平面向量的数量积及运算律的教案说明

合集下载

必修四4.平面向量的数量积(教案)

必修四4.平面向量的数量积(教案)

2、4 平面向量得数量积教案A第1课时教学目标一、知识与技能1.掌握平面向量得数量积及其几何意义;2.掌握平面向量数量积得重要性质及运算律;3.了解用平面向量得数量积可以处理有关长度、角度与垂直得问题;二、过程与方法本节学习得关键就是启发学生理解平面向量数量积得定义,理解定义之后便可引导学生推导数量积得运算律,然后通过概念辨析题加深学生对于平面向量数量积得认识.三、情感、态度与价值观通过问题得解决,培养学生观察问题、分析问题与解决问题得实际操作能力;培养学生得交流意识、合作精神;培养学生叙述表达自己解题思路与探索问题得能力.教学重点、难点教学重点:平面向量数量积得定义.教学难点:平面向量数量积得定义及运算律得理解与平面向量数量积得应用、教学关键:平面向量数量积得定义得理解.教学方法本节学习得关键就是启发学生理解平面向量数量积得定义,理解定义之后便可引导学生推导数量积得运算律,然后通过概念辨析题加深学生对于平面向量数量积得认识.学习方法通过类比物理中功得定义,来推导数量积得运算.教学准备教师准备: 多媒体、尺规、学生准备:练习本、尺规、教学过程一、创设情境,导入新课在物理课中,我们学过功得概念,即如果一个物体在力F得作用下产生位移s,那么力F所做得功W可由下式计算:W=|F | | s|cosθ,其中θ就是F与s得夹角.我们知道力与位移都就是向量,而功就是一个标量(数量).故从力所做得功出发,我们就顺其自然地引入向量数量积得概念.二、主题探究,合作交流提出问题①a·b得运算结果就是向量还就是数量?它得名称就是什么?②由所学知识可以知道,任何一种运算都有其相应得运算律,数量积就是一种向量得乘法运算,它就是否满足实数得乘法运算律?师生活动:已知两个非零向量a与b,我们把数量|a||b|cosθ叫做a与b得数量积(或内积),记作a·b,即a·b=|a||b|cosθ(0≤θ≤π).其中θ就是a与b得夹角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)得投影.在教师与学生一起探究得活动中,应特别点拨引导学生注意:(1)两个非零向量得数量积就是个数量,而不就是向量,它得值为两向量得模与两向量夹角得余弦得乘积;(2)零向量与任一向量得数量积为0,即a·0=0;(3)符号“·”在向量运算中不就是乘号,既不能省略,也不能用“×”代替;(4)当0≤θ<时cosθ>0,从而a·b>0;当<θ≤π时,cosθ<0,从而a·b<0.与学生共同探究并证明数量积得运算律.已知a、b、c与实数λ,则向量得数量积满足下列运算律:①a·b=b·a(交换律);②(λa)·b=λ(a·b)=a·(λb)(数乘结合律);③(a+b)·c=a·c+b·c(分配律).特别就是:(1)当a≠0时,由a·b=0不能推出b一定就是零向量.这就是因为任一与a垂直得非零向量b,都有a·b=0.注意:已知实数a、b、c(b≠0),则ab=bca=c.但对向量得数量积,该推理不正确,即a·b=b·c不能推出a=c.由上图很容易瞧出,虽然a·b=b·c,但a≠c.对于实数a、b、c有(a·b)c=a(b·c);但对于向量a、b、c,(a·b)c=a(b·c)不成立.这就是因为(a·b)c表示一个与c共线得向量,而a(b·c)表示一个与a共线得向量,而c与a不一定共线,所以(a·b)c=a(b·c)不成立.提出问题①如何理解向量得投影与数量积?它们与向量之间有什么关系?②能用“投影”来解释数量积得几何意义吗?师生活动:教师引导学生来总结投影得概念,可以结合“探究”,让学生用平面向量得数量积得定义,从数与形两个角度进行探索研究.教师给出图形并作结论性得总结,提出注意点“投影”得概念,如下图.定义:|b|cosθ叫做向量b在a方向上得投影.并引导学生思考、A、投影也就是一个数量,不就是向量;B、当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ=0°时投影为|b|;当θ=180°时投影为-|b|.教师结合学生对“投影”得理解,让学生总结出向量得数量积得几何意义:数量积a·b等于a得长度与b在a方向上投影|b|cosθ得乘积.让学生思考:这个投影值可正、可负,也可为零,所以我们说向量得数量积得结果就是一个实数.教师与学生共同总结两个向量得数量积得性质:设a、b为两个非零向量,θ为两向量得夹角,e就是与b同向得单位向量.A、e·a=a·e=|a|cosθ.B、a⊥ba·b=0.C、当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|.特别地a·a=|a|2或|a|=.D、cosθ=.E、|a·b|≤|a||b|.上述性质要求学生结合数量积得定义自己尝试推证,教师给予必要得补充与提示,在推导过程中理解并记忆这些性质.讨论结果:①略.②向量得数量积得几何意义为数量积a·b等于a得长度与b在a方向上投影|b|co sθ得乘积.三、拓展创新,应用提高例1 已知|a|=5,|b|=4,a与b得夹角为120°,求a·b活动:教师引导学生利用向量得数量积并结合两向量得夹角来求解.解:a·b=|a||b|cosθ=5×4×cos120°=5×4×()=-10.点评: 确定两个向量得夹角,利用数量积得定义求解.例 2 我们知道,对任意a,b∈R,恒有(a+b)2=a2+2ab+b2,(a+b)(a-b)=a2-b2.对任意向量a、b,就是否也有下面类似得结论?(1)(a+b)2=a2+2a·b+b2;(2)(a+b)·(a-b)=a2-b2.解:(1)(a+b)2=(a+b)·(a+b)=a·b+a·b+b·a+b·b=a2+2a·b+b2;(2)(a+b)·(a-b)=a·a-a·b+b·a-b·b=a2-b2.例3已知|a|=6,|b|=4,a与b得夹角为60°,求(a+2b)·(a-3b).解:(a+2b)·(a-3b)=a·a-a·b-6b·b=|a|2-a·b-6|b|2=|a|2-|a||b|cosθ-6|b|2=62-6×4×cos60°-6×42=-72.例4已知|a|=3,|b|=4,且a与b不共线,当k为何值时,向量a+k b与a-kb互相垂直?解:a+kb与a-k b互相垂直得条件就是(a+kb)·(a-k b)=0,即a2-k2b2=0.∵a2=32=9,b2=42=16,∴9-16k2=0.