故障录波装置原理
故障录波介绍

中性点经接地电阻接地方式
接地变压器结构与一般 三相芯式变压器相似。T0 为接地变压器,铁芯为三 相三柱式,每个铁芯上有 两个匝数相等,绕向相同 的绕组,每相上面一个绕 组与下面一个绕组反极性 串联,并将每相下面一个 绕组的首端连在一起作为 中性点,组成曲折形的星 形接线。二次绕组视工程 需要决定是否配置。
接地变零序保护误动、拒动探讨
防范措施 (3)35kV母线并列运行时,不得同时投入两条母线的接 地变。
感谢您的聆听
故障录波在线查看
【波形设置】选项
故障的起始时刻
故障录波在线查看
高度 长度
故障的起始时刻
故障录波离线分析软件
三 典型波形识别
故障录波分析-三相短路电压
故障录波分析-三相短路低压侧电流
0.052s故障开始
0.18s故障结束
故障录波分析-三相短路高压侧电流
故障录波分析-两相短路低压侧电流
故障录波分析-两相短路低压侧电流
实际波形分析-案例 1 保护动作信息
1号接地变保护测控信息
实际波形分析-案例 1 1号接地变零序电流波形
实际波形分析-案例 1
原因分析 直接原因:35kV I段母线所带风机线路上一台配电变压
器A相高压侧引线折断,搭接至变压器本体导致A相接 地故障。 根本原因:35kV I段母线所带风机线路未配置零序电流 互感器,未设置零序电流保护。
五 零序保护误动、拒动探讨
接地变零序保护误动、拒动探讨
(一)两条线路同相接地的电流叠加
当一条线路经高阻接地,由于故障电流小,保护不能动
作;此后,另一条线路又经高阻接地,线路的故障电流也未
达到保护动作值,两条线路同时发生高阻接地等值电路为: 图中,R1 、R2 分别为故障线 路1、线路2的接地过渡电阻; Il1 、IL2 分别为故障线路1、线 路2的零序电流;IR 为流过接 地变的零序电流;XCΣ 、Xb 分 别为线路对地电容、接地变压 器的电抗值;R为接地电阻值。
故障录波装置基础知识讲解

一、故障录波器的作用
(3)对断路器存在的问题给以真实记录,如断路器的拒动、跳跃、断相 和切断空载电流的能力等,均可从故障录波图上分析出来,以便改进。
(4)为检修工作提供依据。例如按断路器切除故障次数进行检修是规程 规定的。但从故障录波分析发现,有时单相接地故障发生在不同相别, 切除故障电流并未集中在断路器的同一相,因此断路器检修工作,应 根据录波实际情况而定,可减少检修次数。
门的数据区中。
(4) (4))将记录的故障数据通过以太网送至分析管理层。
五、数据采集单元
2、数据采集单元的结构
数据采集单元一般由信 号输入电路、主处理器电 路、GPS电路、电源电路 等组成。
(1) 信号输入电路
信号输入电路是模拟量和开关量输入的信号调理部分,它 的作用是将电压互感器和电流互感器或其它设备传来模拟信号 及开关量信号进行准确、合适的转换,再送交主处理器电路进 行采样处理。
(1)模拟量、开关量分别处理后再送至CPU插件、提高 了抗干扰能力,易实现多CPU结构。
(2)多CPU结构提高了装置的可靠性,某个CPU的损坏 不会影响到别的CPU。
(3)总线不外引,加强了抗干扰能力。 (4)使装置的容量可灵活配置。
五、数据采集单元
1、数据采集单元的功能 数据采集单元主要实现以下功能:
(2)保护装置动作不正常(包括误动、拒动、动
2
作信号异常而造成误判断)。
(3)事故过程中,现场人员忙于处理事故,记 录不全,有时次序颠倒,反映情况不真等。
3
一、故障录波器的作用
2、为查找故障点提供依据 3.积累运行经验,提高运行水平
第七章 故障录波装置

(4)具有完善的软、磁盘系统及智能化打印绘图 功能。 (5)故障录波数据后期处理。对故障录波后的数 据,可在PC机上用专用的软件进行离线处理。
(6)掉电保护功能。掉电时,实时时钟及录波数 据等信息不丢失。 (7)人机对话供能。定值、时钟和各种操作指令 均可通过面板上的按键和显示器进行直接观察和 操作。
第七章 故障录波装置
要求:了解故障录波装置的作用,了解微机
型故障录波装置特点以及应用。
故障录波装置是电力系统十分重要的安全自动装
置之一。由于故障录波装置对提高电力系统的安
全运行水平极为重要,《继电保护和安全自动装
置技术规程》规定:为了分析电力系统故障及继 电保护和安全自动装置在事故过程中的动作情况, 在主要发电厂、220kV及以上变电站和110kV重要 变电站,应装设故障录波装置。故障录波装置是
二、故障录波装置的发展
根据录波原理的不同,故障录波装置经历了 机械—油墨式、机械—光线式阶段,发展到 现在普遍使用的微机型故障录波装置。 机械—油墨式现已经被淘汰,机械—光线式 由于存在启动速度慢、精度低、录波时间短 等缺点,实际中也很少使用了。目前广泛使 用的是
消除事故隐患。
(4)为检修工作提供依据。从故障录波分析发 现,有时单相接地故障发生在不同相别,切除故 障电流并未集中在断路器的同一相,因此断路器 检修工作,应根据录波实际情况而定。 (5)通过对已查证落实故障点的录波,可核对 系统参数的准确性,改进计算工作或修正系统使 用参数。
(6)统计分析系统振荡时有关参数。故障录波 装置对系统振荡全过程的录波,可以分析振荡性 质(同期或非同期)、振荡周期、振荡中心、振荡 电流等,以提供振荡计算中有关的实际参数。
故障录波器

