≌△BEF≌△CFD是解答此题的关键.13.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】分类讨论.【分析】(1)根据旋转的性质可得CO=CD,∠OCD=60°,根据有一个角是60°的等腰三角形是等边三角形解答;(2)利用勾股定理逆定理判定△AOD是直角三角形,并且∠ADO=90°,从而求出∠ADC=150°,再根据旋转变换只改变图形的位置不改变图形的形状与大小可得α=∠ADC;(3)根据周角为360°用α表示出∠AOD,再根据旋转的性质表示出∠ADO,然后利用三角形的内角和定理表示出∠DAO,再分∠AOD=∠ADO,∠AOD=∠DAO,∠ADO=∠DAO三种情况讨论求解.【解答】解:(1)△COD是等边三角形.理由如下:∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形;(2)∵AD2+OD2=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2=AO2,∴△AOD是直角三角形,且∠ADO=90°,∵△COD是等边三角形,∴∠CDO=60°,∴∠ADC=∠ADO+∠CDO=90°+60°=150°,根据旋转的性质,α=∠ADC=150;(3)∵α=∠ADC,∠CDO=60°,∴∠ADO=α﹣60°,又∵∠AOD=360°﹣110°﹣α﹣60°=190°﹣α,∴∠DAO=180°﹣(190°﹣α)﹣(α﹣60°)=180°﹣190°+α﹣α+60°=50°,∵△AOD是等腰三角形,∴①∠AOD=∠ADO时,190°﹣α=α﹣60°,解得α=125°,②∠AOD=∠DAO时,190°﹣α=50°,解得α=140°,③∠ADO=∠DAO时,α﹣60°=50°,解得α=110°,综上所述,α为125°或140°或110°时,△AOD是等腰三角形.【点评】本题考查了等边三角形的判定与性质,旋转变换只改变图形的位置不改变图形的形状与大小的性质,勾股定理逆定理,等腰三角形的性质,(3)用α表示出△AOD的各个内角是解题的关键,注意要分情况讨论.14.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题;压轴题.【分析】首先延长BD至F,使DF=BC,连接EF,得出△BEF为等边三角形,进而求出△ECB≌△EDF,从而得出EC=DE.【解答】证明:延长BD至F,使DF=BC,连接EF,∵AE=BD,△ABC为等边三角形,∴BE=BF,∠B=60°,∴△BEF为等边三角形,∴∠F=60°,在△ECB和△EDF中∴△ECB≌△EDF(SAS),∴EC=ED.【点评】此题主要考查了等边三角形的性质与判定以及全等三角形的判定等知识,作出辅助线是解决问题的关键.15.【考点】含30度角的直角三角形.【专题】计算题;等腰三角形与直角三角形;运算能力;推理能力.【分析】根据同角的余角相等求出∠BCD=∠A=60°,再根据30°角所对的直角边等于斜边的一半求出AC、AB的长,然后根据BD=AB﹣AD计算即可得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠BCD+∠ACD=90°,∠A+∠ACD=90°,∴∠BCD=∠A=60°,∴∠ACD=∠B=30°,∵AD=2,∴AC=2AD=4,∴AB=2AC=8,∴BD=AB﹣AD=8﹣2=6.故选:C.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,同角的余角相等的性质,熟记性质是解题的关键.16.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形.【分析】根据线段垂直平分线的性质得到EB=EA,根据等腰三角形的性质得到∠EAB=∠B=15°,根据三角形的外角的性质求出∠AEC=30°,根据直角三角形的性质计算.【解答】解:∵DE垂直平分AB,∴EB=EA,∴∠EAB=∠B=15°,∴∠AEC=30°,∴AC=AE=3(cm),故选:D.【点评】本题考查的是线段垂直平分线的性质,直角三角形的性质,在直角三角形中,30°角所对的直角边等于斜边的一半.17.【考点】等腰三角形的性质;含30度角的直角三角形.【分析】根据等腰三角形三线合一的性质可得到AD⊥BC,∠BAD=∠CAD,从而可得到∠BAD=60°,∠ADB=90°,再根据角平分线的性质即可得到∠DAE=∠EAB=30°,从而可推出AD=DF,根据直角三角形30度角的性质即可求得AD的长,即得到了DF 的长.【解答】解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°.∵DF∥AB,∴∠F=∠BAE=30°.∴∠DAF=∠F=30°,∴AD=DF.