高考物理专题复习-——功能关系综合运用(例题+习题+答案)
高中物理 功能关系 典型例题(含答案)【经典】

考点三:功能关系1.(单选)如图,木板可绕固定水平轴O 转动.木板从水平位置OA 缓慢转到OB 位置,木板上的物块始终相对于木板静止.在这一过程中,物块的重力势能增加了2J .用F N 表示物块受到的支持力,用F f 表示物块受到的摩擦力.在此过程中,以下判断正确的是( ).答案 BA .F N 和F f 对物块都不做功B .F N 对物块做功为2 J ,F f 对物块不做功C .F N 对物块不做功,F f 对物块做功为2 JD .F N 和F f 对物块所做功的代数和为02.(单选)质量为m 的物体由静止开始下落,由于空气阻力影响,物体下落的加速度为45g ,在物体下落高度为h 的过程中,下列说法正确的是( ) 答案 AA .物体的动能增加了45mghB .物体的机械能减少了45mgh C .物体克服阻力所做的功为45mgh D .物体的重力势能减少了45mgh 答案 A 解析 下落阶段,物体受重力和空气阻力,由动能定理W =ΔE k ,即mgh -F f h =ΔE k ,F f =mg -45mg =15mg ,可求ΔE k =45mgh ,选项A 正确;机械能减少量等于克服阻力所做的功W =F f h =15mgh ,选项B 、C 错误;重力势能的减少量等于重力做的功ΔE p =mgh ,选项D 错误. 3.(单选)升降机底板上放一质量为100 kg 的物体,物体随升降机由静止开始竖直向上移动5 m 时速度达到4 m/s ,则此过程中(g 取10 m/s 2)( ). 答案 AA .升降机对物体做功5 800 JB .合外力对物体做功5 800 JC .物体的重力势能增加500 JD .物体的机械能增加800 J4.(多选)如图所示,一块长木板B 放在光滑的水平面上,在B 上放一物体A ,现以恒定的外力拉B ,由于A 、B 间摩擦力的作用,A 将在B 上滑动,以地面为参考系,A 、B 都向前移动一段距离.在此过程中( ).A .外力F 做的功等于A 和B 动能的增量B .B 对A 的摩擦力所做的功,等于A 的动能增量C .A 对B 的摩擦力所做的功,等于B 对A 的摩擦力所做的功D .外力F 对B 做的功等于B 的动能的增量与B 克服摩擦力所做的功之和 答案 BD5.(单选)如图所示,质量为m 的小球套在倾斜放置的固定光滑杆上,一根轻质弹簧一端固定于O 点,另一端与小球相连,弹簧与杆在同一竖直平面内,将小球沿杆拉到弹簧水平位置由静止释放,小球沿杆下滑,当弹簧位于竖直位置时,小球速度恰好为零,此时小球下降的竖直高度为h ,若全过程中弹簧始终处于伸长状态且处于弹性限度范围内,下列说法正确的是( ).A .弹簧与杆垂直时,小球速度最大 答案 BB .弹簧与杆垂直时,小球的动能与重力势能之和最大C .小球下滑至最低点的过程中,弹簧的弹性势能增加量小于mghD .小球下滑至最低点的过程中,弹簧的弹性势能增加量大于mgh6.(多选)如图所示,楔形木块abc 固定在水平面上,粗糙斜面ab 和光滑斜面bc 与水平面的夹角相同,顶角b 处安装一定滑轮,质量分别为M 、m (M >m )的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中( ).答案 CDA .两滑块组成系统的机械能守恒B .重力对M 做的功等于M 动能的增加C .轻绳对m 做的功等于m 机械能的增加D .两滑块组成系统的机械能损失等于M 克服摩擦力做的功7、(多选)如图所示,一固定斜面倾角为30°,一质量为m 的小物块自斜面底端以一定的初速度,沿斜面向上做匀减速运动,加速度的大小等于重力加速度的大小g .若物块上升的最大高度为H ,则此过程中,物块的( ).答案 ACA .动能损失了2mgHB .动能损失了mgHC .机械能损失了mgHD .机械能损失了12mgH 8.(多选)如图所示,一小球P 套在竖直放置的光滑固定圆环上,圆环的半径为R ,环上的B 点与圆心O 1等高,一原长为R 的轻弹簧下端固定在环的最低点O 上,上端与球P 连接.现使小球P 以很小的初速度(可视为零)从环的最高点A 开始向右沿环下滑,若不计空气阻力,弹簧始终处于弹性限度内,则下列说法正确的是( ).答案 CDA .小球P 在下滑过程中弹簧的弹性势能逐渐减少B .小球P 在下滑过程中机械能守恒C .小球P 在下滑过程中机械能先逐渐增加后逐渐减少D .小球P 在到达B 点之后向下滑动的过程中动能先逐渐增加后逐渐减少9、(多选)如图所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速率v 匀速运动,物体与传送带间的动摩擦因数为μ,物体过一会儿能保持与传送带相对静止,对于物体从静止释放到相对传送带静止这一过程,下列说法正确的是( ).答案BCA .电动机多做的功为12mv 2B .摩擦力对物体做的功为12mv 2C .电动机增加的功率为μmgvD .传送带克服摩擦力做功为12mv 210.(单选)如图所示,在竖直平面内有一半径为R 的圆弧轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 到B 的运动过程中( ).