24.1.4 圆周角

合集下载

人教版数学九年级上册24.1.4圆周角的概念和圆周角的定理(教案)

人教版数学九年级上册24.1.4圆周角的概念和圆周角的定理(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆周角相关的实际问题,如如何计算某个特定圆周角的度数。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用量角器和圆规来测量和验证圆周角定理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《圆周角的概念和圆周角的定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算圆上角度的情况?”比如,在制作圆形桌面或设计轮子时。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索圆周角的奥秘。
三、教学难点与重点
1.教学重点
-圆周角的概念:确保学生理解圆周角的定义,即顶点在圆上,两边分别与圆相交的角。
-圆周角定理:强调圆周角等于其所对圆心角的一半,这是本节课的核心知识点。
-定理的应用:培养学生将圆周角定理应用于解决具体问题,如计算圆周角或圆心角的度数。
举例:通过图形展示,让学生观察并总结出圆周角的定义,进而引导他们理解圆周角定理。在实际例题中,如给出一个圆和其上的圆周角,要求学生计算圆周角或圆心角的度数,强化定理的应用。
首先,关于导入新课的部分,我通过提出与生活相关的问题来激发学生的兴趣,这是一个很好的开始。我发现学生们对这个问题产生了浓厚的兴趣,积极思考圆周角在日常生活中的应用。但在今后的教学中,我还可以尝试更多元化的导入方式,比如利用多媒体展示一些实际案例,让学生更直观地感受到圆周角的应用。
其次,在新课讲授环节,我注意到有些学生对圆周角定理的证明过程理解得不够透彻。在今后的教学中,我需要更加注重引导学生逐步推导和证明圆周角定理,让他们在这个过程中锻炼逻辑思维能力。此外,对于重点难点的讲解,我要更加耐心和细致,尽可能用简单的语言让学生明白。

人教版数学九年级上册24.1.4:圆周角的概念和圆周角的定理(教案)

人教版数学九年级上册24.1.4:圆周角的概念和圆周角的定理(教案)
1.讨论主题:学生将围绕“圆周角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
3.培养学生的数学抽象能力:让学生从具体的圆周角实例中抽象出一般性规律,理解圆周角与圆心角、弧和弦之间的关系,提升数学抽象思维。
4.培养学生的数学建模能力:通过解决与圆周角相关的问题,使学生能够建立数学模型,运用所学知识解决实际问题,提高数学应用能力。
三、教学难点与重点
1.教学重点
-圆周角的概念:强调圆周角定义中“顶点在圆上,两边分别与圆相交”的特点,以及与圆心角的关系。
a.圆周角定理:圆周角等于其所对的圆心角的一半。
b.圆周角推论:在同圆或等圆中,相等的圆周角所对的弧相等,所对的弦也相等。
二、核心素养目标
1.培养学生的几何直观能力:通过观察圆周角与圆心角的关系,使学生能够直观理解圆周角的概念及定理,提高空间想象力和几何直观感知。
2.发展学生的逻辑推理能力:在学习圆周角定理及其推论的过程中,引导学生运用严密的逻辑推理,掌握证明方法,增强解决问题的能力。
-掌握圆周角定理的证明:学生需要掌握如何运用严密的逻辑推理证明圆周角定理,并能够灵活运用。
-圆周角推论的应用:学生需学会将圆周角推论应用于解决实际问题,如求弧长、弦长等。
举例1:针对圆周角定义的难点,教师可通过以下步骤帮助学生理解:
a.展示不同类型的角,让学生辨别哪些是圆周角,哪些是圆心角。
b.通过动态演示,让学生观察圆周角与圆心角的变化关系,加深理解。