简单故障分析
负荷潮流与故障电流的相位 对于一个正常运行的输电线路,电流与电
故障录波器基本要求
主要任务的是记录电力系统故障动态过程,记录系统大扰 动如短路故障、系统振荡、频率崩溃、电压崩溃等发生后 的有关系统电参量的变化过程及继电保护与安全自动装置 的动作行为。 1、当系统发生大扰动,包括在远方故障时,能自动地对扰 动的全过程按要求进行记录,并当系统动态过程基本终止 后,自动停止记录。 2、存储容量应足够大、当系统连续发主大扰动时,应能无 遗漏地记录每次系统大扰动发生后的全过程数据、并按要 求输出历次扰动后的系统电参数(I、U、P , Q 、f),及 保护装置和安全自动装置的动作行为。 3、所记录的数据可靠安全,满足要求,不失真。其记录频 率和记录间隔,以每次大扰动开始时为标准,宜分时段满 足要求。 4、各安装点记录及输出的数据,应能在时间上同步,以适 应集中处理系统全部信息的要求。
保护装置 内部动作 事件报告 和动作波 行图
简单故障分析
信息的采集 能够完整接收继电保护装置动作时产生的动作 事件报告和故障录波 能够调取保护内部的定值和定值区号 能够调取保护开入量、开出量状态(需保护支 持) 能够查询到保护的运行状态(停运或投运) 能够调取故障录波器的动作报告 通过综自系统调取故障时的相关系统资料(一 次运行方式、潮流方向、开关动作时序等)
故障录波器参数设置
采样设置
故障录波器参数设置
采样设置: 采样速率的设置用来设置整个机器的采样
速率,每块前置机采样插件都将采用此设 置。 本系统最高采样速率为10000点/秒。 AB段采样率:高速采样速率,指故障前和 故障后两个高速采样阶段的速率, 有几种速率可选:10000,5000,2500, 2000,1000,500(缺省为10000)。
故障录波及常见故障波形讲解

04 故障录波器的装置特点
➢ 2、录波启动方式
• 越限启动量优于±2%,突变启动量优于±5%; • 任一路模拟量均可设置为突变量启动和越限启动(含过量和低量 启动); • 相、序量突变量和越限启动; • 开关量变位或上跳变、下跳变启动; • 手动启动。
05 故障录波器的主要参数
➢ 2、A/D转换位数
A/D转换器的位数决定了录波器记录数据的准确度。对于不同位 数的A/D转换器,在量度同一个幅值的模拟量时,显然高位数A/D转换 器的每格所代表的值要比低位数A/D转换器小,也就是说分辨率比较高, 这样就可以具有较高的精度,保证所有通道采样的一致性。
➢ 3、最大故障电流记录能力
电力行业标准规定,故障录波器的采样速率应达到5kHz。
D时段:系统动态过程数据,不定长录波,录波时间最长为30min,数据输出速率50Hz,10Hz,1Hz可设,输出为有效值。
03
故障录波器的原理
➢ 故障录波器
用来记录电力系统中电气量和非电气量以及开关量的 自动记录装置,通过记录和监视系统中模拟量和事件量来 对系统中发生的故障和异常等事件生成故障波形储存,通 过分析软件的处理对波形进行分析和计算,从而对故障性 质故障发生点的距离,故障的严重程度进行准确地判断。
05 故障录波器的主要参数
➢ 5、录波数据采样及记录方式 • 、不定长录波的实现
1)非振荡故障启动 a)第一次启动,按A→B→C→D顺序录波; b)除A、B段外,如果正在录波又出现一次启动,则录波立即回到S点重新开始A→B→C→D顺序录。 2)自动终止记录条件(同时符合如下条件时,则自动停止记录) a)记录时间>3s; b)所有启动量全部复归。
故障录波器基本知识及典型案例