∴k=±.也就就是说,当k=±时,a+kb与a-k b互相垂直.点评:本题主要考查向量得数量积性质中垂直得充要条件.四、小结1.先由学生回顾本节学习得数学知识,数量积得定义、几何意义,数量积得重要性质,数量积得运算律.2.教师与学生总结本节学习得数学方法,归纳类比、定义法、数形结合等.在领悟数学思想方法得同时,鼓励学生多角度、发散性地思考问题,并鼓励学生进行一题多解.课堂作业1.已知a,b,c就是非零向量,则下列四个命题中正确得个数为( )①|a·b|=|a||b|a∥b②a与b反向a·b=-|a||b|③a⊥b|a+b|=|a-b| ④|a|=|b||a·c|=|b·c|A.1 B.2 C.3 D.42.有下列四个命题:①在△ABC中,若·>0,则△ABC就是锐角三角形;②在△ABC中,若·>0,则△ABC为钝角三角形;③△ABC为直角三角形得充要条件就是·=0;④△ABC为斜三角形得充要条件就是·≠0.其中为真命题得就是()A.①ﻩB.②ﻩC.③ D.④3.设|a|=8,e为单位向量,a与e得夹角为60°,则a在e方向上得投影为()A.4ﻩB.4C.42D.8+4.设a、b、c就是任意得非零平面向量,且它们相互不共线,有下列四个命题:①(a·b)c-(c·a)b=0; ②|a|-|b|<|a-b|;③(b·c)a-(c·a)b不与c垂直; ④(3a+2b)·(3a-2b)=9|a|2-4|b|2.其中正确得就是( )A.①②B.②③ C.③④D.②④5.在△ABC中,设=b,=c,则等于( )A.0B.S△ABCC.S△ABCD.2S△ABC6.设i,j就是平面直角坐标系中x轴、y轴方向上得单位向量,且a=(m+1)i-3j,b=i+(m-1)j,如果(a+b)⊥(a-b),则实数m=_____________.7.若向量a、b、c满足a+b+c=0,且|a|=3,|b|=1,|c|=4,则a·b+b·c+c·a=_________.参考答案:1.C 2.B 3.B 4.D 5.D 6.-2 7.-13第2课时教学目标一、知识与技能1.掌握平面向量数量积运算规律、2.能利用数量积得性质及数量积运算规律解决有关问题、3.掌握两个向量共线、垂直得几何判断,会证明两向量垂直,以及能解决一些简单问题.二、过程与方法教师应在坐标基底向量得数量积得基础上,推导向量数量积得坐标表示.通过例题分析、课堂训练,让学生总结归纳出对于向量得坐标、数量积、向量所成角及模等几个因素,知道其中一些因素,求出其她因素基本题型得求解方法.平面向量数量积得坐标表示就是在学生学习了平面向量得坐标表示与平面向量数量积得基础上进一步学习得,这都为数量积得坐标表示奠定了知识与方法基础.三、情感、态度与价值观通过平面向量数量积得坐标表示,进一步加深学生对平面向量数量积得认识,提高学生得运算速度,培养学生得运算能力,培养学生得创新能力,提高学生得数学素质.教学重点、难点教学重点:平面向量数量积得坐标表示.教学难点:向量数量积得坐标表示得应用.教学关键:平面向量数量积得坐标表示得理解.教学突破方法:教师应在坐标基底向量得数量积得基础上,推导向量数量积得坐标表示.并通过练习,使学生掌握数量积得应用.教法与学法导航教学方法:启发诱导,讲练结合、学习方法:主动探究,练习巩固.教学准备教师准备:多媒体、尺规、学生准备:练习本、尺规、教学过程一、创设情境,导入新课前面我们学习了平面向量得坐标表示与坐标运算,以及平面向量得数量积,那么,能否用坐标表示平面向量得数量积呢?若能,如何表示呢?由此又能产生什么结论呢?本节课我们就来研究这个问题.(板书课题)二、主题探究,合作交流提出问题:①已知两个非零向量a=(x1,y1),b=(x2,y2),怎样用a与b得坐标表示a·b呢?②怎样用向量得坐标表示两个平面向量垂直得条件?③您能否根据所学知识推导出向量得长度、距离与夹角公式?师生活动:教师引导学生利用前面所学知识对问题进行推导与探究.提示学生在向量坐标表示得基础上结合向量得坐标运算进行推导数量积得坐标表示.教师可以组织学生到黑板上板书推导过程,教师给予必要得提示与补充.推导过程如下:∵a=x1i+y1j,b=x2i+y2j,∴a·b=(x1i+y1j)·(x2i+y2j)=x1x2i2+x1y2i·j+x2y1i·j+y1y2j2.又∵i·i=1,j·j=1,i·j=j·i=0,∴a·b=x1x2+y1y2.教师给出结论性得总结,由此可归纳如下:A、平面向量数量积得坐标表示两个向量得数量积等于它们对应坐标得乘积得与,即a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.B、向量模得坐标表示若a=(x,y),则|a|2=x2+y2,或|a|=.如果表示向量a得有向线段得起点与终点得坐标分别为(x1,y1)、(x2,y2),那么a=(x2-x1,y2-y1),|a|=C、两向量垂直得坐标表示设a=(x1,y1),b=(x2,y2),则a⊥b x1x2+y1y2=0.D、两向量夹角得坐标表示设a、b都就是非零向量,a=(x1,y1),b=(x2,y2),θ就是a与b得夹角,根据向量数量积得定义及坐标表示,可得cosθ=三、拓展创新,应用提高例1已知A(1,2),B(2,3),C(-2,5),试判断△ABC得形状,并给出证明.活动:教师引导学生利用向量数量积得坐标运算来解决平面图形得形状问题.判断平面图形得形状,特别就是三角形得形状时主要瞧边长就是否相等,角就是否为直角.可先作出草图,进行直观判定,再去证明.在证明中若平面图形中有两个边所在得向量共线或者模相等,则此平面图形与平行四边形有关;若三角形得两条边所在得向量模相等或者由两边所在向量得数量积为零,则此三角形为等腰三角形或者为直角三角形.教师可以让学生多总结几种判断平面图形形状得方法.解:在平面直角坐标系中标出A(1,2),B(2,3),C(-2,5)三点,我们发现△ABC就是直角三角形.下面给出证明.∵=(2-1,3-2)=(1,1),=(-2-1,5-2)=(-3,3),∴·=1×(-3)+1×3=0.∴⊥.∴△ABC就是直角三角形.点评:本题考查得就是向量数量积得应用,利用向量垂直得条件与模长公式来判断三角形得形状.当给出要判定得三角形得顶点坐标时,首先要作出草图,得到直观判定,然后对您得结论给出充分得证明.例2设a=(5,-7),b=(-6,-4),求a·b及a、b间得夹角θ(精确到1°).解:a·b=5×(-6)+(-7)×(-4)=-30+28=-2.