(word完整版)初一数学分类讨论思想例题分析及练习(2)

合集下载

初一数学 找规律 分类讨论思想

初一数学 找规律 分类讨论思想

找规律经典模型及例题汇总一、a n n a 与例题:(10西城二模)一组按规律排列的整数5,7,11,19,…,第6个整数为____ _,根据上述规律,第n 个整数为____ (n 为正整数)。

∴第6个整数是67326=+,第n 个整数是32+n (n 为正整数). 练习:1、(10怀柔二模)按一定规律排列的一列数依次为:,916,79,54,31 ……,按此规律排列下去,这列数中的第5个数是 ,第n 个数是 .答案:1125,122+n n2、(09东城一模)按一定规律排列的一列数依次为:21,31,101,151,261,351…,按此规律排列下去,这列数中的第9个数是________. 答案:12)1(1+-+n n例题:(10通州一模)某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a )照这样下去,第8年老芽数与总芽数的比值为 .解:第8年的老芽数是21a ,新芽数是13a ,总芽数是34a ,则比值为3421. 练习:1、(08石景山一模)小说《达·芬奇密码》中的一个故事里出现了一串神秘排列的数,将这串令人费解的数从小到大的顺序排列为:1,1,2,3,5,8……,则这列数的第8个数是 . 答案:212、(09房山二模)填在下面三个田字格内的数有相同的规律,根据此规律,请填出图4中的数字.5675320531108975答案:7,9,11,176二、(n )1(-与1)1(+-n )例题:(09通州二模)12. 观察并分析下列数据,寻找规律: 0,3,-6,3,-23,15,-32,……那么第10个数据是 ;第n 个数据是 .∴第10个数据是33 ,第n 个数据是33)1(1--+n n . 练习:1、(10房山一模)一组按规律排列的式子:2581114916,,,,...(0)a a a a a --≠,其中第8个式子是 ,第n 个式子是 (n 为正整数).答案:2364a-,1321)1(-+-n n a n2、(10门头沟二模)一组按一定规律排列的式子:-2a ,52a ,-83a ,114a ,…,(a ≠0),则第n 个式子是 (n 为正整数)答案:na n n13)1(--3、(09崇文一模)一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是 ,第n 个数是 (n 为正整数).答案:8,)1(2)1(11+-++n n例题:(08通州二模)世界上著名的莱布尼茨三角形如图所示:则排在第10行从左边数第3个位置上的数是 . ∴第10行倒数第三个数是3601901721=-. 练习:1、(08大兴一模)自然数按一定规律排成下表,那么第200行的第5个数是 . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15… … … … …. …. ….. ………. 答案:199052、如图的数字方阵中,方框所缺的数,按照适宜的规律填上( ) A 、100 B 、128 C 、129 D 、130 答案:C例题:(11平谷二模)如图,将连续的正整数1,2,3,4……依次标在下列三角形中,那么2011这个数在第 个三角形的 顶点处(第二空填:上,左下,右下).∴2011这个数在第671个三角形的上顶点处. 故答案为:671,上.练习:1、(08崇文一模)观察下列等式:1312-=,2318-=,33126-=,43180-=,531242-=,…….通过观察,用你所发现的规律确定200831-的个位数字是 . 答案:32、右图为手的示意图,在各个手指间标记字母A ,B ,C ,D .请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是_____________;当字母C 第201次出现时,恰好数到的数是____________;当字母C 第12+n 次出现时(n 为正整数),恰好数到的数是_______________(用含n 的代数式表示). 答案:B ,603,6n+3例题:(09平谷一模)已知:,434434,323323,212212+=⨯+=⨯+=⨯……若ba ×10=b a+10(a 、b 都是正整数),则a+b 的最小值是 .∴a+b 的最小值是19 练习:1.(10密云一模)下面是按一定规律排列的一列数:第1个数:11122-⎛⎫-+ ⎪⎝⎭;第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( ) A .第10个数 B .第11个数C .第12个数D .第13个数答案:A例题1:(10昌平一模)观察下列图案:第1个图案第2个图案第3个图案照这样它们是按照一定规律排列的,依照此规律,第5个图案中共有个三角形,第n (1n ,且n 为整数)个图案中三角形的个数为 (用含有n 的式子表示). 解答:解:第5个图案中,有6+4×4=22(个)三角形;第n 个图案中,有6+4(n-1)=4n+2(个)三角形.例题2.(10西城一模)在平面直角坐标系中,我们称边长为1、且顶点的横、纵坐标均为整数的正方形为单位格点正方形.如图,在菱形ABCD 中,四个顶点坐标分别是(-8,0),(0,4),(8,0),(0,-4),则菱形ABCD 能覆盖的单位格点正方形的个数是 个;若菱形A n B n C n Dn的四个顶点坐标分别为(-2n ,0),(0, n ),(2n ,0),(0,-n )(n 为正整数),则菱形A nB nC nD n 能覆盖的单位格点正方形的个数为(用含有n 的式子表示). 答案为:4n 2-4n .