∵AB=11,∠B=30°,∴AD=5.5,∴DF=5.5故选:C.【点评】本题考查了含30°角的直角三角形,等腰三角形的判定与性质,平行线的性质等知识点,能求出AD=DF是解此题的关键.18.【考点】含30度角的直角三角形.【专题】推理填空题.【分析】根据直角三角形的性质求出BC,根据三角形中位线定理计算即可.【解答】解:∵∠A=30°,BC⊥AC,∴BC=AB=3.7,∵DE⊥AC,BC⊥AC,∴DE∥BC,∵点D是斜梁AB的中点,∴DE=BC=1.85m,故答案为:1.85m.【点评】本题考查的是直角三角形的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.19.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】计算题;等腰三角形与直角三角形;运算能力;推理能力.【分析】先由直角三角形的性质求出∠ABC的度数,由AB的垂直平分线交AC于D,交AB于E,垂足为E,可得BD=AD,由∠A=30°可知∠ABD=30°,故可得出∠DBC =30°,根据CD=2可得出BD的长,进而得出AD的长.【解答】解:连接BD,∵在△ABC中,∠C=90°,∠A=30°,∴∠ABC=60°.∵AB的垂直平分线交AC于D,交AB于E,∴AD=BD,DE⊥AB,∴∠ABD=∠A=30°,∴∠DBC=30°,∵CD=2,∴BD=2CD=4,∴AD=4.故选:D.【点评】此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质.熟练掌握直角三角形的性质是解题的关键.20.【考点】垂线段最短;含30度角的直角三角形.【专题】解直角三角形及其应用;推理能力.【分析】在Rt△ABC中,利用“在直角三角形中,30°角所对的直角边等于斜边的一半”可求出AB的长,由点P是BC边上一动点结合AC,AB的长,即可得出AP长的取值范围,再对照四个选项即可得出结论.【解答】解:在Rt△ABC中,∠C=90°,∠B=30°,AC=3,∴AB=2AC=6.∵点P是BC边上一动点,∴AC≤AP≤AB,即3≤AP≤6.故选:D.【点评】本题考查了含30度角的直角三角形以及垂线段最短,通过解含30度角的直角三角形,求出AB的长是解题的关键.21.【考点】含30度角的直角三角形.【专题】等腰三角形与直角三角形;运算能力.【分析】求出AD的长,再根据含30°角的直角三角形的性质得出DE=AD,即可求出答案.【解答】解:∵点D是AB的中点,AB=7.2,∴AD=AB=3.6,∵DE⊥AC,∴∠DEA=90°,∵∠A=30°,∴DE=AD=1.8,故选:A.【点评】本题考查了含30°角的直角三角形的性质,能根据含30°角的直角三角形的性质得出DE=AD是解此题的关键.22.【考点】等腰三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】过P作PC⊥MN于C,先由等腰三角形的性质得CM=CN=2.5,再由含30°角的直角三角形的性质求出OC的长,然后由OC+CM求出ON的长即可.【解答】解:过P作PC⊥MN于C,如图所示:∵PM=PN,MN=5,∴CM=NC=MN=2.5,在Rt△OPC中,∠AOB=60°,∴∠OPC=30°,∴OC=OP=4,则ON=OC+CM=4+2.5=6.5,故选:B.【点评】本题考查的是含30°角的直角三角形的性质、等腰三角形的性质等知识;熟练掌握含30°角的直角三角形的性质和等腰三角形的性质是解题的关键.23.【考点】三角形内角和定理;等腰三角形的判定;含30度角的直角三角形.【专题】等腰三角形与直角三角形;几何直观.【分析】根据等腰三角形的判定和含30°的直角三角形的性质解答即可.【解答】解:如图所示:以B为圆心,BC长为半径画弧,交直线m于点P4,P2,以A为圆心,AC长为半径画弧,交直线m于点P1,P3,边AC和BC的垂直平分线都交于点P3位置,因此出现等腰三角形的点P的位置有4个,故选:C.【点评】此题考查等腰三角形的判定,关键是根据等腰三角形的判定和含30°的直角三角形的性质解答.24.【考点】列代数式;等边三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】利用等边三角形的性质可得AB=BC=AC=4,∠B=∠C=60°,再利用含30度角的直角三角形的性质进行计算即可.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=4,∠B=∠C=60°,∵PD⊥BC,DE⊥AC,∴BD=PB,CE=CD,∵P A=x,∴BP=4﹣x,∴BD=PB=2﹣x,∴CD=4﹣(2﹣x)=2+x,∴CE=1+x,∴AE=4﹣(1+x)=3﹣x,故选:B.