|a|=,|b|=由计算器得cosθ=≈-0.03.利用计算器得θ≈1.6rad=92°.四、小结1.在知识层面上,先引导学生归纳平面向量数量积得坐标表示,向量得模,两向量得夹角,向量垂直得条件.其次引导学生总结数量积得坐标运算规律,夹角与距离公式、两向量垂直得坐标表示.2.在思想方法上,教师与学生一起回顾探索过程中用到得思维方法与数学思想方法,定义法,待定系数法等.课堂作业1.若a=(2,-3),b=(x,2x),且a·b=,则x等于()A.3B.C.ﻩD.-32.设a=(1,2),b=(1,m),若a与b得夹角为钝角,则m得取值范围就是( )A.m>B.m< C.m> D.m<3.若a=(cosα,sinα),b=(cosβ,sinβ),则( )A.a⊥bB.a∥bC.(a+b)⊥(a-b)D.(a+b)∥(a-b)4.与a=(u,v)垂直得单位向量就是( )A.()B.()C.()D.()或()5.已知向量a=(cos23°,cos67°),b=(cos68°,cos22°),u=a+t b(t∈R),求u得模得最小值.6.已知a,b都就是非零向量,且a+3b与7a-5b垂直,a-4b与7a-2b垂直,求a与b得夹角.7.已知△ABC得三个顶点为A(1,1),B(3,1),C(4,5),求△ABC得面积.参考答案:1.C2.D 3.C 4.D5.|a|==1,同理有|b|=1.又a·b=cos23°cos68°+cos67°cos22°=cos23°cos68°+sin23°sin68°=cos45°=,∴|u|2=(a+t b)2=a2+2t a·b+t2b2=t2+t+1=(t+)2+≥.当t=时,|u|min=.6.由已知(a+3b)⊥(7a-5b)(a+3b)·(7a-5b)=07a2+16a·b-15b2=0.①又(a-4b)⊥(7a-2b)(a-4b)·(7a-2b)=07a2-30a·b+8b2=0. ②①-②得46a·b=23b2,即a·b=③将③代入①,可得7|a|2+8|b|2-15|b|2=0,即|a|2=|b|2,有|a|=|b|,∴若记a与b得夹角为θ,则cosθ=.又θ∈[0°,180°],∴θ=60°,即a与b得夹角为60°.7.分析:S△ABC=||||sin∠BAC,而||,||易求,要求sin∠BAC可先求出cos∠BA C.解:∵=(2,0),=(3,4),||=2,||=5,∴cos∠BAC=.∴sin∠BAC=.∴S△ABC=||||sin∠BAC=×2×5×=4.教案 B第一课时教学目标一、知识与技能1、了解平面向量数量积得物理背景,理解数量积得含义及其物理意义;2、体会平面向量得数量积与向量投影得关系,理解掌握数量积得性质与运算律,并能运用性质与运算律进行相关得判断与运算.二、过程与方法体会类比得数学思想与方法,进一步培养学生抽象概括、推理论证得能力.三、情感、态度与价值观通过自主学习、主动参与、积极探究,学生能感受数学问题探究得乐趣与成功得喜悦,增加学习数学得自信心与积极性,并养成良好得思维习惯.教学重点平面向量数量积得定义,用平面向量得数量积表示向量得模、夹角.教学难点平面向量数量积得定义及运算律得理解,平面向量数量积得应用.教具多媒体、实物投影仪.内容分析本节学习得关键就是启发学生理解平面向量数量积得定义,理解定义之后便可引导学生推导数量积得运算律,然后通过概念辨析题加深学生对于平面向量数量积得认识.主要知识点:平面向量数量积得定义及几何意义;平面向量数量积得3个重要性质;平面向量数量积得运算律.教学流程概念引入→概念获得→简单运用→运算律探究→理解掌握→反思提高教学设想:一、情境设置:问题1:回忆一下物理中“功”得计算,功得大小与哪些量有关?结合向量得学习您有什么想法?力做得功:W= ||⋅||cosθ,θ就是与得夹角.(引导学生认识功这个物理量所涉及得物理量,从“向量相乘”得角度进行分析)二、新课讲解1.平面向量数量积(内积)得定义:已知两个非零向量a与b,它们得夹角就是θ,则数量|a||b|cosθ叫a与b得数量积,记作a⋅b,即有a⋅b= |a||b|cosθ,(0≤θ≤π).并规定:0与任何向量得数量积为0.问题2:定义中涉及哪些量?它们有怎样得关系?运算结果还就是向量吗?(引导学生认清向量数量积运算定义中既涉及向量模得大小,又涉及向量得交角,运算结果就是数量)注意:两个向量得数量积与向量同实数积有很大区别.(1)两个向量得数量积就是一个实数,不就是向量,符号由cosθ得符号所决定.(2)两个向量得数量积称为内积,写成a⋅b;今后要学到两个向量得外积a×b,而a⋅b就是两个向量得数量得积,书写时要严格区分.符号“·”在向量运算中不就是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a≠0,且a⋅b=0,则b=0;但就是在数量积中,若a≠0,且a⋅b=0,不能推出b=0.因为其中cosθ有可能为0.(4)已知实数a、b、c(b≠0),则ab=bc ⇒a=c.但就是在向量得数量积中,a⋅b= b⋅c 推导不出a= c、如下图:a⋅b= |a||b|cosβ = |b||OA|,b⋅c= |b||c|cosα = |b||OA|⇒a⋅b=b⋅c,但a≠c、(5)在实数中,有(a⋅b)c = a(b⋅c),但就是在向量中,(a⋅b)c≠a(b⋅c)显然,这就是因为左端就是与c共线得向量,而右端就是与a共线得向量,而一般a 与c不共线.( “投影”得概念):作图2.定义:|b|cosθ叫做向量b在a方向上得投影.投影也就是一个数量,不就是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ=0︒时投影为|b|;当θ =180︒时投影为-|b|.3.向量得数量积得几何意义:数量积a⋅b等于a得长度与b在a方向上投影|b|cosθ得乘积.例1已知平面上三点A、B、C满足||=2,||=1,||=,求·+·+.得值、解:由已知,||2+||2=||2,所以△ABC就是直角三角形、而且∠ACB=90°,从而sin∠ABC=,sin∠BAC=、∴∠ABC=60°,∠BAC=30°、∴与得夹角为120°,与得夹角为90°,与得夹角为150°、故·+·+·=2×1×cos120°+1×cos90°+×2cos150°=-4、点评:确定两个向量得夹角,应先平移向量,使它们得起点相同,再考察其角得大小,而不就是简单地瞧成两条线段得夹角,如例题中与得夹角就是120°,而不就是60°、探究1:非零向量得数量积就是一个数量,那么它何时为正,何时为0,何时为负?