答案 DA .重力做功2 mgRB .机械能减少mgRC .合外力做功mgRD .克服摩擦力做功12mgR11.(单选)如图所示,竖立在水平面上的轻弹簧,下端固定,将一个金属球放在弹簧顶端(球与弹簧不连接),用力向下压球,使弹簧被压缩,并用细线把小球和地面拴牢(图甲).烧断细线后,发现球被弹起且脱离弹簧后还能继续向上运动(图乙).那么该球从细线被烧断到刚脱离弹簧的运动过程中,下列说法正确的是( ).答案 DA .弹簧的弹性势能先减小后增大B .球刚脱离弹簧时动能最大C .球在最低点所受的弹力等于重力D .在某一阶段内,小球的动能减小而小球的机械能增加12.(多选)如图所示,轻质弹簧的一端与固定的竖直板P 拴接,另一端与物体A 相连,物体A 置于光滑水平桌面上(桌面足够大),A 右端连接一细线,细线绕过光滑的定滑轮与物体B 相连.开始时托住B ,让A 处于静止且细线恰好伸直,然后由静止释放B ,直至B获得最大速度.下列有关该过程的分析中正确的是( ). 答案 BDA .B 物体受到细线的拉力保持不变B .B 物体机械能的减少量大于弹簧弹性势能的增加量C .A 物体动能的增量等于B 物体重力对B 做的功与弹簧弹力对A 做的功之和D .A 物体与弹簧所组成的系统机械能的增加量等于细线拉力对A 做的功13.(多选)如图所示,将一轻弹簧下端固定在倾角为θ的粗糙斜面底端,弹簧处于自然状态时上端位于A 点.质量为m 的物体从斜面上的B 点由静止下滑,与弹簧发生相互作用后,最终停在斜面上.下列说法正确的是( ).答案 BCA .物体最终将停在A 点B .物体第一次反弹后不可能到达B 点C .整个过程中重力势能的减少量大于克服摩擦力做的功D .整个过程中物体的最大动能大于弹簧的最大弹性势能14.(多选)如图所示,将一轻弹簧固定在倾角为30°的斜面底端,现用一质量为m 的物体将弹簧压缩锁定在A 点,解除锁定后,物体将沿斜面上滑,物体在运动过程中所能到达的最高点B 距A 的竖直高度为h ,物体离开弹簧后沿斜面向上运动的加速度大小等于重力加速度g .则下列说法正确的是( ).答案 BDA .弹簧的最大弹性势能为mghB .物体从A 点运动到B 点的过程中系统损失的机械能为mghC .物体的最大动能等于弹簧的最大弹性势能D .物体最终静止在B 点15.(多选)如图所示,轻质弹簧的一端与固定的竖直板P 拴接,另一端与物体A 相连,物体A 置于光滑水平桌面上,右端接一细线,细线绕过光滑的定滑轮与物体B 相连.开始时用手托住B ,让细线恰好伸直,然后由静止释放B ,直至B 获得最大速度.下列有关该过程的分析正确的是( ) 答案 BCA .B 物体的动能增加量等于B 物体重力势能的减少量B .B 物体的机械能一直减小C .细线拉力对A 做的功等于A 物体与弹簧所组成的系统机械能的增加量D .B 物体机械能的减少量等于弹簧的弹性势能的增加量解析 对于B 物体,有重力与细线拉力做功,根据动能定理可知,B 物体动能的增加量等于它重力势能的减少量与拉力做功之和,故A 错误;从开始到B 速度达到最大的过程中,细线的拉力对B 一直做负功,所以B 的机械能一直减小,故B 正确;系统机械能的增加量等于系统除重力和弹簧弹力之外的力所做的功,A 物体与弹簧所组成的系统机械能的增加量等于细线拉力对A 做的功,故C 正确;整个系统中,根据功能关系可知,B 减少的机械能转化为A 的机械能以及弹簧的弹性势能,故B 物体机械能的减少量大于弹簧弹性势能的增加量,故D 错误.16. (多选)如图所示,轻质弹簧一端固定,另一端与一质量为m 、套在粗糙竖直固定杆A 处的圆环相连,弹簧水平且处于原长.圆环从A 处由静止开始下滑,经过B 处的速度最大,到达C 处的速度为零,AC =h .圆环在C 处获得一竖直向上的速度v ,恰好能回到A .弹簧始终在弹性限度内,重力加速度为g .则圆环( )A .下滑过程中,加速度一直减小B .下滑过程中,克服摩擦力做的功为14m v 2C .在C 处,弹簧的弹性势能为14m v 2-mgh D .上滑经过B 的速度大于下滑经过B 的速度 答案 BD解析 由题意知,圆环从A 到C 先加速后减速,到达B 处的加速度减小为零,故加速度先减小后增大,故A 错误;根据能量守恒,从A 到C 有mgh=W f +E p ,从C 到A 有12m v 2+E p =mgh +W f ,联立解得:W f =14m v 2,E p =mgh -14m v 2,所以B 正确,C 错误;根据能量守恒,从A 到B 的过程有12m v 2B +ΔE p ′+W f ′=mgh ′,B 到A 的过程有12m v B ′2+ΔE p ′=mgh ′+W f ′,比较两式得v B ′>v B ,所以D 正确. 17. (多选)如图所示,长木板A 放在光滑的水平地面上,物体B 以水平速度冲上A 后,由于摩擦力作用,最后停止在木板A 上,则从B 冲到木板A 上到相对木板A 静止的过程中,下述说法中正确的是( )A .物体B 动能的减少量等于系统损失的机械能B .物体B 克服摩擦力做的功等于系统内能的增加量C .物体B 损失的机械能等于木板A 获得的动能与系统损失的机械能之和D .