练习:.1、(10大兴一模)如图4所示,把同样大小的黑色棋子摆放在正多边形的边上,按的规律摆下去,则第n 个图形需要黑色棋子的个数是x第1个第2个第3个…答案:)2(+n n2、(08顺义二模)如图,图①,图②,图③,图④……是用围棋棋子摆成的一列具有一定规律的“山”字.则第n 个“山”字中的棋子个数是 .答案:5n+23、(08丰台二模)用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:请问第n 个图案中有白色纸片的张数为A .43n +B .31n +C .nD .22n + 答案:B4、(10丰台一模)在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形A 1B 1C 1D 1,A 2B 2C 2D 2,A 3B 3C 3D 3……每个正方形四条边上的整点的个数.按此规律推算出正方形A 10B 10C 10D 10四条边上的整点共有 个.第1个图形 第2个图形 第3个图形 第4个图形(图4)…图①图②图③图④答案:80个.例题:(10海淀一模)如图,n +1个边长为2的等边三角形有一条边在同一直线上,设△211B D C 的面积为1S ,△322BDC 的面积为2S ,…,△1n n n B D C +的面积为n S ,则2S = ;n S =____ (用含n 的式子表示).S 2=S △B3C2A -S △AC2D2=21×4×3 - 21×4×332 即第n 个图形的面积S n =13+n n. 练习:1、(11丰台二模)已知:如图,在Rt ABC △中,点1D 是斜边AB 的中点,过点1D 作11D E AC ⊥ 于点E 1,联结1BE 交1CD 于点2D ;过点2D 作22D E AC ⊥于点2E ,联结2BE 交1CD 于点3D ;过点3D 作33D E AC ⊥于点3E ,如此继续,可以依次得到点45、D D 、…、n D ,分别记112233△、△、△、BD E BD E BD E …、n n BD E △的面积为123、、、S S S …n S .设△ABC 的面积是1, 则S 1= ,n S = (用含n 的代数式表示). 答案:S 1=41,S n = 2)1(1+n S △ABC .A2、(10平谷一模)如图,45AOB ∠=,过OA 上到点O 的距离分别为1357911,,,,,,的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为1234S S S S ,,,,.则第一个黑色梯形的面积=1S ;观察图中的规律,第n(n 为正整数)个黑色梯形的面积=n S .答案:4, 8n-43、(10延庆二模)如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形34,,,,n P P P ,记纸板n P 的面积为n S ,试计算求出=-23S S ;并猜想得到1n n S S --= ()2n ≥答案:1)41(2,32---n ππ4、(10门头沟一模)如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,……,如此作下去,若OA =OB =1,则第n 个等腰直角三角形的面积S n =________(n 为正整数).1P2P3P......B 1B 2A 1A OB答案:2n-25.(11延庆二模)在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为)0,1(,点D 的坐标为)2,0(. 延长CB 交x 轴于点1A ,作正方形C C B A 111; 延长11B C 交x 轴于点2A ,作正方形1222C C B A … 按这样的规律进行下去,第3个正方形的面积为________; 第n 个正方形的面积为_____________(用含n 的代数式表示).答案:5×(23)4,5×(23)2n-2.例题:(10丰台二模)如图,边长为1的菱形ABCD 中,60DAB ∠=°.联结对角线AC ,以AC 为边作第二个菱形11ACC D ,使160D AC ∠=°;联结1AC ,再以1AC 为边作第三个菱形122AC C D ,使2160D AC ∠=°,…….按此规律所作的第n 个菱形的边长为___________.第1个菱形 第2个菱形 第3个菱形 …… 第n 个菱形边长 1 3 33()13-n练习:1、09西城二模)如图,在平面直角坐标系中,B 1(0,1),B 2(0,3),B 3(0,6),B 4(0,10),…,以B 1B 2为对角线作第一个正方形A1B 1C 1B 2,以B 2B 3为对角线作第一个正方(形A 2B 2C 2B 3,以B 3B 4为对角线作第一个正方形A 3B 3C 3B 4,…,如果所作正方形的对角线B n B n +1都在y 轴上,且B n B n +1的长度依次增加1个单位,顶点A n 都在第一象限内(n ≥1,且n 为整数),那么A 1的纵坐标为,用n 表示C 1D 1C 2DC ABD C 2A n 的纵坐标答案:2,()212+n .2、(09延庆二模)如图,菱形111AB C D 的边长为1,160B ∠=;作211AD B C ⊥于点2D ,以2AD 为一边,做第二个菱形222AB C D ,使260B ∠=;作322AD B C ⊥于点3D ,以3AD 为一边做第三个菱形333AB C D ,使360B ∠=;依此类推,这样做的第n 个菱形n n n AB C D 的边n AD 的长是答案:123-⎪⎪⎭⎫ ⎝⎛n3、(08昌平一模)如图,在Rt ABC △中,90C =∠,12BC AC ==,,把边 长分别为123n x x x x ,,,,的n 个正方形依次放入ABC △中:第一个正方形CM 1P 1N 1的顶点分别放在Rt ABC △的各边上;第二个正方形M 1M 2P 2N 2的顶点分别放在11Rt APM △的各边上,……, 其他正方形依次放入。