当0°≤θ<90°时a·b为正;当θ =90°时a·b为零;90°<θ ≤180°时a·b为负、探究2:两个向量得夹角决定了它们数量积得符号,那么它们共线或垂直时,数量积有什么特殊性呢?4.两个向量得数量积得性质:设a、b为两个非零向量.(1)a⊥b⇔a⋅b=0.(2)当a与b同向时,a⋅b= |a||b|;当a与b反向时,a⋅b= -|a||b|.特别得a⋅a=|a|2或.(3) |a⋅b|≤|a||b|.公式变形:cosθ =探究3:对一种运算自然会涉及运算律,回忆过去研究过得运算律,向量得数量积应有怎样得运算律?(引导学生类比得出运算律,老师作补充说明)向量a、b、c与实数λ,有(1) a⋅b= b⋅a(2)(λa)⋅b= λ(a⋅ b )=a⋅(λb)(3)(a +b)⋅ c= a·c+b⋅ c(进一步)您能证明向量数量积得运算律吗?(引导学生证明(1)、(2))例2 判断正误:①a·0=0;②0·a=0;③0-=;④|a·b|=|a||b|;⑤若a≠0,则对任一非零b有a·b≠0;⑥a·b=0,则a与b中至少有一个为0;⑦对任意向量a,b,с都有(a·b)с=a(b·с);⑧a 与b就是两个单位向量,则a2=b2.上述8个命题中只有②③⑧正确;例3已知|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b得夹角就是60°时,分别求a·b.解:①当a∥b时,若a与b同向,则它们得夹角θ=0°,∴a·b=|a|·|b|cos0°=3×6×1=18;若a与b反向,则它们得夹角θ=180°,∴a·b=|a||b|cos180°=3×6×(-1)=-18;②当a⊥b时,它们得夹角θ=90°,∴a·b=0;③当a与b得夹角就是60°时,有a·b=|a||b|cos60°=3×6×=9.评述:两个向量得数量积与它们得夹角有关,其范围就是[0°,180°],因此,当a∥b时,有0°或180°两种可能.评述:这一类型题,要求学生确实把握好数量积得定义、性质、运算律.三、课堂练习1.已知|a|=1,|b|=,且(a-b)与a垂直,则a与b得夹角就是()A.60° B.30°C.135° D.45°2.已知|a|=2,|b|=1,a与b之间得夹角为,那么向量m=a-4b得模为( )A.2 B.2 C.6D.123.已知a、b就是非零向量,若|a|=|b|则(a+b)与(a-b)、4.已知向量a、b得夹角为,|a|=2,|b|=1,则|a+b|·|a-b|=.5.已知a+b=2i-8j,a-b=-8i+16j,其中i、j就是直角坐标系中x轴、y轴正方向上得单位向量,那么a·b=.6.已知|a|=1,|b|=,(1)若a∥b,求a·b;(2)若a、b得夹角为45°,求|a+b|;(3)若a -b与a垂直,求a与b得夹角.参考答案:1.D2.B3.垂直 4. 5.-36、解:(1)若a、b方向相同,则a·b=;若a、b方向相反,则a·b=;(2)|a+b|=.(3)45°.四、知识小结(1)通过本节课得学习,您学到了哪些知识?(2)关于向量得数量积,您还有什么问题?五、课后作业教材第108页习题2.4A组1、2、3、6、7教学后记数学课堂教学应当就是数学知识得形成过程与方法得教学,数学活动就是以学生为主体得活动,没有学生积极参与得课堂教学就是失败得.本节课教学设计按照“问题——讨论——解决”得模式进行,并以学生为主体,教师以课堂教学得引导者、评价者、组织者与参与者同学生一起探索平面向量数量积定义、性质与运算律得形成与发展过程.始终做到以“学生为主体、教师为主导、思维为主攻、训练为主线”.第2课时教学目标一、知识与技能掌握平面向量得数量积坐标运算及应用.二、过程与方法1、通过平面向量数量积得坐标运算,体会向量得代数性与几何性、2、从具体应用体会向量数量积得作用.三、情感、态度与价值观学会对待不同问题用不同得方法分析得态度、教学重点、难点教学重点:平面向量数量积得坐标表示、教学难点:平面向量数量积得坐标表示得综合运用、教具多媒体、实物投影仪、教学设想一、复习引入向量得坐标表示,为我们解决有关向量得加、减、数乘运算带来了极大得方便.上一节,我们学习了平面向量得数量积,那么向量得坐标表示,对平面向量得数量积得表示方式又会带来哪些变化呢?由此直接进入主题.二、探究新知:⒈平面两向量数量积得坐标表示已知两个非零向量,,试用与得坐标表示.设就是轴上得单位向量,就是轴上得单位向量,那么,.所以.又,,,所以.这就就是说:两个向量得数量积等于它们对应坐标得乘积得与.即.2.平面内两点间得距离公式(1)设,则或.如果表示向量得有向线段得起点与终点得坐标分别为、,那么(平面内两点间得距离公式).(2)向量垂直得判定设,,则ﻩ.(3)两非零向量夹角得余弦()cosθ=.三、例题讲解例1已知a=(3,-1),b = (1, 2),求满足x⋅a = 9与x⋅b = -4得向量x.解:设x = (t,s),由、∴x= (2,-3)、例2 已知a=(1,),b=(+1,-1),则a与b得夹角就是多少?分析:为求a与b夹角,需先求a·b及|a|·|b|,再结合夹角θ得范围确定其值.解:由a=(1,),b=(+1,-1)、有a·b=+1+(-1)=4,|a|=2,|b|=2.记a与b得夹角为θ,则cosθ=、又∵0≤θ≤π,∴θ=、评述:已知三角形函数值求角时,应注重角得范围得确定.例3如图,以原点与A(5, 2)为顶点作等腰直角△OAB,使∠B=90︒,求点B 与向量得坐标.解:设B点坐标(x, y),则= (x, y),=(x-5, y-2)、∵⊥∴x(x-5)+ y(y-2) = 0即:x2 + y2-5x- 2y = 0、又∵||= || ∴x2 +y2= (x-5)2 + (y-2)2即:10x +4y= 29、由、∴B点坐标或;=或、例4在△ABC中,=(2, 3),=(1,k),且△ABC得一个内角为直角,求k值. 解:当∠A = 90︒时,⋅=0,∴2×1+3×k = 0,∴k =.当∠B = 90︒时,⋅=0,=-=(1-2, k-3)= (-1, k-3),∴2×(-1) +3×(k-3) =0 ∴k=.当∠C=90︒时,⋅= 0,∴-1+ k(k-3) =0,∴k =.四、小结1.本节课得内容:有关公式、结论(由学生归纳、总结)、2.本节课得思想方法:数形结合思想、分类讨论思想、方程(组)思想等、五、课外作业教材第107页练习.。