摩擦力对物体B 做的功和对木板A 做的功的总和等于系统内能的增加量 答案 CD解析 物体B 以水平速度冲上木板A 后,由于摩擦力作用,B 减速运动,木板A 加速运动,根据能量守恒定律,物体B 动能的减少量等于木板A 增加的动能和产生的热量之和,选项A 错误;根据动能定理,物体B 克服摩擦力做的功等于物体B 损失的动能,选项B 错误;由能量守恒定律可知,物体B 损失的机械能等于木板A 获得的动能与系统损失的机械能之和,选项C 正确;摩擦力对物体B 做的功等于物体B 动能的减少量,摩擦力对木板A 做的功等于木板A 动能的增加量,由能量守恒定律,摩擦力对物体B 做的功和对木板A 做的功的总和等于系统内能的增加量,选项D 正确.18.(单选)如图所示,固定的倾斜光滑杆上套有一个质量为m 的小球,小球与一轻质弹簧一端相连,弹簧的另一端固定在地面上的A点,已知杆与水平面之间的夹角θ<45°,当小球位于B点时,弹簧与杆垂直,此时弹簧处于原长.现让小球自C点由静止释放,小球在B、D间某点静止,在小球滑到最低点的整个过程中,关于小球的动能、重力势能和弹簧的弹性势能,下列说法正确的是()A.小球的动能与重力势能之和保持不变B.小球的动能与重力势能之和先增大后减小C.小球的动能与弹簧的弹性势能之和保持不变D.小球的重力势能与弹簧的弹性势能之和保持不变答案B解析小球与弹簧组成的系统在整个过程中,机械能守恒.弹簧处于原长时弹性势能为零,小球从C点到最低点的过程中,弹簧的弹性势能先减小后增大,所以小球的动能与重力势能之和先增大后减小,A项错,B项正确;小球的重力势能不断减小,所以小球的动能与弹簧的弹性势能之和不断增大,C项错;小球的初、末动能均为零,所以上述过程中小球的动能先增大后减小,所以小球的重力势能与弹簧的弹性势能之和先减小后增大,D项错.。
功能关系---高中物理模块典型题归纳(含详细答案)

功能关系---高中物理模块典型题归纳(含详细答案)一、单选题(共10题;共20分)1.小球以60J的初动能从A点出发,沿粗糙斜面向上运动,在上升到B点的过程中,小球的动能损失了50J,机械能损失了10J,则()A.上升过程中合外力对小球做功﹣80JB.整个过程中,摩擦力对小球做功为﹣20JC.下滑过程中重力对小球做功48JD.回到A点小球的动能为40J2.在一次军事演习中,伞兵跳离飞机后打开降落伞,实施定点降落.在伞兵匀速下降的过程中,下列说法正确的是()A.伞兵的重力做正功,重力势能不变B.伞兵的重力做负功,重力势能增大C.伞兵的重力做正功,重力势能减小D.伞兵的重力做正功,重力势能不变3.轻质弹簧的一端固定于竖直墙壁,另一端与一木块连接在一起,木块放在粗糙的水平地面上.在外力作用下,木块将弹簧压缩了一段距离后静止于A点,如图所示.现撤去外力,木块向右运动,当它运动到O点时弹簧恰好恢复原长.在此过程中AO()A.木块的速度先增大后减小B.木块的加速度先增大后减小C.弹簧的弹性势能先减小后增大D.弹簧减小的弹性势能等于木块增加的动能4.热核反应是一种理想能源的错误原因是()A.就平均每一个核子来说,热核反应比重核裂变时释放的能量多B.对环境的放射性污染较裂变轻,且较容易处理C.热核反应的原料在地球上储量丰富D.热核反应的速度容易控制5.如图所示,一质量为m,带电量为+q的物块(可视为质点)静止于A点,粗糙水平轨道AB与BC斜面平滑连接,现在整个空间加一上水平向右的匀强电场,使小物块刚好运动到C 点,物块与轨道间的动摩擦因数都为μ,已知AC间的水平距离为S,竖直高度差为H,则下列法正确的是()A.全程摩擦力做功大小为μmgsB.全程电势能减少mgH+μmgsC.电场强度E=D.若不改变H和S的大小,只改变斜面的倾角,则须改变电场大小才能到达C点6.在“探究功与速度变化的关系”实验中,小车在运动中会受到阻力作用.这样,在小车沿木板滑行的过程中,除橡皮筋对其做功以外,还有阻力做功,这样便会给实验带来误差,我们在实验中想到的办法是使木板略微倾斜,对于木板的倾斜程度,下面说法中正确的是()A.木板只要稍微倾斜一下即可,没有什么严格的要求B.木板的倾斜角度在理论上应满足下面条件:即重力使物体沿斜面下滑的分力应等于小车受到的阻力C.如果小车在木板上差不多能做匀速运动,就说明木板的倾斜程度是符合要求的D.其实木板不倾斜,问题也不大,因为实验总是存在误差的7.如图所示,物块放在小车上,随小车一起向右加速运动的过程中,下列说法正确的是()A.摩擦力对物块做正功,物块内能增加B.弹力对物块做正功C.若小车运动的加速度逐渐增加,物块可能相对小车滑动D.若小车运动的加速度逐渐减小,物块可能相对小车滑动8.如图所示,水平绷紧的传送带AB长L=6m,始终以恒定速率V1=4m/s运行.初速度大小为V2=6m/s的小物块(可视为质点)从与传送带等高的光滑水平地面上经A点滑上传送带.小物块m=lkg,物块与传送带间动摩擦因数μ=0.4,g取10m/s2.下列说法正确的是()A.小物块可以到达B点B.小物块不能到达B点,但可返回A点,返回A点速度为6m/sC.小物块向左运动速度减为0时相对传送带滑动的距离达到最大D.小物块在传送带上运动时,因相互间摩擦力产生的热量为50J9.一个带电小球从空中a点运动到b点的过程中,重力做功3J,电场力做功1J,克服空气阻力做功0.5J,则不正确的是()A.