初一数学分类讨论题

初一数学分类讨论题

初一数学分类讨论题(原创版)目录1.初一数学分类讨论题的概述2.分类讨论题的解题技巧3.举分类讨论题的实例进行解析4.如何提高初一数学分类讨论题的解题能力正文一、初一数学分类讨论题的概述初一数学分类讨论题是一种要求学生根据题目所给条件进行分类讨论的题型,它能够有效检验学生对知识点的掌握程度以及逻辑思维能力。

分类讨论题在初一数学中占有较大比重,掌握这类题目的解题方法对于提高初一数学成绩具有重要意义。

二、分类讨论题的解题技巧1.仔细审题,明确题目要求在解答分类讨论题时,首先要仔细阅读题目,明确题目所求,将题目中的已知条件进行梳理,为分类讨论做好准备。

2.合理分类,避免重复和遗漏分类讨论的关键在于将题目中的条件进行合理分类。

分类时,要遵循不重复、不遗漏的原则,确保每种情况都得到了讨论。

3.逐步推导,注意逻辑严谨在分类讨论过程中,需要根据已知条件逐步推导出结论。

在推导过程中,要注意保持逻辑严谨,确保每一步都符合数学原理。

三、举分类讨论题的实例进行解析例题:一个正方形的对角线长是 10√2 厘米,求这个正方形的面积。

解:首先,根据正方形的性质,知道正方形的对角线长度等于边长的√2 倍。

因此,这个正方形的边长为 10 厘米。

然后,根据正方形的面积公式,计算出正方形的面积为 100 平方厘米。

所以,这个正方形的面积是 100 平方厘米。

四、如何提高初一数学分类讨论题的解题能力1.加强基础知识的学习,提高解题速度和准确率分类讨论题的解答离不开对基础知识的掌握,只有熟练掌握基础知识,才能在解题过程中迅速找到解题思路。

2.多做练习,总结解题经验通过不断地做题,可以积累丰富的解题经验,提高分类讨论题的解题能力。

在解题过程中,要注重总结经验,形成自己的解题方法。

3.学会灵活运用解题技巧在解答分类讨论题时,要善于运用解题技巧,如合理分类、逻辑推导等,以提高解题效率。

七上期中数学分类讨论(已整理)

七上期中数学分类讨论(已整理)

【前言】 考虑问题要全面一、什么就是分类讨论思想如果一个命题得题设或结论不唯一确定,有多种可能情况,难以统一解答,就需要按可能出现得各种情况分门别类地加以讨论,最后综合归纳出问题得正确答案,这种解决问题得思想叫做分类讨论。