24.1.4 圆周角

24.1.4 圆周角

8.如图,已知A,B,C,D是⊙O上的四点,延长 DC,AB相交于点E,若BC=BE.求证:△ADE 是等腰三角形.
证明:∵∠A+∠BCD=180°, ∠BCE+∠BCD=180°.
∴∠A=∠BCE. ∵BC=BE, ∴∠E=∠BCE, ∴∠A=∠E, ∴AD=DE, ∴△ADE是等腰三角形.
综合应用
9.如图,已知EF是⊙O的直径,把∠A为60°的直角 三角板ABC的一条直角边BC放在直线EF上,斜边AB 与⊙O交于点P,点B与点O重合;将三角形ABC沿OE 方向平移,使得点B与点E重合为止.设∠POF=x° ,则x的取值范围是 30≤x≤60 .
拓展延伸
10.如图,BC为半圆O的直径,点F是B⌒C上一动 点(点F不与B、C重合),A是B⌒F上的中点,设
∠FBC=α,∠ACB=β.
(1)当α=50°时,求β的度数;
(2)猜想α与β之间的关系,并
给予证明.
C
解:(1)连接OA,交BF于点M. ∵A是B⌒F上的中点,∴OA垂直平分BF.
∴∠BOM=90°-∠B=90°-α=40°.
∴∠C=
1 2
∠AOB=
1 2
×40°=20°,
即β=20°.
(2)β=45°-
等,也可能互补.
半圆(或直径)所对的圆周角有什么特殊性?
所对应的圆心角为 180°, 则对应的圆周角为 90°.
C2 C1
C3
A
O
B
推论2:
半圆(或直径)所对的圆周角是直 角,90°的圆周角所对的弦是直径.
例4 如图,⊙O的直径AB为10 cm,弦AC为 6 cm,
ACB 的平分线交⊙O 于点 D,求 BC,AD,BD 的长.

24.1.4圆周角

24.1.4圆周角

O B
C O B E
A
B
O2 O1
C D
E
A
C
O F G
C
A
A
8. 已知⊙O中弦AB的等于半径, 求弦AB所对的圆心角和圆周角的度数。 圆心角为60度
O
圆周角为 30 度 或 150 度。
A
B
A
9.如图,四边形ABCD内接于 ⊙O,∠AOC=100°则 130° 50° ∠B=______∠D=______
已知: CO 是△ABC
1 且CO= 2 AB 的AB边上的中线,
求证: △ABC 为直角三角形. 证明: 以AB为直径作⊙O,
1 ∵AO=BO,CO= AB, 2
C
A · O B
∴AO=BO=CO. ∴点C在⊙O上.
又∵AB为直径, ∴∠ACB= 90°. ∴ △ABC 为直角三角形.
合作交流
如图,如何确定一个圆形纸片的圆心吗?交流一下.
练一练
6.如图,∠A是圆O的圆周角,
∠A=40°,求∠OBC的度数。
练一练
7. 如图 AB是⊙O的直径, C ,D是圆上的两点, 若∠ABD=40°,则∠BCD=_____.
D
A
O 40°
B
C
6.如图:A、P、B、C是圆O上的四点 , ∠APC= ∠CPB=60度,判断三角 形ABC的形状并证明你的结论。
(3)圆心在∠BAC的外部.
作直径AD. ∠DAB= 1 ∠DOB 2
1 ∠DAC= 2∠DOC ∠DAC-∠DAB= 1 (∠DOC-∠DOB) 2 1 ∠BAC= 2 ∠BOC
A O D C B
A O B C B
A
O C

24.1.4圆周角(人教新课标九年级上)

24.1.4圆周角(人教新课标九年级上)

C O
B A
拓展练习
如图,点P是⊙O外一点,点A、B、Q是⊙O上 的点。(1)求证∠P< ∠AQB
(2)如果点P在⊙O内, ∠P与∠AQB有
怎样的关系?为什么?
A
Qp O
B
小结:
本节课你学会了什么?
1、圆周角的定义; 2、圆周角定理及证明; 3、圆周角定理的运用; 4、圆内接多边形的定义; 5、圆内接四边形的性质。
一、圆周角概念
圆周角的定义:顶点在圆上,并且两 边都与圆相交的角叫做圆周角。
图中的∠ACB、∠ADB 和∠AEB是圆周角 C
D A