重力势能减少3JB.电势能减少1JC.动能增加4.5JD.机械能增加0.5J10.下列对能的转化和守恒定律的认识错误的是()A.某种形式的能减少,一定存在其他形式的能增加B.某个物体的能减少,必然有其他物体的能增加C.不需要任何外界的动力而持续对外做功的机器﹣﹣永动机是不可能制成的D.石子从空中落下,最后静止在地面上,说明能量消失了二、多选题11.如图所示,某一空间内充满竖直向下的匀强电场E,在竖直平面内建立坐标xOy,在y<0的空间里有与场强E垂直的匀强磁场B,在y>0的空间内,将一质量为m的带电液滴(可视为质点)自由释放,此液滴则沿y轴的负方向以加速度a=2g(g为重力加速度)做匀加速直线运动,当液滴运动到坐标原点时,瞬间被安置在原点的一个装置改变了带电性质(液滴所带电荷量和质量均不变),随后液滴进入y<0的空间运动.液滴在以后的运动过程中()A.重力势能一定先减小后增大B.机械能一定先增大后减小C.动能先不变后减小D.动能一直保持不变12.一物体由M点运动到N点的过程中,物体的动能由12J减少到8J,重力势能由3J增加到7J,在此过程中()A.物体的速度减小B.物体的机械能不变C.物体的机械能减少D.物体的位置降低13.如图所示,与水平面夹角为锐角的斜面底端A向上有三个等距点B,C和D,即AB=BC=CD,D点距水平面高为h.小滑块以初速从A点出发,沿斜面向上运动.若斜面光滑,则滑块到达D位置时速度为零;若斜面AB部分与滑块有处处相同的摩擦,其余部分光滑,则滑块上滑到C位置时速度为零,然后下滑.已知重力加速度为g,则在AB有摩擦的情况下()A.从C位置返回到A位置的过程中,克服阻力做功为mghB.滑块从B位置返回到A位置的过程中,动能变化为零C.滑块从C位置返回到B位置时的动能为mghD.滑块从B位置返回到A位置时的动能为mgh14.如图,在匀强电场中有一固定斜面。
运用功能关系分析解决(实际)问题 高三物理一轮复习专题

一.必备知识精讲1.功能关系(1)功是能量转化的量度,即做了多少功就有多少能量发生了转化。
(2)做功的过程一定伴随着能量的转化,而且能量转化必通过做功来实现。
2.对功能关系的进一步理解(1)做功的过程就是能量转化的过程。
不同形式的能量发生相互转化是通过做功来实现的。
(2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数值上相等。
3.几种常见的功能关系及其表达式(1)总的原则是根据做功与能量转化的一一对应关系,确定所选用的定理或规律,若只涉及动能的变化用动能定理分析。
(2)只涉及重力势能的变化用重力做功与重力势能变化的关系分析。
(3)只涉及机械能的变化用除重力和弹力之外的力做功与机械能变化的关系分析。
(4)只涉及电势能的变化用静电力做功与电势能变化的关系分析。
5. 能量守恒定律(1)内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变。
(2)适用范围:能量守恒定律是贯穿物理学的基本规律,是各种自然现象中普遍适用的一条规律。
(3)表达式①E初=E末,初状态各种能量的总和等于末状态各种能量的总和。
②ΔE增=ΔE减,增加的能量总和等于减少的能量总和。
二.典型例题精讲题型一:定性分析例1:有关功和能,下列说法正确的是( )A.力对物体做了多少功,物体就具有多少能B.物体具有多少能,就一定能做多少功C.物体做了多少功,就有多少能量消失D.能量从一种形式转化为另一种形式时,可以用功来量度能量转化的多少答案 D解析功是能量转化的量度,力对物体做了多少功,就有多少能量发生了转化;并非力对物体做了多少功,物体就具有多少能;也并非物体具有多少能,就一定能做多少功,所以A 、B 错误。
做功的过程是能量转化的过程,能量在转化过程中总量守恒,并不消失,所以C 错误,D 正确。
高二物理功能关系复习习题加答案

功能关系知识网络:内容一 功和功率 知识点梳理 一、功:1、定义:功是指力对距离的累积。
2、功的计算方法有两种:(1) 当F 为恒力时,按照定义求功。
即:W=Fscos θ。
(2) 当F 为变力时,用动能定理W=ΔE k 或功能关系求功。
【例1】 如图所示,质量为m 的小球用长L 的细线悬挂而静止在竖直位置。
在下列三种情况下,分别用水平拉力F 将小球拉到细线与竖直方向成θ角的位置。
在此过程中,拉力F 做的功各是多少?(1)F 缓慢地拉; ( ) (2)F 为恒力; ( ) (3)F 为恒力,而且拉到该位置时小球的速度刚好为零。
( )可供选择的答案有A.θcos FLB.θsin FLC.()θcos 1-FLD.()θcos 1-mgL 选B 、D【例2】如图所示,线拴小球在光滑水平面上做匀速圆周运动,圆的半径是1m ,球的质量是0.1kg ,线速度v =1m/s ,小球由A 点运动到B 点恰好是半个圆周。
那么在这段运动中线的拉力做的功是( )A .0B .0.1JC .0.314JD .无法确定 A 是正确的。
二、功率:1.、定义:功率是衡量做功快慢的物理量。
2、功率的计算方法: (1)功率的定义式:tWP,所求出的功率是时间t 内的平均功率。