二、“分类讨论”得解题步骤1、明确要分类进行讨论得对象(留意讨论对象得取值范围);2、原则:正确选择分类得标准,进行合理分类 (确定分类得标准就是重点、难点);3、归纳并作出结论;三、分类得原则1、不重复例1 对三角形进行分类,把三角形划分为:锐角三角形 、直角三角形、钝角三角形、等腰三角形分析:等腰三角形划分进来不恰当,分类得标准不一致,产生重合要么按角划分、要么按边划分回顾:书本对于有理数得划分,按照正负分,按整数分数分2、不遗漏例2 比较a 与-a 比较大小分析:a 得正负无法确定,故需要按照0,0,0a a a ><=分3种情况来讨论,不要遗漏0a =得情况3、逐层分类例3 已知0,0,,a ab b c a <>>>化简c a b a c b c a -+--+++2分析:除了对C 取值进行分类外,还需要进一步对2a c -进行分类讨论详细解答见--数形结合(答案)四、哪些地方可能会出现分类讨论从代数与几何得角度瞧都有可能。

其一就是涉及代数式或函数或方程中,根据字母不同得取值情况,分别在不同得取值范围内讨论解决问题。

其二就是根据几何图形得点与线出现不同位置得情况,逐一讨论解决问题【题型划分】【1、有理数概念、定义】例1 下列个数中:1330.70125---,,,,,中负分数有 个;负整数有 个;自然数有 个例2 已知数轴上有A 、B 两点,A 、B 之间得距离为1,点A 与原点O 得距离为3,那么点B 所对应得数为___________练习1、⑴在下列各数:(2)--,2(2)--,2--,2(2)-,2(2)--中,负数得个数为 个.⑵①10a -;②21a --;③a -;④2(1)a -+一定就是负数得就是 (填序号).2、⑴下列说法正确得就是( )A 、a -表示负有理数B 、一个数得绝对值一定不就是负数C 、两个数得与一定大于每个加数D 、绝对值相等得两个有理数相等⑵两数相加,其与小于其中一个加数而大于另一个加数,那么( )A 、这两个加数得符号都就是正得B 、这两个加数得符号都就是负得C 、这两个加数得符号不能相同D 、这两个加数得符号不能确定3、已知点A 在数轴上对应得数就是1,点B 对应得数就是-2,数轴上动点甲与乙,甲从A出发,开始以每秒1个单位长度移动,乙从B 出发,开始以每秒2个单位长度移动,若甲、乙两点同时开始移动,移动3秒钟后,甲、乙两点甲点对应得数就是几?乙点对应得数就是几?【2、绝对值中得a a 型】 当0a >时,1a a a a ==;当0a <时,1a a a a==-。

初一上册分类讨论典型例题

初一上册分类讨论典型例题

初一上册分类讨论典型例题初一上册的数学课程中,分类讨论是一个重要的学习内容。

通过典型例题的讨论,可以帮助学生掌握分类讨论的方法和技巧。

下面我将从不同的角度给出一些分类讨论的典型例题。

1. 分类讨论整数的奇偶性:问题,将100个自然数分成两类,一类是奇数,一类是偶数,问两类中至少有多少个数?解答,我们可以分别讨论奇数和偶数的个数,然后找到一个满足条件的分法。

假设奇数的个数为x,那么偶数的个数就是100-x。

根据题意,我们需要找到一个分法,使得两类中至少有一个数。

如果奇数的个数是0或者100,那么无论怎么分,都无法满足条件。

所以我们需要考虑1<=x<=99的情况。

当x=1时,偶数的个数是99,显然满足条件。

当x=99时,偶数的个数是1,也满足条件。

所以答案是至少有1个数。

2. 分类讨论几何图形的性质:问题,在一个平面上,有4个点,问它们是否能构成一个矩形?解答,我们可以通过分类讨论来解决这个问题。

首先,我们知道一个矩形有4个顶点,且相对的边相等且平行。

所以我们可以通过计算这4个点之间的距离和斜率来判断它们是否构成一个矩形。

假设这4个点是A、B、C、D。

我们可以计算AB、AC、AD、BC、BD、CD的长度,如果其中有两条边相等且另外两条边也相等,那么它们可能构成一个矩形。

然后我们再计算AB与CD的斜率、AC与BD的斜率、AD与BC的斜率,如果这三个斜率的乘积等于-1,那么它们也可能构成一个矩形。

通过这样的分类讨论,我们可以判断这4个点是否能构成一个矩形。

3. 分类讨论方程的解:问题,解方程2x^2-5x+2=0。

解答,这是一个二次方程,我们可以通过分类讨论来解决它。

首先,我们可以计算Δ=b^2-4ac,其中a=2,b=-5,c=2。

如果Δ>0,那么方程有两个不相等的实数解;如果Δ=0,那么方程有两个相等的实数解;如果Δ<0,那么方程没有实数解。

计算得到Δ=25-16=9,所以Δ>0,方程有两个不相等的实数解。

初中数学专题复习分类讨论问题(含答案)