高一数学§5.10 平面向量的数量积及运算律(二)教案人教版

高一数学§5.10 平面向量的数量积及运算律(二)教案人教版

§5.10 平面向量的数量积及运算律(二)教学目标:1.进一步掌握平面向量数量积的定义及性质;2.掌握向量数量积的运算律及向量的混合运算;3.会利用向量的数量积的性质求向量的长度及夹角;4.会运用平行,垂直的充要条件及数形结合的思想解决有关三角形和平行四边形中的某些问题.教学重点:如何求向量的模与夹角,垂直的充要条件的应用.教学难点:综合问题的解决.教学过程知识平台1.认真学习向量数量积的运算律,主要是数量积及运算律的应用,主要解决与长度、角度和垂直有关的问题;2.向量数量积的运算律:交换律和分配律.情景平台1.给出以下五个命题:①若a≠0且a·b=0,则b=0②若a≠0且a·b=a·c,则b=c③若a2=b2,则a=b或a=-b④(a·b)·c=a·(b·c)⑤若|a·b|=|a||b|,则a∥b其中正确命题的序号是.2.已知|a|=2,|b|=3,a与b的夹角为120o,求:(1)a·b(2)(a+b)2(3)a2-b2(4)(2a-b)·(a+3b) (5)|a+b| (6)|a-b|【小结】1°向量数量积的运算律:分配律、交换律;注:不满足消去律、结合律.2°在进行向量运算时,应注意向量运算与实数运算的联系与区别,不要把实数的运算性质随意地推广到向量运算上;3°向量模的计算方法:|a能力平台3.如果a 、b 是两个不共线的向量,根据向量加减法法则,说明|a -b |及|a +b |的几何意义.4.若非零向量a 与b 满足|a -b |=|a +b |,则a ·b = .5.设|m |=2,|n |=1,⊥m n ,若a =4m -n ,b =m +2n ,c =2m -3n ,求a 2+3(a ·b )-2(b ·c )+1.6.已知a ,b 是非零向量,a +3b 与7a -5b 垂直,a -4b 与7a -2b 垂直, 求a 与b 的夹角θ.【小结】1°对公式的灵活运用;2°夹角的计算方法:cos θ=g g a b a b; 3°垂直的充要条件⊥⇔=0g a b a b (,)≠0a b作业:教材P 121习题5.6 T6,T7,T8后记:。

《平面向量数量积》教案

《平面向量数量积》教案

《平面向量数量积》教案一、教学目标知识与技能目标:使学生理解平面向量数量积的概念,掌握平面向量数量积的计算公式及性质,能够运用数量积解决一些几何问题。

过程与方法目标:通过探究平面向量数量积的概念和性质,培养学生的抽象思维能力和逻辑推理能力。

情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在现实生活中的应用价值。

二、教学重点与难点重点:平面向量数量积的概念,计算公式及性质。

难点:平面向量数量积的运算规律及其在几何中的应用。

三、教学方法采用问题驱动法、案例分析法和小组合作法,引导学生主动探究,发现平面向量数量积的规律,提高学生解决问题的能力。

四、教学准备教师准备PPT,涵盖平面向量数量积的概念、计算公式、性质及应用实例。

学生准备笔记本,以便记录学习过程中的疑问和感悟。

五、教学过程1. 导入新课教师通过展示一个实际问题,引导学生思考平面向量数量积的定义和作用。

2. 探究平面向量数量积的概念(1)教师引导学生根据定义,探究平面向量数量积的计算公式。

(2)学生通过实例,理解并掌握平面向量数量积的计算方法。

3. 学习平面向量数量积的性质(1)教师引导学生总结平面向量数量积的性质。

(2)学生通过练习,巩固对平面向量数量积性质的理解。

4. 应用平面向量数量积解决几何问题教师展示几个应用实例,引导学生运用平面向量数量积解决几何问题。

学生分组讨论,合作解决问题,分享解题过程和心得。

5. 课堂小结教师引导学生总结本节课所学内容,强调平面向量数量积的概念、计算公式及性质。

学生整理学习笔记,反思自己在学习过程中的收获和不足。

6. 布置作业教师布置一些有关平面向量数量积的练习题,巩固所学知识。

学生认真完成作业,巩固课堂所学内容。

七、教学反思教师在课后对自己的教学过程进行反思,分析教学效果,针对学生的掌握情况,调整教学策略。

学生反思自己的学习过程,总结经验教训,提高学习效果。

八、教学评价教师通过课堂表现、作业完成情况和课后练习成绩,全面评价学生对平面向量数量积的掌握程度。

平面向量的数量积及运算律数学教案

平面向量的数量积及运算律数学教案

平面向量的数量积及运算律数学教案1.掌控平面对量的数量积的运算律,并能运用运算律解决有关问题;2.掌控向量垂直的充要条件,依据两个向量的数量积为零证明两个向量垂直;由两个向量垂直确定参数的值;3.了解用平面对量数量积可以处理有关长度、角度和垂直的问题;4.通过平面对量的数量积的重要性质及运算律猜想与证明,培育同学的探究精神和严谨的科学立场以及实际动手技能;5.通过平面对量的数量积的概念,几何意义,性质及运算律的应用,培育同学的应用意识.二、教学重点平面对量的数量积运算律,向量垂直的条件;教学难点平面对量的数量积的.运算律,以及平面对量的数量积的应用。

三、教学具预备投影仪四、教学过程1.设置情境上节课,我们已经给出了数量积的定义,指出了它的〔5〕条属性,本节课将讨论数量积作为一种运算,它还满意哪些运算律?2.探究讨论〔1〕师:什么叫做两个向量的数量积?生:〔与向量的数量积等式的模与在的方向上的投影的乘积〕师:向量的数量积有哪些性质?生:有...师:向量的数量积满意哪些运算律?生〔由同学验证得出〕交换律:安排律:师:这个式子成立吗?〔由同学自己验证〕生:,由于表示一个与共线的向量,而表示一个与共线的向量,而与一般并不共线,所以,向量的内积不存在结合律。

〔2〕例题分析【例1】求证:〔1〕〔2〕分析:本例与多项式乘法形式完全一样。

证:注:〔其中、为向量〕答:一般不成立。

【例2】已知,,与的夹角为,求。

解:∵注:与多项式求值一样,先化简,再代入求值。

【例3】已知,且与不共线,当且仅当为何值时,向量与相互垂直.分析:师:两个向量垂直的充要条件是什么?生:解:与相互垂直的充要条件是即∵∴∴∴当且仅当时,与相互垂直.3.演练反馈〔投影〕〔1〕已知,为非零向量,与相互垂直,与相互垂直,求与的夹角.〔2〕,为非零向量,当的模取最小值时,①求的值;②求证:与垂直.〔3〕证明:直径所对的圆周角为直角.参考答案:〔1〕〔2〕解答:①由当时最小;②∵∴与垂直。