【点评】此题主要考查了等边三角形的性质和含30度角的直角三角形的性质,关键是掌握在直角三角形中,30°角所对的直角边等于斜边的一半.25.【考点】平行线的性质;等腰三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等腰三角形三线合一的性质可得到AD⊥BC,∠BAD=∠CAD,从而可得到∠BAD=60°,∠ADB=90°,再根据角平分线的性质即可得到∠DAE=∠EAB=30°,从而可推出AD=DF,根据直角三角形30度角的性质即可求得AD的长,即得到了DF 的长.【解答】解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAF=∠F=30°,∴AD=DF,∵AB=6,∠B=30°,∴AD=AB=3,∴DF=3,故选:D.【点评】本题考查了含30°角的直角三角形,等腰三角形的判定与性质,平行线的性质等知识点,能求出AD=DF是解此题的关键.26.【考点】等边三角形的判定与性质.【专题】等腰三角形与直角三角形.【分析】由在△ABC中,∠ACB=90°,DE⊥AB,易证得∠DCA=∠DAC,继而可得①∠DCB=∠B正确;由①可证得AD=BD=CD,即可得②CD=AB正确;易得③△ADC是等腰三角形,但不能证得△ADC是等边三角形;由若∠E=30°,易求得∠FDC=∠FCD=30°,则可证得DF=CF,继而证得DE=EF+CF.【解答】解:∵在△ABC中,∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°,∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD,∵AD=CD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵若∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=60°,∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选:B.【点评】此题考查了等腰三角形的性质与判定以及直角三角形的性质.注意证得D是AB 的中点是解此题的关键.27.【考点】平行线的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;多边形与平行四边形.【分析】延长EP交BC于点G,延长FP交AC于点H,证出四边形AEPH、四边形PDCG 均为平行四边形,得出PE=AH,PG=CD.证出△FGP和△HPD也是等边三角形,得出PF=PG=CD,PD=DH,得出PE+PD+PF=AH+DH+CD=AC即可.【解答】解:延长EP交BC于点G,延长FP交AC于点H,如图所示:∵PF∥AB,PD∥BC,PE∥AC,∴四边形AEPH、四边形PDCG均为平行四边形,∴PE=AH,PG=CD.又∵△ABC为等边三角形,∴△FGP和△HPD也是等边三角形,∴PF=PG=CD,PD=DH,∴PE+PD+PF=AH+DH+CD=AC,∴AC=a;故选:D.【点评】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.28.【考点】等腰三角形的判定与性质;等边三角形的判定与性质.【专题】三角形.【分析】根据等边三角形的判定、轴对称的性质即可判断;【解答】解:①三条边都相等的三角形是等边三角形;正确.②有一个角为60°的等腰三角形是等边三角形;正确.③有两个角为60°的三角形是等边三角形;正确.④底角的角平分线所在的直线是这等腰三角形的对称轴,则这个三角形是等边三角形;正确.故选:D.【点评】本题考查等边三角形的判定和性质、等腰三角形的判定和性质、轴对称等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.29.【考点】平行线的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等边三角形边长为2,在Rt△BDE中求得DE的长,再根据CM垂直平分DF,在Rt△CDN中求得CN,最后根据线段和可得CM的长.【解答】解:∵等边三角形边长为2,BD=CD,∴BD=,CD=,∵等边三角形ABC中,DF∥AB,∴∠FDC=∠B=60°,∵∠EDF=90°,∴∠BDE=30°,∴DE⊥BE,∴BE=BD=,DE=,如图,连接DM,则Rt△DEF中,DM=EF=FM,∵∠FDC=∠FCD=60°,∴△CDF是等边三角形,∴CD=CF=,∴CM垂直平分DF,∴∠DCN=30°,DN=FN,∴Rt△CDN中,DN=,CN=,∵M为EF的中点,∴MN=DE=,∴CM=CN+MN=+=,故选:C.【点评】本题主要考查了三角形的综合应用,解决问题的关键是掌握等边三角形的性质、平行线的性质、线段垂直平分线的判定等.