初中数学专题复习分类讨论问题(含答案)

初中数学专题复习(1) 分类讨论问题【简要分析】在中学数学的概念、定理、法则、公式等基础知识中,有不少是分类给出的,遇到涉及这些知识的问题,就可能需要分类讨论。

另外,有些数学问题在解答中,可能条件或结论不唯一确定,有几种可能性,也需要从问题的实际出发进行分类讨论。

把被研究的对象分成若干种情况,然后对各种情况逐一进行讨论,最终得以解决整个问题,这种解决问题的方法称为分类讨论思想方法。

它体现了化整为零与积零为整的思想,是近年来中考重点考查的思想方法。

分类讨论思想方法也是一种重要的解题策略。

分类思想方法实质上是按照数学对象的共同性和差异性,将其区分为不同的种类的思想方法,其作用是克服思维的片面性,防止漏解.要注意,在分类时,必须按同一标准分类,做到不重不漏.【典型考题例析】例1:已知一次函数y x =-+3333与x 轴、y 轴的交点分别为A 、B ,试在x 轴上找一点P ,使△PAB 为等腰三角形。

分析:本题中△PAB 由于P 点位置不确定而没有确定,而且等腰三角形中哪两条是腰也没有确定。

△PAB 是等腰三角形有几种可能?我们可以按腰的可能情况加以分类:(1)PA=PB ;(2)PA=AB ;(3)PB=AB 。

先可以求出B 点坐标()033,,A 点坐标(9,0)。

设P 点坐标为()x ,0,利用两点间距离公式可对三种分类情况分别列出方程,求出P 点坐标有四解,分别为()()()()-+-903096309630,、,、,、,。