《平面向量的数量积及运算律》

《平面向量的数量积及运算律》

(九)小结:(利用多媒体显示) 小结:(利用多媒体显示) :(利用多媒体显示
五 )问题的解决充分体现了”数形结合“ 、 (2)问题的解决充分体现了”数形结合“的数学思想和类比 能力。 能力。 教 (3)该节是本章的知识的升华和重点,并为后续学习奠定了 )该节是本章的知识的升华和重点, 学 理论依据。 理论依据。 过 (4)本节学习了向量的数量积的概念及几何意义和运算律。 )本节学习了向量的数量积的概念及几何意义和运算律。 程 分 意图 :( )知识性总结可以把课堂传播的知识尽快转 :(1) 为学生的素质。 析 为学生的素质。 ) : (2)运用数学思想创新素质小结能让学生更系统更深刻
的夹角概念: (二)a 与 b 的夹角概念:
r a
r a
r b
r a
r b
r a
r b
r b
r a
r b
r a
r b
1、在平面中如何研究两个非零向量的位置关系? 、在平面中如何研究两个非零向量的位置关系? 2、什么叫向量a 与 b 的夹角? 、什么叫向量 的夹角? 3、 a 与 b 垂直应满足什么条件? 、 垂直应满足什么条件?
(六)研究数量积的几何意义: 研究数量积的几何意义:
五 、 教 学 过 程 分 析 :
如图:OA= a ,OB= b,过点 作BB1⊥OA,垂足为 1,则 如图: 过点B作 垂足为B 过点 垂足为 OB1=| b|cosθ。 。 B
B B
b
θ O
b a
θ A B1
b a
A θ O
(B1)
a
A
B1 (1)
五 、 教 学 过 程 分 析 :
意图: 意图:因为两个非零向量的夹角是研究数量积必 不可少的知识, 不可少的知识,也是更好理解向量的数量积的几何意 义的前提。 义的前提。有梯度的设置问题有助于对向量的夹角和 两向量垂直的认识和理解, 两向量垂直的认识和理解,为学生的思维提供强大动 力,激发学生的 探究欲望。 探究欲望。 (三)利用物理学功的概念,迁移到向量的数量积的概念: 利用物理学功的概念,迁移到向量的数量积的概念: 例1、有一与水平位置成 0角的力 牛顿拉动小车行驶 牛顿拉动小车行驶10 、有一与水平位置成30 角的力10牛顿拉动小车行驶 请问共做了多少功?(让学生完成该题目) ?(让学生完成该题目 米,请问共做了多少功?(让学生完成该题目)

平面向量数量积及运算律教案共6页

平面向量数量积及运算律教案共6页

平面向量的数量积及运算律教案课题:平面向量的数量积及运算律◆一、教学目标▼(一)知识目标1平面向量数量积的定义及几何意义;2平面向量数量积的运算律;3平面向量数量积的5个重要性质。

▼(二)能力目标1.掌握数量积的定义、5个重要性质及运算律;2.能应用数量积的5个重要性质及运算律解决问题;3.了解用平面向量数量积可以解决长度、角度、垂直共线等问题,为下节课灵活运用平面向量数量积解决问题打好基础。

▼(三)情感目标创设适当的问题情境,从生活中的常见现象引入课题,开始就激发学生的学习兴趣,让学生容易切入课题,培养学生用数学的意识,体现新课程改革的理念之一,加强数学与其它学科及生活实践的联系。

◆二、教学难点平面向量数量积运算律的理解;与实数运算律的区别和联系;平面向量数量积在解决长度、角度等问题的运用。

◆三、教学重点平面向量数量积的定义和运算律的应用。

◆四、教学手段在多媒体环境下,老师引导、启发和激励学生大胆参与活动和讨论的民主式的教学。

◆五、教学过程 ●问题一个物体在力F 的作用下产生的位移s ,且F 与s 的夹角为θ ,那么力F 所做的功应当怎样计算?||||s F W =其中力F 和位移s 是向量, 是F 与s 的夹角,而功是数量. 数量 θcos s F 叫做力F 与位移s 的数量积●向量的夹角两个非零向量 a ρ 和 b ρ,作 AC = a ρ,BC =b ρ,则θ=∠AOB (︒0≤θ≤︒180)叫做向量 a ρ和 b ρ的夹角。

注意:在两向量的夹角定义中,两向量必须是同起点的a ρ 与b ρ同向 a ρ 与b ρ反向a ρ与b ρ反向 记作b a ρρ⊥●例1、如图,等边三角形中,求 (1)AB 与AC 的夹角;(2)AB 与BC 的夹角。

通过平移变成共起点!OAa r Bbr OABa rb r ο180=θOAB a r brο90=θOABθar b r5.6 平面向量的数量积及运算律 平面向量的数量积的定义已知两个非零向量a 和b ,它们的夹角为q ,我们把数量θcos ||||b a 叫做a 与b 的数量积(或内积),记作a · b ,即 θcos ||||b a b a =⋅规定:零向量与任意向量的数量积为0,即=⋅0a 0.(1)两向量的数量积是一个数量,而不是向量,符号由夹角决定 (2)一种新的运算法则,以前所学的运算律、性质不适合. (3) a · b 不能写成a ×b ,a ×b 表示向量的另一种运算. 5.6 平面向量的数量积及运算律 例题讲解例1.已知向量a 与b 的夹角为 θ,|a |=2,|b |=3,,求a ·b.()⊥=3)2(135)1(0∥θa ·b =|a | |b |cos θ 平面向量的数量积 讨论总结性质:(1)e · a=a · e=| a | cosq(2)a ⊥b ⇔ a · b=0 (判断两向量垂直的依据)(3)当a 与b 同向时,a · b =| a | · | b |,当a 与b 反向 时, a · b =-| a | · | b | .特别地a a a a a a ⋅==⋅||||2或 (4)||||cos b a ba ⋅=θ(5)a · b ≤| a | · | b | 练习:1.若a =0,则对任一向量b ,有a · b =0.√ 2.若a ≠0,则对任一非零向量b ,有a · b ≠0.× 3.若a ≠0,a · b =0,则b =0×4.若a · b =0,则a · b 中至少有一个为0.× 5.若a ≠0,a · b = b · c ,则a =c ×6.若a · b = a · c ,则b ≠c ,当且仅当a = 0 时成立×. 7.对任意向量 a 有22||a a =√ 8.0=•×例2、如图,等边三角形中,求 (1)与的数量积; (2)与的数量积; (3)与的数量积.例3平面向量的数量积及运算律 1.a · b= b · a 交换律2. (λ·a) b= a · (λ b)= λ(a · b)= λ a · b3. (a+b) · c= a · c+ b · c 分配律思考: 结合律成立吗: (a · b ) · c=a · (b · c) ?ABC物理上力所做的功实际上是将力正交分解,只有在位移方向上的力做功.b a ==,作,过点B 作1BB 垂直于直线OA ,垂足为1B ,则=1OB| coscos θ<0讨论总结性质:a ·b =|a | |b |cos θ)1800(οο≤≤θ (1)e · a=a · e=| a | cosq(2)a ⊥b ⇔ a · b=0 (判断两向量垂直的依据)(3)当a 与b 同向时,a · b =| a | · | b |,当a 与b 反向 时, a · b =—| a | · | b | .特别地a a a a a a ⋅==⋅||||2或 (4)||||cos b a ba ⋅=θ(5)a · b ≤| a | · | b |运算律OB◆六、课后反思和巩固◆对数量积的运算律的证明思考和阅读◆希望以上资料对你有所帮助,附励志名言3条:◆◆1、有志者自有千计万计,无志者只感千难万难。