(2)功率的计算式:P =Fv cos θ,其中θ是力与速度间的夹角。
该公式有两种用法:①求某一时刻的瞬时功率。
这时F 是该时刻的作用力大小,v 取瞬时值,对应的P 为F 在该时刻的瞬时功率;②当v 为某段位移(时间)内的平均速度时,则要求这段位移(时间)内F 必须为恒力,对应的P 为F 在该段时间内的平均功率。
(3) 重力的功率可表示为P G =mgv y ,即重力的瞬时功率等于重力和物体在该时刻的竖直分速度之积。
(4) 汽车的两种加速问题:当汽车从静止开始沿水平面加速运动时,有两种不同的加速过程,但分析时采用的基本公式都是P =Fv 和F-f = ma ①恒定功率的加速 ②恒定牵引力的加速。
2019年版本高考物理专题复习-——功能关系综合运用(例题 习题 答案)-Word版

高考物理专题复习——功能关系综合运用(附参考答案)知识点归纳:一、动能定理1.动能定理的表述合外力做的功等于物体动能的变化。
(这里的合外力指物体受到的所有外力的合力,包括重力)。
表达式为W=ΔE K动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。
实际应用时,后一种表述比较好操作。
不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功2.对外力做功与动能变化关系的理解:外力对物体做正功,物体的动能增加,这一外力有助于物体的运动,是动力;外力对物体做负功,物体的动能减少,这一外力是阻碍物体的运动,是阻力,外力对物体做负功往往又称物体克服阻力做功.功是能量转化的量度,外力对物体做了多少功;就有多少动能与其它形式的能发生了转化.所以外力对物体所做的功就等于物体动能的变化量.即.3.应用动能定理解题的步骤(1)确定研究对象和研究过程。
和动量定理不同,动能定理的研究对象只能是单个物体,如果是系统,那么系统内的物体间不能有相对运动。
(原因是:系统内所有内力的总冲量一定是零,而系统内所有内力做的总功不一定是零)。
(2)对研究对象进行受力分析。
(研究对象以外的物体施于研究对象的力都要分析,含重力)。
(3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负)。
如果研究过程中物体受力情况有变化,要分别写出该力在各个阶段做的功。
(4)写出物体的初、末动能。
(5)按照动能定理列式求解。
二、机械能守恒定律1.机械能守恒定律的两种表述(1)在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。
(2)如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。
2.对机械能守恒定律的理解:(1)机械能守恒定律的研究对象一定是系统,至少包括地球在内。
通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。
备战2021新高考物理-重点专题-功能关系的应用(一)(含解析)

备战2021新高考物理-重点专题-功能关系的应用(一)一、单选题1.质量为m的钢制小球用长为l的结实细线悬挂在O点,将小球拉到与O点相齐的水平位置C由静止释放,小球运动到最低点时对细绳的拉力2mg,若小球运动到最低点B时用小锤头向左敲击它一下,瞬间给小球补充机械能△E,小球就能恰好摆到与C等高的A点,设空气阻力只与运动速度相关,且运动越大空气的阻力就越大,则以下关系可能正确的是()A.△E>mglB.△E<mglC.△E= mglD.mgl<△E<mgl2.如图所示,一个长直轻杆两端分别固定一个小球A和B,两球质量均为m,两球半径忽略不计,杆的长度为L。
先将杆AB竖直靠放在竖直墙上,轻轻拨动小球B,使小球B在水平面上由静止开始向右滑动,当小球A沿墙下滑距离为L 时,下列说法正确的是(不计一切摩擦)()A.杆对小球A做功为B.小球A和B的速度都为C.小球A,B的速度分别为和D.杆与小球A和B组成的系统机械能减少了mgL3.物体从高处自由下落,若选地面为参考平面,则下落时间为落地时间的一半时,物体所具有的动能和重力势能之比为()A.1:3B.1:4C.1:2D.1:14.质量为2 t的汽车,发动机的功率为30 kW,在水平公路上能以54 km/h的最大速度行驶,如果保持功率不变,汽车速度为36 km/h时,汽车的加速度为()A.0.5m/s2B.1 m/s2C.1.5m/s2D.2 m/s25.如图所示,将质量为m的小球以速度v0由地面竖直向上抛出.小球落回地面时,其速度大小为.设小球在运动过程中所受空气阻力的大小不变,则下列说法正确的是()A.克服空气阻力做功B.上升时间等于下降时间C.上升的最大高度为D.重力做功不为零6.如图所示,倾角为θ的传送带沿逆时针方向以加速度a加速转动时,小物体A与传送带相对静止,重力加速度为g.则()A.只有a>gsinθ,A才受沿传送带向上的静摩擦力作用B.只有a<gsinθ,A才受沿传送带向上的静摩擦力作用C.只有a=gsinθ,A才受沿传送带向上的静摩擦力作用D.无论a为多大,A都受沿传送带向上的静摩擦力作用7.如图,光滑水平面上子弹m水平射入木块后留在木块内,现将子弹、弹簧、木块组成的系统作为研究对象,从子弹开始射入木块到弹簧压缩到最短的整个过程中()A.动量守恒, 机械能不守恒B.动量不守恒, 机械能不守恒C.动量机械能均守恒D.动量不守恒, 机械能守恒8.如图所示,足够长的传送带与水平面的夹角为θ,传送带以速度v0逆时针匀速转动。