(不适合条件的解已舍去)点拨:解答本题极易漏解。

解答此类问题要分析清楚符合条件的图形的各种可能位置,紧扣条件,分类画出各种符合条件的图形。

另外,由点的运动变化也会引起分类讨论。

由于运动引起的符合条件的点有不同位置,从而需对不同位置分别求其结果,否则漏解。

例2:正方形ABCD 的边长为10cm ,一动点P 从点A 出发,以2cm/秒的速度沿正方形的边逆时针匀速运动。

如图,回到A 点停止,求点P 运动t 秒时,P ,D 两点间的距离。

分类讨论的七年级数学题题目

分类讨论的七年级数学题题目

以下是一些适合七年级学生的数学题,这些题目需要使用分类讨论的思维方式来解决:1.有理数的比较大小比较有理数的大小是七年级数学中的一个基本技能。

给定两个有理数,例如a和b,我们可以比较它们的大小。

首先,我们可以将这两个数进行绝对值比较,即比较|a|和|b|的大小。

如果|a|小于|b|,那么a小于b;如果|a|大于|b|,那么a大于b。

如果|a|等于|b|,那么我们需要进一步比较a和b的符号。

如果a和b都是正数,那么a 等于b;如果a和b都是负数,那么a等于b。

如果a和b中一个是正数另一个是负数,那么无法比较它们的大小。

例如,比较-3和2的大小。

首先,我们比较它们的绝对值。

|-3|等于3,而|2|等于2。

因为3大于2,所以-3小于2。

2.分式的约分分式的约分是七年级数学中的一个重要内容。

给定一个分式,例如a/b,我们可以将其约分成最简形式。

首先,我们需要找出分子a 和分母b的最大公约数。

然后,我们将分子a和分母b分别除以这个最大公约数。

这样就可以得到最简形式的分式。

例如,约分36/48。

首先,我们找到36和48的最大公约数是12。

然后,我们将36除以12得到3,将48除以12得到4。

所以,36/48约分成最简形式是3/4。

3.一元一次方程的解法一元一次方程是七年级数学中的一个基本方程形式。

给定一个一元一次方程,例如ax+b=0,我们需要找到它的解。

首先,我们需要确定方程的解的类型。

如果a等于0且b不等于0,那么方程无解;如果a等于0且b等于0,那么方程有无数个解。

如果a不等于0,那么方程有唯一解,这个解可以通过将方程变形得到。

例如,解方程2x+6=0。

首先,我们看到a=2且b=6。

因为a不等于0,所以方程有唯一解。

我们可以将方程变形得到x=-3。

所以,方程2x+6=0的解是x=-3。

4.绝对值的应用绝对值是七年级数学中的一个基本概念。

给定一个有理数,例如a,它的绝对值是|a|。

绝对值的性质包括:如果a小于0,那么|a|=-a;如果a大于或等于0,那么|a|=a。

分类讨论初一例题

分类讨论初一例题

分类讨论初一例题摘要:1.引言:初一数学中的分类讨论2.分类讨论的概念和方法3.初一数学例题及分类讨论的运用4.结论:分类讨论的重要性和注意事项正文:【引言】初一数学中的分类讨论在初一数学学习中,我们经常会遇到一些问题需要进行分类讨论。

分类讨论是一种重要的数学思维方法,它能帮助我们更好地理解问题,找到问题的解决之道。

那么,什么是分类讨论?我们如何运用分类讨论来解决数学问题呢?接下来,我们将通过一些初一数学例题来详细介绍分类讨论的方法和运用。

【分类讨论的概念和方法】分类讨论,顾名思义,就是将问题按照某种特定的标准进行分类,然后对每一类问题进行分别讨论。

分类讨论的方法主要包括以下几种:1.按照问题中的已知条件进行分类。

2.按照问题中的变量性质进行分类。

3.按照问题中的几何图形进行分类。

【初一数学例题及分类讨论的运用】下面,我们通过一个初一数学例题来说明如何运用分类讨论来解决问题。

例题:一个长方体的长、宽、高分别是a、b、c,求这个长方体的表面积。

分析:根据长方体的性质,我们知道它有六个面,每个面的面积都可以通过长、宽、高来计算。

因此,我们需要对长、宽、高进行分类讨论,分别计算每个面的面积,然后将它们相加得到表面积。

解答:1.当长、宽、高都不相等时,长方体的表面积为:2ab + 2ac + 2bc。

2.当长、宽、高中有两个相等时,长方体的表面积为:2ab + 4ac 或2ab + 4bc。

3.当长、宽、高都相等时,长方体的表面积为:4ab。

通过以上分类讨论,我们得到了长方体表面积的通用公式。

【结论】分类讨论的重要性和注意事项从上面的例题中,我们可以看到分类讨论在解决数学问题中的重要性。

它能帮助我们更加细致地分析问题,找到问题的解决之道。

然而,在使用分类讨论时,我们也需要注意以下几点:1.分类讨论要全面,不要遗漏任何一种情况。

2.在进行分类讨论时,要确保每一类问题都得到了正确的解答。

3.分类讨论后,要对各种情况的结果进行综合,得出最终的解答。

(word完整版)初一数学分类讨论思想例题分析及练习(2)

(word完整版)初一数学分类讨论思想例题分析及练习(2)

分类讨论思想在数学中,如果一个命题的条件或结论不唯一确定,有多种可能情况,难以统一解答,就需要按可能出现的各种情况分门别类的加以讨论,最后综合归纳出问题的正确答案,这种解题方法叫做分类讨论。

在数学学习中,我们不仅要分阶段学习知识,还要适时的总结一下数学思想方法。

初中常见的数学思想有:分类讨论思想、数形结合思想、转化思想、方程思想等。

分类讨论思想是大家在中学阶段需要掌握的重要思想方法。

特别就中考而言,经常出现带有这种思想的考题。

几乎可以这么说:“分类讨论一旦出现,就是中高档次题”。

今天,我们就带着大家把初一一年常见的分类讨论问题大致整理一下。

在分类讨论的问题中有三个重要的注意事项。

1. 什么样的题会出现分类讨论思想--往往是在题目中的基本步骤中出现了“条件不确定,无法进行下一步”(如几何中,画图的不确定;代数中,出现字母系数等)。

2. 分类讨论需要注意什么----关键是“不重、不漏”,特别要注意分类标准的统一性。

3. 分类讨论中最容易错的是什么--总是有双重易错点“讨论有重漏,讨论之后不检验是否合题意”。

【例1】解方程:|x-1|=2分析:绝对值为2 的数有2个解:x-1=2或x-1=-2, 则x=3或x=-1说明应该说,绝对值问题是我们在上学期最初见过的“难题”。