熟练掌握这些性质是解题的关键.30.【考点】等腰三角形的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等腰三角形的性质和等边三角形的性质和判定逐个进行分析判断,即可得到答案.【解答】解:A.有一个角为60°的等腰三角形是等边三角形,故本选项不合题意;B.如果一个三角形有两个角相等,那么这两个角所对的边相等,故本选项不合题意;C.等腰三角形顶角的角平分线,底边的中线,高相互重合,说法错误,故本选项符合题意;D.三个角都相等的三角形是等边三角形,故本选项不合题意;故选:C.【点评】本题考查了等边三角形的判定和性质,等腰三角形的性质,熟练掌握等边三角形的判定和性质定理是解题的关键.31.【考点】等腰三角形的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.。

人教版八年级数学上册暑期课程跟踪——13.3.2等边三角形基础练习

人教版八年级数学上册暑期课程跟踪——13.3.2等边三角形基础练习

13.3.2等边三角形基础练习一、选择题1.如图,在△ABC中,D,E是BC上两点,且BD=DE=AD=AE=EC.则∠BAC的度数是()A.90°B.108°C.120°D.135°2.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③B.①②④C.①③D.①②③④3.一个三角形具备下列条件仍不是等边三角形的是()A.一个角的平分线是对边的中线或高线B.两边相等,有一个内角是60°C.两角相等,且两角的和是第三个角的2倍D.三个内角都相等4.如图,△ABC 是等边三角形,点D 在AC 边上,∠DBC =35°,则∠ADB 的度数为( )A .25°B .60°C .85°D .95°5.在ABC ∆中,,60,6AB AC A BC =∠=︒=,则AB 的值是( )A.12B.8C.6D.3 6.如图,将边长为5个单位的等边△ABC 沿边BC 向右平移4个单位得到△A’B’C’,则四边形AA’C’B 的周长为( )A .22B .23C .24D .25 7.如图,△ABC 是等边三角形,D 是BC 边的中点,点E 在AC 的延长线上,且∠CDE=30°.若DE 的长( ).A B.C D.8.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P 关于OA对称,则P1,O,P2三点所构成的三角形是( )A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形9.如图,P为边长为2的等边三角形ABC内任意一点,连接PA、PB、PC,过P点分别作BC、AC、AB边的垂线,垂足分别为D、E、F,则PD+PE+PF 等于()A. B.C.2D.二、填空题10.如图,ABC ∆是等边三角形,过它的三个顶点分别作对边的平行线,则图中共有______个等边三角形.11. 如图,在等边三角形ABC 中,点D 是边BC 的中点,则∠BAD =_____.12.已知在等边三角形ABC 中,点D 是边BC 的中点,AC=8,则BD=______________.13.如图,直线a b ∥,ABC ∆的顶点C 在直线b 上,边AB 与直线b 相交于点D .若BCD ∆是等边三角形,20A ∠=︒,则1∠=__°14.如图,△ABC 以点A 为旋转中心,按逆时针方向旋转60°得到△AB′C′,则△ABB′是________三角形.15.如图,已知等边△ABC中,BD=CE,AD与BE交于点P,则∠APE=________.16.如图,将边长为6 cm的等边三角形沿BC方向向右平移4 cm,得到△DEF,DE交AC于点G,则△EGC是_______三角形,DG=____cm.三、解答题17.如图,△ ABC 是等边三角形,D是AC边上一点,E是BC延长线上一点,连接BD和DE,若∠ABD=40°,BD=DE,求∠CDE的度数.18.如图,在等边△ABC中,DE分别是AB,AC上的点,且AD=CE.(1)求证:BE=CD;(2)求∠1+∠2的度数.19.如图1,△ACB 和△DCE 均为等边三角形,点A .D. E 在同一直线上,连接BE.填空:(1),①∠AEB 的度数为 ;②线段AD 、BE 之间的数量关系是 ;(2)拓展探究:如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE=90°,点A 、D 、E 在同一直线上,且交BC 于点F ,连接BE.若∠CAF=∠BAF ,BE=2,试求AF 的长.20. 如图,等边△ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE =CD ,DF ⊥BE ,垂足为F.