高考物理二轮复习热点训练解析—功能关系的理解和应用

高考物理二轮复习热点训练解析—功能关系的理解和应用1.(2021·江苏七市第二次调研)如图1所示,光滑斜面底端有一固定挡板,轻弹簧一端与挡板相连,一滑块从斜面上某处由静止释放,运动一段时间后压缩弹簧,已知弹簧始终在弹性限度内,则()图1A.弹簧劲度系数越大,弹簧的最大弹性势能越大B.弹簧劲度系数越大,滑块的最大速度越大C.滑块释放点位置越高,滑块最大速度的位置越低D.滑块释放点位置越高,滑块的最大加速度越大答案D解析滑块从释放到弹簧压至最短的过程中,滑块的重力势能转化为弹簧的弹性势能,弹簧劲度系数越大,弹簧被压至最短时位置越高,滑块减小的重力势能越少,则弹簧的最大弹性势能越小,故A错误;设滑块刚接触弹簧时的速度为v0,速度最大时弹簧的压缩量为x,则有kx=mg sinθ,弹簧劲度系数越大,x越小,重力势能减少量越小,则最大速度v m越小,故B错误;弹簧弹力等于滑块重力沿斜面分力时,即kx=mg sinθ,此时滑块速度最大,则滑块最大速度的位置不变,故C错误;滑块释放点位置越高,滑块接触弹簧时动能越大,则弹簧压缩量越大,弹簧弹力越大,则滑块的最大加速度越大,故D正确。
2.(多选)(2021·江苏苏州市震川中学第一次统测)如图2所示,一轻杆可绕光滑固定转轴O在竖直平面内自由转动,杆的两端固定有两小球A和B(可看做质点)。
A、B的质量分别为2kg和8kg,到转轴O的距离分别为0.2m和0.1m。
现使轻杆从水平位置由静止开始绕O轴自由转动,当A球到达最高点时(g=10m/s2),下列说法正确的是()图2A.转轴O对杆的作用力方向沿竖直方向向上B.球A只受重力和杆对它的拉力C .球A 的角速度为52rad/sD .球B 的角速度为215rad/s答案AC 解析根据机械能守恒定律可得m B gL 2-m A gL 1=12m A v 2A +12m B v 2B ,A 、B 两球同轴转动,角速度相同,所以有v A =L 1ω,v B =L 2ω,联立并代入数据解得ω=52rad/s ,故C 正确,D 错误;杆对B 球的作用力为F B ,合力提供向心力,有F B -m B g =m B v 2B L 2,代入数据解得F B =120N ,球对杆向下的拉力为120N 。
最新高考力学复习专题07 功能关系的综合应用(解析版)

专题07 功能关系的综合应用1.(2021·海南省新高考一模)两个相同物块P、Q分别在大小相等、方向如图所示的恒力F1和F2作用下沿水平面向右运动,物块与水平面间的动摩擦因数相同。
在它们前进相同距离的过程中,F1和F2做功分别为W1和W2,P、Q两物块克服摩擦力所做的功分别为W f1和W f2,则有()A.W1>W2,W f1>W f2B.W1=W2,W f1>W f2C.W1>W2,W f1=W f2D.W1=W2,W f1=W f2【答案】A【解析】物块运动的位移为s,F2与水平方向的夹角为θ,由功的公式可知W1=F1s,W2=F2s cos θ,因为F1=F2,则W1>W2,W f1=μmgs,W f2=μ(mg-F2sin θ)s,则W f1>W f2,选项A正确。
2.(2021·海南省新高考3月线上诊断)一同学将地面上一质量m=400 g的足球沿与水平方向成θ=45°角踢出,足球与脚分开时的速度大小为10 m/s,不计空气阻力,足球可看做质点,重力加速度g=10 m/s2。
则该同学踢球时对足球做的功为()A.200 JB.100 JC.20 JD.10 J【答案】C【解析】由题意可知,足球离开脚时的速度为10 m/s,而脚踢球时只有脚对足球做功,由动能定理可得W=12mv2=12×0.4×102 J=20 J,故C正确,A、B、D错误。
3.(2021·浙江省1月高中学业水平考试)如图所示,质量均为m的三个小球分别从高度都为h的光滑固定斜面顶端由静止滑到底端,三个斜面倾角不同,则()A.重力对小球做功均为mghB.弹力对小球做功均为mghC.重力的平均功率均相等D.弹力的平均功率不相等 【答案】 A【解析】 根据重力做功的特点可知,重力对小球做功均为mgh ,选项A 正确;弹力的方向与位移方向垂直,则弹力对小球做功均为0,选项B 错误;根据a =g sin θ,则t =2ha sin θ=2hg sin 2θ,因各个斜面的倾角θ不同,则下滑的时间不同,根据P -G =W G t 可知,重力的平均功率不相等,选项C 错误;根据P -N =W Nt可知,弹力的平均功率都为零,选项D 错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理专题复习——功能关系综合运用(附参考答案)知识点归纳:一、动能定理1.动能定理的表述合外力做的功等于物体动能的变化。
(这里的合外力指物体受到的所有外力的合力,包括重力)。
表达式为W=ΔE K动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。