其实归根究底,一般考察绝对值的问题有三。

1. 化简(如当a<0<b时,化简|a-1|+|b+1|+|a-b|)处理方法:根据绝对值符号内的式子的正负性2. 类似于“解方程”(如本题)处理方法:注意解往往不只一个,需关注绝对值为正数的数有两个。

3. 使用绝对值的几何意义解题(如已知|x-1|<2,求x的取值范围)处理方法:画数轴,|x-1|<2表示数轴上到表示1的点的距离小于2的点。

【例2】试比较1+a与1-a的大小。

分析:常规的比较大小的方法有很多种,现阶段最常用的是作差法。

两个数量的大小可以通过它们的差来判断:①a>b即a-b>0 ②a=b即a-b=0 ③a<b即a-b<0解:作差(1+a)-(1-a)=2a分类讨论:①当a>0时,2a>0,即(1+a)-(1-a)>0,即1+a>1-a②当a=0时,2a=0,即(1+a)-(1-a)=0,即1+a=1-a③当a<0时,2a<0,即(1+a)-(1-a)<0,即1+a<1-a答:当a>0时,1+a>1-a ;当a=0时,1+a=1-a ;当a<0时,1+a<1-a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分类讨论思想
在数学中,如果一个命题的条件或结论不唯一确定,有多种可能情况,难以统一解答,就需要按可能出现的各种情况分门别类的加以讨论,最后综合归纳出问题的正确答案,这种解题方法叫做分类讨论。

在数学学习中,我们不仅要分阶段学习知识,还要适时的总结一下数学思想方法。

初中常见的数学思想有:分类讨论思想、数形结合思想、转化思想、方程思想等。

分类讨论思想是大家在中学阶段需要掌握的重要思想方法。

特别就中考而言,经常出现带有这种思想的考题。

几乎可以这么说:“分类讨论一旦出现,就是中高档次题”。

今天,我们就带着大家把初一一年常见的分类讨论问题大致整理一下。

在分类讨论的问题中有三个重要的注意事项。

1. 什么样的题会出现分类讨论思想--往往是在题目中的基本步骤中出现了“条件不确定,无法进行下一步”(如几何中,画图的不确定;代数中,出现字母系数等)。

2. 分类讨论需要注意什么----关键是“不重、不漏”,特别要注意分类标准的统一性。

3. 分类讨论中最容易错的是什么--总是有双重易错点“讨论有重漏,讨论之后不检验是否合题意”。

【例1】解方程:|x-1|=2
分析:绝对值为2 的数有2个
解:x-1=2或x-1=-2, 则x=3或x=-1
说明应该说,绝对值问题是我们在上学期最初见过的“难题”。

其实归根究底,一般考察绝对值的问题有三。

1. 化简(如当a<0<b时,化简|a-1|+|b+1|+|a-b|)
处理方法:根据绝对值符号内的式子的正负性
2. 类似于“解方程”(如本题)
处理方法:注意解往往不只一个,需关注绝对值为正数的数有两个。

3. 使用绝对值的几何意义解题(如已知|x-1|<2,求x的取值范围)
处理方法:画数轴,|x-1|<2表示数轴上到表示1的点的距离小于2的点。

【例2】试比较1+a与1-a的大小。

分析:常规的比较大小的方法有很多种,现阶段最常用的是作差法。

两个数量的大小可以通过它们的差来判断:
①a>b即a-b>0 ②a=b即a-b=0 ③a<b即a-b<0
解:作差(1+a)-(1-a)=2a
分类讨论:
①当a>0时,2a>0,即(1+a)-(1-a)>0,即1+a>1-a
②当a=0时,2a=0,即(1+a)-(1-a)=0,即1+a=1-a
③当a<0时,2a<0,即(1+a)-(1-a)<0,即1+a<1-a
答:当a>0时,1+a>1-a ;当a=0时,1+a=1-a ;当a<0时,1+a<1-a 。