《平面向量的数量积》教案

《平面向量的数量积》教案

《平面向量的数量积》教案《《平面向量的数量积》教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!教学目的:1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;4.掌握向量垂直的条件.教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用教学过程:一、复习引入:1.向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ.2.平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ23.平面向量的坐标表示分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得把叫做向量的(直角)坐标,记作4.平面向量的坐标运算若,,则,,.若,,则5.∥(¹)的充要条件是x1y2-x2y1=06.线段的定比分点及λP1,P2是直线l上的两点,P是l上不同于P1,P2的任一点,存在实数λ,使=λ,λ叫做点P分所成的比,有三种情况:λ>0(内分)(外分)λ<0(λ<-1)(外分)λ<0(-1<λ<0)7.定比分点坐标公式:若点P1(x1,y1),P2(x2,y2),λ为实数,且=λ,则点P的坐标为(),我们称λ为点P分所成的比.8.点P的位置与λ的范围的关系:①当λ>0时,与同向共线,这时称点P为的内分点.②当λ<0()时,与反向共线,这时称点P为的外分点.9.线段定比分点坐标公式的向量形式:在平面内任取一点O,设=a,=b,可得=.10.力做的功:W=|F|×|s|cosq,q是F与s的夹角.二、讲解新课:1.两个非零向量夹角的概念已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)叫a与b 的夹角.说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向;(3)当θ=时,a与b垂直,记a⊥b;(4)注意在两向量的夹角定义,两向量必须是同起点的.范围0°≤q≤180°2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b=|a||b|cosq,(0≤θ≤π).并规定0与任何向量的数量积为0.×探究:两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定.(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分.符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a¹0,且a×b=0,则b=0;但是在数量积中,若a¹0,且a×b=0,不能推出b=0.因为其中cosq有可能为0.(4)已知实数a、b、c(b¹0),则ab=bcÞa=c.但是a×b=b×ca=c如右图:a×b=|a||b|cosb=|b||OA|,b×c=|b||c|cosa=|b||OA|Þa×b=b×c但a¹c(5)在实数中,有(a×b)c=a(b×c),但是(a×b)c¹a(b×c)显然,这是因为左端是与c共线的向量,而右端是与a共线的向量,而一般a与c不共线.3.“投影”的概念:作图定义:|b|cosq叫做向量b在a方向上的投影.投影也是一个数量,不是向量;当q为锐角时投影为正值;当q为钝角时投影为负值;当q为直角时投影为0;当q=0°时投影为|b|;当q=180°时投影为-|b|.4.向量的数量积的几何意义:数量积a×b等于a的长度与b在a方向上投影|b|cosq的乘积.5.两个向量的数量积的性质:设a、b为两个非零向量,e是与b同向的单位向量.1°e×a=a×e=|a|cosq2°a^bÛa×b=03°当a与b同向时,a×b=|a||b|;当a与b反向时,a×b=-|a||b|.特别的a×a=|a|2或4°cosq=5°|a×b|≤|a||b|三、讲解范例:例1已知|a|=5,|b|=4,a与b的夹角θ=120o,求a·b.例2已知|a|=6,|b|=4,a与b的夹角为60o求(a+2b)·(a-3b).例3已知|a|=3,|b|=4,且a与b不共线,k为何值时,向量a+kb与a-kb互相垂直.例4判断正误,并简要说明理由.①a·0=0;②0·a=0;③0-=;④|a·b|=|a||b|;⑤若a≠0,则对任一非零b有a·b≠0;⑥a·b=0,则a与b中至少有一个为0;⑦对任意向量a,b,с都有(a·b)с=a(b·с);⑧a与b是两个单位向量,则a2=b2.解:上述8个命题中只有③⑧正确;对于①:两个向量的数量积是一个实数,应有0·a=0;对于②:应有0·a=0;对于④:由数量积定义有|a·b|=|a|·|b|·|cosθ|≤|a||b|,这里θ是a 与b的夹角,只有θ=0或θ=π时,才有|a·b|=|a|·|b|;对于⑤:若非零向量a、b垂直,有a·b=0;对于⑥:由a·b=0可知a⊥b可以都非零;对于⑦:若a与с共线,记a=λс.则a·b=(λс)·b=λ(с·b)=λ(b·с),∴(a·b)·с=λ(b·с)с=(b·с)λс=(b·с)a若a与с不共线,则(a·b)с≠(b·с)a.评述:这一类型题,要求学生确实把握好数量积的定义、性质、运算律.例6已知|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b的夹角是60°时,分别求a·b.解:①当a∥b时,若a与b同向,则它们的夹角θ=0°,∴a·b=|a|·|b|cos0°=3×6×1=18;若a与b反向,则它们的夹角θ=180°,∴a·b=|a||b|cos180°=3×6×(-1)=-18;②当a⊥b时,它们的夹角θ=90°,∴a·b=0;③当a与b的夹角是60°时,有a·b=|a||b|cos60°=3×6×=9评述:两个向量的数量积与它们的夹角有关,其范围是[0°,180°],因此,当a∥b时,有0°或180°两种可能.《平面向量的数量积》教案这篇文章共7523字。

平面向量的数量积教案精品

平面向量的数量积教案精品

平面向量的数量积教案精品教学目标:1.理解平面向量的数量积的概念和性质。

2.学会计算平面向量的数量积。

3.掌握平面向量数量积的几何意义,了解数量积与向量夹角之间的关系。

4.能够应用平面向量的数量积解决实际问题。

教学重点:1.平面向量的数量积的计算。

2.平面向量的数量积与向量夹角的关系。

教学难点:1.平面向量的数量积与向量夹角的几何意义的理解与应用。

2.数量积计算过程中的代数化简。

教学准备:1.平面向量的定义和基本运算。

2.数学几何工具,如直尺、曲尺和圆规等。

教学过程:第一步:引入1.讲师简要介绍平面向量的基本概念和性质。

2.抛出问题:如何计算两个向量的乘积?这种乘积有什么特点?第二步:引出数量积的定义和性质1. 讲师给出数量积的定义: 设有两个向量a和b,它们的数量积记作a·b,定义为,a,b,·cosθ,其中,a,和,b,分别表示向量a和b的模长,θ表示两个向量夹角的大小。