实际应用时,后一种表述比较好操作。
不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功2.对外力做功与动能变化关系的理解:外力对物体做正功,物体的动能增加,这一外力有助于物体的运动,是动力;外力对物体做负功,物体的动能减少,这一外力是阻碍物体的运动,是阻力,外力对物体做负功往往又称物体克服阻力做功.功是能量转化的量度,外力对物体做了多少功;就有多少动能与其它形式的能发生了转化.所以外力对物体所做的功就等于物体动能的变化量.即.3.应用动能定理解题的步骤(1)确定研究对象和研究过程。
和动量定理不同,动能定理的研究对象只能是单个物体,如果是系统,那么系统内的物体间不能有相对运动。
(原因是:系统内所有内力的总冲量一定是零,而系统内所有内力做的总功不一定是零)。
(2)对研究对象进行受力分析。
(研究对象以外的物体施于研究对象的力都要分析,含重力)。
(3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负)。
如果研究过程中物体受力情况有变化,要分别写出该力在各个阶段做的功。
(4)写出物体的初、末动能。
(5)按照动能定理列式求解。
二、机械能守恒定律1.机械能守恒定律的两种表述(1)在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。
(2)如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。
2.对机械能守恒定律的理解:(1)机械能守恒定律的研究对象一定是系统,至少包括地球在内。
通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。
另外小球的动能中所用的v,也是相对于地面的速度。
(2)当研究对象(除地球以外)只有一个物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象(除地球以外)由多个物体组成时,往往根据是否“没有摩擦和介质阻力”来判定机械能是否守恒。
(3)“只有重力做功”不等于“只受重力作用”。
在该过程中,物体可以受其它力的作用,只要这些力不做功,或所做功的代数和为零,就可以认为是“只有重力做功”。
3.对机械能守恒条件的认识如果没有摩擦和介质阻力,物体只发生动能和势能的相互转化时,机械能的总量保持不变,这就是机械能守恒定律.没有摩擦和介质阻力,这是守恒条件.具体的讲,如果一个物理过程只有重力做功,是重力势能和动能之间发生相互转化,没有与其它形式的能发生转化,物体的动能和重力势能总和保持不变.如果只有弹簧的弹力做功,弹簧与物体这一系统,弹性势能与动能之间发生相互转化,不与其它形式的能发生转化,所以弹性势能和动能总和保持不变.分析一个物理过程是不是满足机械能守恒,关键是分析这一过程中有哪些力参与了做功,这一力做功是什么形式的能转化成什么形式的能.如果只是动能和势能的相互转化,而没有与其它形式的能发生转化,则机械能总和不变.如果没有力做功,不发生能的转化,机械能当然也不发生变化.三、功能关系做功的过程是能量转化的过程,功是能量转化的量度。
能量守恒和转化定律是自然界最基本的定律之一。
而在不同形式的能量发生相互转化的过程中,功扮演着重要的角色。
本章的主要定理、定律都是由这个基本原理出发而得到的。
需要强调的是:功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它个一个时刻相对应。
两者的单位是相同的(都是J),但不能说功就是能,也不能说“功变成了能”。
复习本章时的一个重要课题是要研究功和能的关系,尤其是功和机械能的关系。
突出:“功是能量转化的量度”这一基本概念。
(1)物体动能的增量由外力做的总功来量度:W外=ΔE k,这就是动能定理。
(2)物体重力势能的增量由重力做的功来量度:W G= -ΔE P,这就是势能定理。
(3)物体机械能的增量由重力以外的其他力做的功来量度:W其它=ΔE机,(W其它表示除重力以外的其它力做的功),这就是机械能定理。
(4)当W其它=0时,说明只有重力做功,所以系统的机械能守恒。
(5)一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,也就是系统增加的内能。
f d=Q(d为这两个物体间相对移动的路程)。
例题精讲【例1】: 质量为m 的物体在竖直向上的恒力F 作用下减速上升了H ,在这个过程中,下列说法中正确的有A.物体的重力势能增加了mgHB.物体的动能减少了FHC.物体的机械能增加了FHD.物体重力势能的增加小于动能的减少[解析]:由以上三个定理不难得出正确答案是A 、C【例2】: 如图所示,一根轻弹簧下端固定,竖立在水平面上。
其正上方A 位置有一只小球。
小球从静止开始下落,在B 位置接触弹簧的上端,在C 位置小球所受弹力大小等于重力,在D 位置小球速度减小到零。