E
B
课本P88-1判断下列图形中所画的∠P是否为圆周角? 并说明理由。
P
PPຫໍສະໝຸດ PP不是 不是
顶点不 顶点不 在圆上。 在圆上。

不是
顶点在圆 上,两边 和圆相交。
两边不和 圆相交。
24.1.4 圆周角
教学目标
1.理解圆周角的概念,会识别圆周角。 2.掌握圆周角定理,并会用此定理进行简单的论证和计算。 3.能推导和理解 圆 周 角 定理的两个推论,并能利用这两个推论解决 相关的计算和证明等问题。 4.知道圆内接多边形和多边形外接圆的概念,明确不是所有多边形 都有外接圆。 5.能证明圆内接四边形的性质,并能应用这个性质解决简单的计算 和证明等问题。 6.经历观察、类比、猜想、合作交流等数学活动,体会运用分类讨 论、转化、完全归纳法等数学思想方确法解决问题,培养学生分析问题和 解决问题的能力。
∠ACB的平分线交⊙O于D,求BC、AD、BD的长.
解:连接OD
∵AB是直径,
C
∴ ∠ACB= ∠ADB=90°.
在Rt△ABC中,

24.1.4圆周角

24.1.4圆周角

C
B
P
A
C B
分析论证
1.首先考虑一种特殊情况: 当圆心(O)在圆周角(∠BAC)的一边(BA)上 时,圆周角∠BAC与圆心角∠BOC的大小关 系.
∵ OA=OC ∴∠A=∠C 又 ∠BOC=∠A+∠C ∴∠BOC=2∠A
B A O C
1 即∠A= ∠BOC 2
分析论证
你能证明第2种情况吗?
提示:作射线AO交⊙O于D。转 化为第1种情况 A O B D C
知识回顾
1.什么叫圆心角? 顶点在圆心的角叫圆心角 2. 圆心角、弧、弦三个量之间关系的 一个结论,这个结论是什么? 在同圆(或等圆)中,如果圆心角、弧、弦有一组量相等, 那么它们所对应的其余两个量都分别相等。 O
.
A
B
探 究
问题:将圆心角顶点向上移,直至与⊙O相交于点C?观察 得到的∠ACB有什么特征? C
D
8 7
解: ∠1=∠4 ∠3=∠6
∠2=∠7 ∠5=∠8
A
1 2 3 4 6 5
B
C
探究与思考:
问题1:如图,AB是⊙O的直径,请问: ∠C1、∠C2、∠C3的度数是 90° 。
C1
A
C2
C3 B
问题2: 若∠C1、∠C2、∠C3是 直角,那么∠AOB是 180° 。 推论:半圆(或直径)所对的 圆周角是直角;90°的圆周角 所对的弦是直径。
证明:由第1种情况得
1 ∠BAD= ∠ BOD 2 1 ∠CAD= ∠ COD 2
1 1 ∠BAD+∠CAD= ∠ BOD+ ∠COD 2 2 1 即∠BAC= ∠BOC 2
分析论证
你能证明第3种情况吗?
证明:作射线AO交⊙O于D。

人教版初三数学上册24.1.4圆周角的概念和圆周角定理

人教版初三数学上册24.1.4圆周角的概念和圆周角定理

1.形成概念
问题5:将圆心角顶点向上移,直至与⊙O 相交于点C?观察并比较∠ACB 与∠AOB 由和异同?
我们知道,∠AOB 叫做AB 所对的圆心角,类似地,我们把∠ACB 叫做AB 所对的圆周角
教材定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角
2.剖析概念、应用概念
问题6:判断下列图形中所画的∠P 是否为圆周角?并说明理由。