【例3】 已知线段AB 长度为6cm ,点C 在直线AB 上,且AC=2cm ,求BC 的长度。

分析:注意点C 的位置不能确定。

在直线上,与一个定点的距离为定值的点有两个。

处理方法:画一个示意图,往往能帮助理解。

解:如示意图,有两种情况。

如图1,点C 在AB 之间时,BC=AB-AC=6cm-2cm=4cm
如图2,点C 在BA 的延长线上时,BC=AB+AC=6cm+2cm=8cm
【例4】一张桌子有四个角,砍掉一只角后,还剩几个角?
解:5个或4个或3个。

【例5】已知△ABC 周长为20cm ,AB=AC ,其中一边边长是另一边边长的2倍,BC 长多少?
解:设AB=AC=x
①当AB=2BC 时,BC=0.5x
据题意,列x+x+0.5x=20,解得x=8cm ,则BC=0.5x=4cm
②当BC=2AB 时,BC=2x
据题意,列x+x+2x=20,解得x=5cm ,则BC=2x=10cm
检验:当AB=2BC 时,三边长为8cm ,8cm ,4cm ,可组成三角形; 当BC=2AB 时,三边长为5cm ,5cm ,10cm ,不可组成三角形,舍。

答:BC 长为4cm 。

【例6】 富城书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打九折;③一次性购书超过200元,一律打八折。

如果小明一次性购书 付款162元,那么小明所购书的价格为多少。

解:付款162元,由于162>100,可确定享受了优惠。

因不确定是打九折还是打八折,所以分类。

①∵200×109=180>162,∴162元可能享受了九折优惠,162÷10
9=180(元); ②∵200×108=160<162,∴162元可能享受了八折优惠,162÷10
8=202.5(元) 答:小明所购书的价格为180元或202.5元。

【例7】 三人分糖,每人都得整数块,乙比丙多得13块,甲所得的糖果数是
乙的2倍,已知糖果总数是一个小于50的质数,且它的各位数字之和为11,试求甲、乙、丙各分得几块糖?
分析: 1. 两个限制条件:整数、质数
2.一个常见说法:乙比丙多得13块,甲所得的糖果数是乙的2倍
3.一个常见不等式列法:糖果总数是小于50
解:设丙获得了x 块粮果,则乙的糖果数为(x+13)块,甲的糖果数为2(x+13), 根据题意,可列不等式 2(x+13)+(x+13)+x<50
整理这个不等式,解得x<11/4=2.75
由于糖果块数必为正整数,所以x=1或2
①当x=1时,x+13=14,2(x+13)=28
总块数1+14+28=43,为质数,但4+3=7≠11,则x=1应舍去;
②当x=2时,x+13=15,2(x+13)=30
总块数2+15+30=47,为质数4+7=11,合题意。

答:甲分得糖果数为30块,乙分得15块,丙分得2块。

练习题
1.解方程:(1)|x+4|=3 (2)22)3(-=a
2.|a|+a 的值的情况讨论。

3. 如果a 、b 、c 是非零有理数,求c
c b b a a ++的值 4.比较a 2-a+4与a 2+3的大小
5.数轴上有A 、B 两点,若A 点对应的数是-2,且A 、B 两点的距离为3,则点B 对应的数为多少(画图表示)。

6.平面内有四点,经过两点可画多少条直线。

7.平面内有三条直线,它们可能有几个交点?
8. 已知∠A0B=120º,∠BOC=30º,则∠AOC 为多少。

9.在一条直线上顺次取A 、B 、C 三点,已知AB =5cm ,点O 是线段AC 的中点,且OB=1.5cm ,求线段BC 的长。

10. 已知△ABC 周长为18cm ,AB=AC ,其中一边边长比另一边边长大3cm ,BC 长多少?
11. 在△ABC 中,若AB=3,BC=1-2x ,CA=8,求x 的取值范围。

12. A 、B 两地相距480千米,一列慢车从A 地开出,每小时行60千米,一列快车从B 地开出,每小时行65千米,慢车先开出1小时,两车相向而行,慢车开出x 小时后,两车相距100千米,则列方程为
甲班分两次共购买苹果70kg (第二次多于第一次),共付189元,则甲班第一次,第二次分别购买苹果多少千克。

相关文档
最新文档