小球下降阶段下列说法中正确的是A .在B 位置小球动能最大B .在C 位置小球动能最大C .从A →C 位置小球重力势能的减少大于小球动能的增加D .从A →D 位置小球重力势能的减少等于弹簧弹性势能的增加[解析]:小球动能的增加用合外力做功来量度,A →C 小球受的合力一直向下,对小球做正功,使动能增加;C →D 小球受的合力一直向上,对小球做负功,使动能减小,所以B 正确。
从A →C 小球重力势能的减少等于小球动能的增加和弹性势能之和,所以C 正确。
A 、D 两位置动能均为零,重力做的正功等于弹力做的负功,所以D 正确。
选B 、C 、D 。
【例3】: 将小球以初速度v 0竖直上抛,在不计空气阻力的理想状况下,小球将上升到某一最大高度。
由于有空气阻力,小球实际上升的最大高度只有该理想高度的80%。
设空气阻力大小恒定,求小球落回抛出点时的速度大小v 。
[解析]:有空气阻力和无空气阻力两种情况下分别在上升过程对小球用动能定理: 2021mv mgH =和()20218.0mv H f mg =+,可得H=v 02/2g ,mg f 41= 再以小球为对象,在有空气阻力的情况下对上升和下落的全过程用动能定理。
全过程重力做的功为零,所以有:22021218.02mv mv H f -=⨯⋅,解得053v v =va v /【例4】如图所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止。
求物体在轨道AB 段所受的阻力对物体做的功。
[解析]:物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR ,f BC =μmg ,由于物体在AB 段受的阻力是变力,做的功不能直接求。
根据动能定理可知:W 外=0,所以mgR -μmgS -W AB =0即W AB =mgR -μmgS =1×10×0.8-1×10×3/15=6 J【例5】:如图所示,小滑块从斜面顶点A 由静止滑至水平部分C 点而停止。
已知斜面高为h ,滑块运动的整个水平距离为s ,设转角B 处无动能损失,斜面和水平部分与小滑块的动摩擦因数相同,求此动摩擦因数。
[解析]:滑块从A 点滑到C 点,只有重力和摩擦力做功,设滑块质量为m ,动摩擦因数为μ,斜面倾角为α,斜面底边长s 1,水平部分长s 2,由动能定理得:0cos cos 21=-⋅-mgs s mg mgh μααμ s s s =+21 由以上两式得sh =μ 从计算结果可以看出,只要测出斜面高和水平部分长度,即可计算出动摩擦因数。
【例6】:总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵引力。
设运动的阻力与质量成正比,机车的牵引力是恒定的。
当列车的两部分都停止时,它们的距离是多少?[解析]:此题用动能定理求解比用运动学、牛顿第二定律求解简便。
对车头,脱钩后的全过程用动能定理得:201)(21)(v m M gs m M k FL --=-- 对车尾,脱钩后用动能定理得: 20221mv kmgs -=- 而21s s s -=∆,由于原来列车是匀速前进的,所以F =kMg 由以上方程解得mM ML s -=∆。
\【例7】:如图所示,游乐列车由许多节车厢组成。
列车全长为L ,圆形轨道半径为R ,(R 远大于一节车厢的高度h 和长度l ,但L >2πR ).已知列车的车轮是卡在导轨上的光滑槽中只能使列车沿着圆周运动,在轨道的任何地方都不能脱轨。
试问:在没有任何动力的情况下,列车在水平轨道上应具有多大初速度v 0,才能使列车通过圆形轨道而运动到右边的水平轨道上?[解析]:当游乐车灌满整个圆形轨道时,游乐车的速度最小,设此时速度为v ,游乐车的质量为m ,则据机械能守恒定律得:22021221mv gR L m R mv +=π 要游乐车能通过圆形轨道,则必有v >0,所以有L gR v π20>【例8】如图所示,一根长为m 1,可绕O 轴在竖直平面内无摩擦转动的细杆AB ,已知m OB m OA 4.0;6.0==,质量相等的两个球分别固定在杆的B A 、端,由水平位置自由释放,求轻杆转到竖直位置时两球的速度?[解析]:B A 、球在同一杆上具有相同的角速度ω,2:3::==B A B A R R v v ,B A 、组成一个系统,系统重力势能的改变量等于动能的增加量,选取水平位置为零势能面,则:mg R R mg mgR mgR E E E PB PA P 2.0)(2121-=--=+-=∆+∆=∆2222122)(212121ωR R m mv mv E E E B A KB KA K +=+=∆+∆=∆ K P E E ∆=∆- 226.02.0ωm mg = 解得:s m v s m v s rad B A 1.165.11310===、 、ω 【例9】:小球在外力作用下,由静止开始从A 点出发做匀加速直线运动,到B 点时消除外力。
然后,小球冲上竖直平面内半径为R 的光滑半圆环,恰能维持在圆环上做圆周运动,到达最高点C 后抛出,最后落回到原来的出发点A 处,如图所示,试求小球在AB 段运动的加速度为多大?[解析]:要题的物理过程可分三段:从A 到孤匀加速直线运动过程;从B 沿圆环运动到C 的圆周运动,且注意恰能维持在圆环上做圆周运动,在最高点满足重力全部用来提供向心力;从C 回到A 的平抛运动。