2.讲师讲解数量积的几何意义:数量积a·b的值等于向量a在向量b 上的投影的长度乘以b的模长,也等于向量b在向量a上的投影的长度乘以a的模长。

3.讲师给出数量积的性质:a.a·b=b·a,数量积满足交换律。

b.a·a=,a,^2,即向量自身的数量积等于其模长的平方。

c.若a·b=0,则称向量a和b垂直或正交。

d.若a·b=,a,b,则称向量a和b同向或共线。

第三步:数量积的计算1.讲师给出数量积的计算公式:a·b=a1b1+a2b2,其中a=(a1,a2),b=(b1,b2)。

2.讲师通过例题演示如何计算数量积,引导学生掌握计算方法。

第四步:数量积与夹角的关系1.讲师引导学生思考:设向量a和b夹角为θ,如何利用数量积计算夹角θ的大小?2. 讲师给出数量积与夹角的关系: a·b = ,a,b,·cosθ,可解出cosθ = (a·b) / (,a,b,)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平面向量的数量积及运算律》的教案说明
新疆石河子第一中学曹丽梅
一、教学内容的本质:
本教案是人教版高中数学第一册(下)第五章平面向量的第六节内容,整个课题按照课程标准分两个课时,这是第一课时的教案。

平面向量数量积第一课时的教学,通常要求形成数量积的概念,得出数量积运算的公式,并把培养学生的探究精神和应用意识的目标,有机地融入知识学习和技能形成的过程之中。

平面向量数量积是平面向量的重点内容之一,也是难点之一,这一节主要介绍两个向量的数量积是两个向量之间的一种乘法,是中学代数中从未遇到过的一种新的乘法,与数的乘法有区别,同时这一节与下一节平面向量的数量积的坐标表示有着紧密联系。

由于向量既能体现“形”的直观位置特征,又具有“数”的良好运算性质,是数形结合和转换的桥梁。

而这一切之所以能够实现,平面向量的数量积功不可没。

通过对这一节的学习,既可以让学生掌握平面向量的数量积,几何意义,重要性质及运算律,又可使学生了解用平面向量的数量积可以处理有关长度,角度,和垂直问题,而且为平面向量的数量积的坐标表示的学习做了充分准备,对后面正,余弦定理的证明起到至关重要的作用,因此本节课的教学内容起着承前启后的作用。

根据“平面向量的数量积及运算律”在高中数学中的地位与作用,并且考虑到学生已有的认知结构心理特征,我认为本节课的教学目标应以人为本注重对学生自主能力的培养,启发引导学生发现问题,观察问题,进而得以解决问题,在这一过程中希望能充分调动学生的积极性,不断激发学生学数学的兴趣。

二、教学内容的应用及渗透
平面向量作为一种工具,重在应用,而且今后用向量方法特别便于研究空间里涉及直线和平面的各种问题;而平面向量的数量积作为一种特殊的运算也有它不可替代的作用,如:求向量的模长,夹角,推导正、余弦定理等。

由于向量来源于物理,并且兼具“数”和“形”的特点,所以它在物理和几何中具有广泛的应用,众所周知,物理与数学是密不可分的,而向量在物理中的应用比比皆是,举不胜举,反过来物理又可为某些数学知识作有效的解释。

比如:本课时的引入就是以物体在力的作用下所做的功为模型,事实上这也就是平面向量数量积的物理意义,这样可以更贴近生活,使学生更容易理解平面向量数量积的概念,符合学生的认知习惯。

同时解析几何也往往将向量作为有力的解题工具。

三、教学分析
《数学课程标准》中强调:“数学课程要实现:人人学有价值的数学;人人都获得必需的数学;不同的人在数学上得到不同的发展。

”同时,她倡导的“关注过程”“强调本质”“体现数学的文化价值”“发展数学的应用意识”等都向我们昭示出高中数学课程的价值取向。

为使《数学课程标准》得以顺利实施,教师理应不断更新教学观念,努力成为数学学习活动的组织者、引导者、合作者。

通过精心设计、实践与反思,不断改进教学方法和教学手段……以优化课堂教学,提高课堂教学的效率。

课程设计必须从学生的角度出发,要与学生的经历和经验相联系,关注学生的体验、感悟和实践过程。

基于以上认识,对于“平面向量数量积及运算律”引入,我进行了这样的
教学设计:首先演示一个外力作功的实验:W=|F| |S|cosθ,并揭示这个物理模型的实质,即:力与位移的数量积。

其次,具体分析平面向量的夹角,向量的数量积、重要性质等概念,并巩固练习。

再者,基本概念均简明有效的给出,为之后学生深入学习、探究提供了时间上的保证,从定义出发推导运算律也变得简单易行。

随后,从特殊到一般,得出数量积的几何表示。

在教师为主导、学生为主体的教学模式中,学习活动进展顺利,学生们都显得游刃有余。

在教学过程中,学生对平面向量数量积的定义及运算律的理解有些难度,总的感觉是:在核心问题上的处理不太容易把握,学生需要较多的时间去探究和体验。

结合多年教学发现学生对数量积的结果是数量重视不够,解题中往往忽略,
≤学生容易忽略;书写中符
号“⋅”学生容易省略不写,教学和作业中发现问题教师应时常提醒学生及时纠正,避免重复错误;运算律中消去律和结合律不能乱用,要给学生讲清楚一定不能与实数的运算律混淆,这些地方应反复给学生强调。

最后,在有效落实教学目标的同时,如何让学生的“学”更轻松些,让教师的“教”更顺畅些,使“数量积”的概念形成更具一般性,更能揭示“数量积”的本质内含就显得尤为重要。

四、教法及教学反思
教学过程中采用启发引导式与讲练相结合,并借助多媒体教学手段,使学生理解平面向量数量积的定义,理解定义之后引导学生推导数量积的性质,通过例题和练习加深学生对平面向量数量积定义的认识,初步掌握平面向量数量积定义的运用。

这一切主要是通过课堂教学来实现的,因此,要精于课堂教学设计,并在实践中进行反思和再设计,形成一系列适合学生认知、发展的教学方案。

同时,在教学中要注意引导学生不断增强自主性、探索性、合作性和思辨性,促使他们成为学习的主人。

而贯彻数形结合思想是克服难点的有效举措.通过例题、练习的分析讲评和学生积极主动的解题实践,运用知识解决问题的能力将得到提高。

由于课堂教学准备的较充分,基本能达到预定目标。

教学反思,是教师对自身教学工作的检查与评定,是整理教学中的反馈信息,适时总结经验教训、找出教学的成功与不足的重要过程。

因此教学后适时的反思有利于促进教学,以上就是我对本节课的理解和反思。

相关文档
最新文档