探究定理:
问题7:在同一个圆中,一条弧所对的圆心角只有一个,那么一条弧所对的圆周角有几个呢?
结论:(1)一条弧所对的圆周角有无数个;(2)优弧和劣弧所对的圆周角大小不同 问题8:∠ACB 与∠AOB 有怎样的关系?
问题9:当点C 移动到C 1 C 2 C 3 C 4 C 5 时,圆周角与圆心角的数量关系改变没? 结论:无论移动点C 、还是点C 1 始终有
∠ACB=2
1∠AOB ,即一条弧所对的圆周角等于圆心角的一半 问题10:通过观察、猜想、我们得到上面的结论,那么如何证明结论呢?
问题11.观察点C 在移动过程中,圆心O 与∠ACB 有哪些位置关系?
结论:有三种情况,
圆心在圆周角的一边上时;圆心在圆周角的内部时;圆心在圆周角的外部
圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半
证明定理。

人教版数学九年级上册24.1.4《圆周角》教案

人教版数学九年级上册24.1.4《圆周角》教案
在实践活动环节,分组讨论和实验操作让学生们有了亲身体验,从实践中去理解圆周角的性质。看到他们动手操作、积极讨论,我觉得这个环节对他们的帮助很大。但我也注意到,有些小组在讨论时还是抓不住重点,需要我进一步引导。
学生小组讨论的环节,让我看到了学生们的思维碰撞。他们提出了很多有创意的想法,也尝试着去解决实际问题。不过,我也发现有些学生在讨论中过于依赖同伴,自己的思考还不够深入。
人教版数学九年级上册24.1.4《圆周角》教案
一、教学内容
人教版数学九年级上册24.1.4《圆周角》教案,主要包括以下内容:
1.圆周角的定义:通过直观演示和实例,让学生理解圆周角是由圆上的两条半径或弦所夹的角,并掌握圆周角的度数是360度。
2.圆周角定理:引导学生探究并证明圆周角等于其所对的圆心角的一半,以及圆内接四边形的对角互补。
-着重讲解圆周角定理的证明过程,特别是如何通过几何构造和演绎推理得出圆周角等于其所对圆心角的一半。
-结合实际例题,如测量圆形场地中的角度问题,强调圆周角定理在解决具体问题中的应用。
-对于特殊圆周角,通过对比分析,让学生掌握直角圆周角和锐角圆周角的性质,并能灵活应用。
2.教学难点
-理解并掌握圆周角定理的证明过程。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆周角的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对圆周角的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调圆周角的定义和圆周角定理这两个重点。对于难点部分,如圆周角定理的证明过程,我会通过举例和比较来帮助大家理解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.1.4 圆周角
1.(铜仁中考)如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是( )
A.26°
B.116°
C.128°
D.154°
2.(滨州中考)如图,在⊙O中圆心角∠BOC=78°,则圆周角∠BAC的大小为( )
A.156°
B.78°
C.39°
D.12°
3.(台州中考)从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的
是( )
4.(南通中考)如图,点A,B,C,D在⊙O上,点O在∠D的内部,四边形OABC 为平行四边形,则∠OAD+∠OCD=____度.
5.如图,△ABC内接于⊙O,点P是弧AC上任意一点(不与A,C重合),∠ABC=55°,则∠POC的取值范围是____.
第5题图第6题图
6.如图,⊙C经过原点,并与两坐标轴分别交于A,D两点,已知∠OBA=30°,点A
的坐标为(2,0),则点D的坐标为____
7.如图,在△ABC中,AB=BC=2,以AB为直径的⊙O分别交BC,AC于点D,E,且点D为边BC的中点.
(1)求证:△ABC为等边三角形;
(2)求DE的长.
参考答案
1.C
2.C
3.B
4.60
5.0°<∠POC<110°
6.(0,23)
7.(1)证明:连接AD.
∵AB 是⊙O 的直径,
∴∠ADB=90°.
∵点D 是BC 的中点,
∴AD 是BC 的垂直平分线.
∴AB=AC.
又∵AB=BC ,
∴AB=AC=BC.
∴△ABC 为等边三角形.
(2)连接BE.
∵AB 是直径,
∴∠AEB=90°.∴BE ⊥AC.
∵△ABC 是等边三角形,
∴AE=EC ,即E 为AC 的中点. 又∵D 是BC 的中点,
∴DE 是△ABC 的中位线.
∴DE=21AB=21×2=1.。

相关文档
最新文档