求证:BF =EF.21.如图,E 是AOB ∠的平分线上一点,,EC OB ED OA ⊥⊥,C 、D 是垂足,连接CD 交OE 于点F ,若60AOB ︒∠=(1)求证: OCD ∆是等边三角形:(2)若EF=5,求线段OE 的长,22. 如图,△ABC 是等边三角形,D 是AB 边上一点,以CD 为边作等边三角形CDE ,使点E ,A 在直线DC 的同侧,连接AE.求证:AE ∥BC.答案1. C2. D3. A4. D5. C6.B7.A8.D9.B10.511. 30°12.413.4014.等边15.60°16.等边,417.解∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵∠ABD=40°,∴∠DBC=∠ABC-∠ABD=60°-40°=20°,∵BD=DE,∴∠E=∠DBC=20°,∴∠CDE=∠ACB-∠E=40°.18.(1)证明:∵△ABC是等边三角形,∴∠A=∠ACB=60°,AC=BC,在△ACD和△CBE中,AC=BC,∠A=∠BCE,AD=CE,∴△ACD ≌△CBE (SAS ), ∴BE=CD ;(2)解:∵△ACD ≌△CBE , ∴∠1=∠ACD ,∴∠1+∠2=∠ACD+∠2=∠ACB=60°. 19.解 (1)①如图1, ∵△ACB 和△DCE 均为等边三角形, ∴CA=CB,CD=CE,∠ACB=∠DCE=60°. ∴∠ACD=∠BCE.在△ACD 和△BCE 中, AC BC ACD BCE CD CE =⎧⎪∠=⎨⎪=⎩,∴△ACD ≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE 为等边三角形, ∴∠CDE=∠CED=60°.∵点A,D,E 在同一直线上, ∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC−∠CED=60°. 故答案为:60°.②∵△ACD ≌△BCE ,∴AD=BE.故答案为:AD=BE ;(2)∵△ACB 和△DCE 均为等腰直角三角形, ∴CA=CB,CD=CE,∠ACB=∠DCE=90°. ∴∠ACD=∠BCE.在△ACD 和△BCE 中, CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE(SAS).∴AD=BE ,∠ADC=∠BEC. ∵△DCE 为等腰直角三角形, ∴∠CDE=∠CED=45°.∵点A ,D ,E 在同一直线上, ∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC−∠CED=90°; 延长BE 交AC 的延长线于点G , 在△ACF 和△BCG 中,90CAD CBE AC BCACF BCG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△ACF ≌△BCG ,∴AF=BG ,∵∠CAF=∠BAF,∠AEB=90°, ∴E 是BG 的中点,∵BE=2,∴AF=4.20. 解:∵BD 是等边三角形ABC 的中线,∴BD 平分∠ABC ,∴∠DBE =12∠ABC =12∠ACB , 又∵CE =CD ,∴∠E =12∠ACB , ∴∠DBE =∠E ,∴DB =DE ,∵DF ⊥BE ,∴DF 为底边上的中线,∴BF =EF21. 解 (1)∵点E 是AOB ∠的平分线上一点,,EC OB ED OA ⊥⊥,垂足分别是C 、D , DE CE ∴=,在 Rt ODE ∆与Rt OCE ∆中,DE CE OE OE =⎧⎨=⎩, Rt ODE Rt OCE(HL)∴∆≅∆,OD OC ∴=,60AOB ︒∠=,OCD ∴∆是等边三角形;(2)OCD ∆是等边三角形,OF 是COD ∠的平分线,OE DC ∴⊥,60AOB ︒∠=,30AOE BOE ︒∴∠=∠=,60,ODF ED OA ︒∠=⊥,30EDF ︒∴∠=,210DE EF ∴==,220OE DE ∴==22. 解:∵△ABC 和△EDC 是等边三角形,∴∠BCA =∠DCE =60°, ∴∠BCD =∠ACE.在△DBC 和△EAC 中,BC =AC ,∠BCD =∠ACE ,DC =EC , ∴△DBC ≌△EAC(SAS),∴∠DBC =∠EAC ,又∵∠DBC =∠ACB =60°,∴∠ACB =∠EAC ,∴AE ∥BC。

专题05-等腰、等边三角形压轴真题(原卷版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版)

专题05-等腰、等边三角形压轴真题(原卷版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版)

专题05 高分必刷题-等腰三角形、等边三角形压轴题真题(原卷版)题型一:等腰三角形、等边三角形中的动点问题1.(湘一芙蓉)如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由点B向C点运动,同时,点Q在线段AC上由点A 向C点以4cm/s的速度运动.(1)若点P、Q两点分别从B、A两点同时出发,经过2秒后,△BPD与△CQP是否全等?请说明理由;(2)若点P、Q两点分别从B、A两点同时出发,△CPQ的周长为16cm,设运动时间为t,问:是否存在某一时刻t,使得△CPQ是等腰三角形?如存在,请求出t的值,若不存在,请说明理由.2.(中雅)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P 从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.3.(青竹湖)已知,△ABC是边长3cm的等边三角形.动点P以1cm/s的速度从点A出发,沿线段AB向点B运动.(1)如图1,设点P的运动时间为t(s),那么t为何值时,△PBC是直角三角形;(2)若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D.如果动点P、Q都以1cm/s的速度同时出发.①如图2,设运动时间为t(s),那么t为何值时,△DCQ是等腰三角形?②如图3,连接PC,请你猜想:在点P、Q的运动过程中,△PCD和△QCD的面积有什么关系?并说明理由.4.(广益)如图1,在平面直角坐标系中,直线AB分别交x轴、y轴于A(a,0)、B(0,b)两点,且a,b满足(a﹣b)2+|a﹣4t|=0,且t>0,t是常数.直线BD平分∠OBA,交x轴于D点.(1)若AB的中点为M,连接OM交BD于N,求证:ON=OD;(2)如图2,过点A作AE⊥BD,垂足为E,猜想AE与BD间的数量关系,并证明你的猜想;(3)如图3,在x轴上有一个动点P(在A点的右侧),连接PB,并作等腰Rt△BPF,其中∠BPF=90°,连接F A并延长交y轴于G点,当P点在运动时,OG的长是否发生改变?若改变,请求出它的变化范围;若不变,求出它的长度.5.(长郡、雅礼)如图,在平面直角坐标系中,点O为原点,△OAB为等边三角形,P、Q 分别为AO、AB边上的动点,点P、点Q同时从点A出发,且当其中一点停止运动时,另一点也立即停止运动;若P以2个单位长度每秒的速度从点A向终点O运动,点Q以3个单位长度每秒的速度从点A向终点B运动,设运动时间为t,已知点A坐标为(a,b),且满足(a﹣6)2+|a﹣b|=0.(1)求A点坐标;(2)如图1,连接BP、OQ交于点C,请问当t为何值时,∠OCP=60°;(3)如图2,D为OB边上的中点,P,Q在运动过程中,D,P,Q三点是否能构成使∠PDQ=120°的等腰三角形,若能,求运动时间t并直接写出四边形APDQ的面积:若不能,请说明理由.6.(师梅)如图,在平面直角坐标系中,A(﹣3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接QD并延长,交y轴于点P,当点C运动到什么位置时,满足PD=DC?请求出点C 的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.7.(郡维)等腰Rt△ABC中,∠BAC=90°,AB=AC,点A、点B分别是y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E.(1)如图(1),已知C点的横坐标为﹣1,直接写出点A的坐标;(2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB =∠CDE;(3)如图(3),若点A在x轴上,且A(﹣4,0),点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连接CD 交y轴于点P,问当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请求出BP的长度.8.(长郡)如图,在△ABC中.AB=AC,点E在线段BC上,连接AE并延长到G,使得EG=AE,过点G作GD∥BA分别交BC,AC于点F,D.(1)求证:△ABE≌△GFE;(2)若GD=3,CD=1,求AB的长度;(3)过点D作DH⊥BC于H,P是直线DH上的一个动点,连接AF,AP,FP,若∠C=45°,在(2)的条件下,求△AFP周长的最小值.9.(广益)如图,在平面直角坐标系中,点O为坐标原点,点A(0,3)与点B关于x轴对称,点C(n,0)为x轴的正半轴上一动点.以AC为边作等腰直角三角形ACD,∠ACD=90°,点D在第一象限内.连接BD,交x轴于点F.(1)如果∠OAC=38°,求∠DCF的度数;(2)用含n的式子表示点D的坐标;(3)在点C运动的过程中,判断OF的长是否发生变化?若不变求出其值,若变化请说明理由.题型二:等腰三角形、等边三角形综合类压轴题10.(雅境)(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.①∠AEB的度数为②猜想线段AD,BE之间的数量关系为:,并证明你的猜想.(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请求出∠AEB的度数及线段CM,AE,BE之间的数量关系.11.(郡维)如图1,已知△ABC和△EFC都是等边三角形,且点E在线段AB上.(1)求证:BF∥AC;(2)过点E作EG∥BC交AC于点G,试判断△AEG的形状并说明理由;(3)如图2,若点D在射线CA上,且ED=EC,求证:AB=AD+BF.12.(北雅)已知:△ABC为等边三角形,点E为射线AC上一点,点D为射线CB上一点,AD=DE.(1)如图1,当E在AC的延长线上且CE=CD时,求证:BD=CD;(2)如图2,当E在AC的延长线上时,AB+BD等于AE吗?请说明理由;(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE的数量关系,并证明.13.(中雅)已知△ABC为等边三角形,取△ABC的边AB,BC中点D,E,连接DE,如图1,易证△DBE为等边三角形,将△DBE绕点B顺时针旋转,设旋转的角度∠ABD=α,其中0<α<180°.(1)如图2,当α=30°,连接AD,CE,求证:AD=CE;(2)在△DBE旋转过程中,当α超过一定角度时,如图3,连接AD,CE会交于一点,记交点为点F,AD交BC于点P,CE交BD于点Q,连接BF,请问BF是否会平分∠CBD?如果是,求出α,如果不是,请说明理由;(3)在第(2)问的条件下,试猜想线段AF,BF和CF之间的数量关系,并说明理由.14.(雅实)如图1,△ABC为等腰三角形,∠ABC=90°,点P在线段BC上(不与B、C 重合),以点A为直角顶点作等腰直角△P AQ,且点Q在AP的左下方,过点Q作QE⊥AB于点E.(1)求证:△P AB≌△AQE;(2)连接CQ交AB于M,若PC=2PB,求的值.(3)如图2,过点Q作QF⊥AQ于AB的延长线于点F,过P点作DP⊥AP交AC于点D,连接DF,当点P在线段BC上运动时(不与B,C重合),式子的值会变化吗?若不变,求出该值;若变化,请说明理由.15.(师梅)如图1,在平面直角坐标系中,点A在y轴上,点B在x轴上,AB=AC,16.∠BAC=90°,CM⊥y轴,交y轴于点M.(1)求证∠ABO=∠CAM;(2)如图2,D,E为y轴上的两个点,BD=BE,BD⊥BE,求∠CEM的度数;(3)如图3,△P AQ是等腰直角三角形,∠P AQ为顶角,点Q在x轴负半轴上,连接CB,交y轴于点H,AC与x轴交于点G,连接PC,交AQ于点K,交x轴于点N,若CN=CM,NG=3,HM=2,求GH.16.(博才)如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC,(1)求C点的坐标;(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,P A为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;(3)如图3,已知点F坐标为(﹣2,﹣2),当G在y轴的负半轴上沿负方向运动时,作Rt△FGH,始终保持∠GFH=90°,FG与y轴负半轴交于点G(0,m),FH与x轴正半轴交于点H(n,0),当G点在y轴的负半轴上沿负方向运动时,以下两个结论:①m﹣n为定值;②m+n为定值,其中只有一个结论是正确的,请找出正确的结论,并求出其值.17.(青竹湖)如图,四边形OABC的位置在平面直角坐标系中如图所示,且A(0,a),B (b,a),C(b,0),又a,b满足﹣+b2+4b+8=0,点P在x轴上且横坐标大于b,射线OD是第一象限的一条射线,点Q在射线OD上,BP=PQ.并连接BQ交y 轴于点M.(1)求点A,B,C的坐标为A、B、C.(2)当BP⊥PQ时,求∠AOQ的度数.(3)在(2)的条件下,若点P在x轴的正半轴上,且OP=3AM,试求点M的坐标.。

等边三角形的判定与性质-初中数学习题集含答案

等边三角形的判定与性质-初中数学习题集含答案
3.(2013 秋•西城区期末)如图,在 ABC 中, AB AC , A 60 , BE AC 于 E ,延长 BC 到 D ,使 CD CE , 连接 DE ,若 ABC 的周长是 24, BE a ,则 BDE 的周长是 8 3 12 .
【 分 析 】 根 据 在 ABC 中 , AB AC , A 60 , 可 得 ABC 的 形 状 , 再 根 据 ABC 的 周 长 是 24 , 可 得 AB BC AC 8 ,根据 BE AC 于 E ,可得 CE 的长, EBC 30 ,根据 CD CE ,可得 D CED ,根据 ACB 60 ,可得 D ,根据 D 与 EBC ,可得 BE 与 DE 的关系,可得答案. 【解答】解:Q 在 ABC 中, AB AC , A 60 , ABC 是等边三角形, Q ABC 的周长是 24, AB AC BC 8 ,
等边三角形的判定与性质(北京习题集)(教师版)
一.填空题(共 5 小题) 1.(2018•东城区一模)含 30 角的直角三角板与直线 l1 , l2 的位置关系如图所示,已知 l1 / /l2 , 1 60 ,以下三个
结论中正确的是 (只填序号) ① AC 2BC ;② BCD 为正三角形;③ AD BD
2.(2016 秋•海淀区期中)如图,在等边 ABC 的底边 BC 边上任取一点 D ,过点 D 作 DE / / AC 交 AB 于点 E ,作 DF / / AC 交 AC 于点 F , DE 5cm , DF 3cm ,则 ABC 的周长为 cm .
3.(2013 秋•西城区期末)如图,在 ABC 中, AB AC , A 60 , BE AC 于 E ,延长 BC 到 D ,使 CD CE , 连接 DE ,若 ABC 的周长是 24, BE a ,则 BDE 的周长是 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学:等边三角形测试题
时间40分钟总分100分
一、选择题(每题5分)
1、不能判定两个等边三角形全等的是()
A.一条边对应相等B.一个内角对应相等
C.一边上的高对应相等D.有一内角的角平分线对应相等
2、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()
A. 180°
B. 220°
C. 240°
D. 300°
3、一艘轮船由海平面上A地出发向南偏西40°的方向行驶40海里到达B地,再由B地向北偏西20°的方向行驶40海里到达C地,则A、C两地相距()A.30海里 B.40海里 C.50海里.60海里
二、填空题(每题5分)
4、在△ABC中,AB=AC,
①如果∠A=70°,则∠C=_________,∠B=___________;
②如果∠A=90°,则∠B=_________,∠C=___________;
③如果∠A=60°,则∠B=_________,∠C=___________。

5、一个等边三角形的周长是21cm,它的边长=_______cm。

6、如图,以A,B两点为其中两个顶点作位置不同的等边三角形,最多可以作出_________个.
7、O是等边△ABC两条高的交点,若△AOB的面积为1,则△ABC的面积为_____.
8、如图所示,P是等边三角形ABC内一点,将△ABP绕点B顺时针方向旋转60°,得到△CBP′,若PB=3,则PP′=_________.
三、解答题(每题15分)
9、如图,等边三角形ABC中,AD是BC上的高,延长AB到点E,使BE=BD,连接DE.
求证:△ADE是等腰三角形.
10、如图所示,在等边△ABC中,在边BC,AC上取BD=CE,连接AD,BE
交于F.
求证∠AFE=60°
11、如图가ABD和가ACE都是等边三角形。

求证BE=DC
12、如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN.
(1)求证:AE=BD;
(2)求证:MN∥AB.。

相关文档
最新文档