三.故障录波器的基本要求
• 5、数据记录格式及网络功能 • 6、对后台分析软件的要求 • (1)能自动综合双端数据进行故障测距; • (2)能根据记录的电流、电压形成波形,导出各序分量
及其向量图、阻抗变化轨迹; • (3)具备完善的数据库管理功能
21115
四.录波的基础知识点
各种故障情况下的波行特征:
21215
四.实例分析三相短路向量图
21216
Ⅳ.三相短路分析要点
21217
四.关于故障后应该出的信息
• 单相故障 两套主保护的单相跳闸信号,两套后备保护动作信
号,差动动作信号,收信、发信信号,重合闸动 作信号 • 两相及以上故障 两套主保护的三相跳闸信号,两套后备保护动作信 号,差动动作信号,收信、发信信号,
信息子站
二.故障录波器之原理
➢ 录波器起动方式
目的:能满足各种故障情况下可靠起动故障录 波器。
模拟量起动:按相设置的过电流、低电压起 动;按相设置的电流突变起动、零序过流和突 变起动;负序电流起动。
开关量起动:所有保护的跳闸出口信号;所 有开关的副接点变位信号
21112
三.故障录波器的基本要求
4、绘制向量图,进行分析。
21210
四.简单故障分析基础
• 基础---对称分量法 • 单相接地故障—故障相电流与零序电流大小
相等,方向相同。故障相电压有大幅度降 低,最低接近于零。
21211
四.实例分析单相接地故障
21 212
四.实例分析两相短路故障典型向量图特点分析
21213
21 124
四.实例分析三相短路波形
作的原因,必要时通过计算工具进行模拟
计算分析
风电场故障录波器基本知识

213 1
第四步 第三步 第二步 第一步
故障处理流程
反措和改进
4
电网事故分析
3
电网事故处理
2
电网事故判断
1
21 4
1
继电保护专业技术知识 调度汇报信息
故障录波器的信息资料 保护装置的报文 信息子站
事 故 分 析
215 1
一.故障录波器之功能
按照电力系统发生故障的不同情况,对应于 录波器的作用主要体现在:
➢系统发生故障,保护动作正确
利用故障录波器记录下来的电流电压量对故障线路进行测 距,同时给出能否强送的依据
216 1
一.故障录波器之功能
➢电力系统元件发生不明原因跳闸
利用故障录波器记录下来的电流电压及开关量判断出是否无故障 跳闸
217 1
一.故障录波器之功能
➢ 继电保护装置有不正确动作行为 继电保护装置误动造成无故障跳闸 系统有故障但保护装置拒动
➢ 两相之间故障,两个故障相的电流大小相等,方向相反, 没有零序电流。
➢ 两相接地故障,两个故障相的电流突变增大,但两个电流 之间的相位有角度差,变化范围随过渡电阻的不同在60° -180°之间变化,但有零序电流出现。
➢ 三相接地故障或不接地故障,三相电流同步增大,没有零 序电流和零序电压。
21116
4、绘制向量图,进行分析。
21210
四.简单故障分析基础
• 基础---对称分量法 • 单相接地故障—故障相电流与零序电流大小
相等,方向相同。故障相电压有大幅度降 低,最低接近于零。
21211
四.实例分析单相接地故障
21 212
四.实例分析两相短路故障典型向量图特点分析
故障录波器与故障波形分析

•
5、知人者智,自知者明。胜人者有力 ,自胜 者强。 20.12.1 320.12. 1307:1 1:1207: 11:12D ecembe r 13, 2020
•
6、意志坚强的人能把世界放在手中像 泥块一 样任意 揉捏。 2020年 12月13 日星期 日上午 7时11 分12秒0 7:11:12 20.12.1 3
➢5.3特殊记录方式
如果出现长期的电压、频率越限或电流振荡,则由S时刻开始沿ABCD时 段顺序录波,并延长D时段,直至所有起动量全部复归或振荡停息。其中频 率值测量精度不劣于± 0.05Hz。
六、故障录波器之技术分析
➢各种故障情况下的波行特征:
• 单相接地故障,故障相电流和零序电流大小相等 且同相位,故障相电压有一定程度减小,同时有 零序电压出现。
七、故障录波器在应用中存在的问题及措施
➢ 采取措施
• (1) 加强巡视:定期对故障录波器进行手动触发,检验 其是否在正常的工作状态,一旦发现工作不正常立即联系 处理。
• (2) 采用备用方案:在笔记本电脑上安装波形分析软件, 在保护管理机不能调阅故障录波器的波形时,采用笔记本 电脑调阅方式,对故障进行及时的分析和判断。
➢故障过程中的波形特征: • 故障相电流有明显突变增大,电压有一定
程度减小,同时有零序电压和零序电流出 现 • 在故障切除后,电流通道变为一根直线。 如果是线路PT,在线路两端故障均切除后 故障相电压变为0,零序电流变得很小或为 0,但有很大的零序电压。 • 重合成功。三相电流恢复正常负荷电流, 三相电压恢复对称。
➢ 故障录波器在应用中存在的问题
故障录波器在实际应用过程中经常出现保护管理机调不 到故障波形的故障,严重影响了故障波形的分析,在系统 发生故障时将影响对故障性质的判断,根据现场处理的情 况有以下几种原因导致该故障的发生: • (1) 保护管理机与故障录波器之间通信中断 • (2) 保护管理机死机导致死数据 • (3) 故障录波器存储单元损坏 • (4) 故障录波器软件版本低导致数据溢出
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变电站故障录波装置的设计 曲春辉, 张新国, 焦彦军 (华北电力大学 ,河北 保定071003) 摘 要: 电力系统的发展对变电站故障录波装置提出了更高的要求,计算机软硬件技术的飞速发展,全球定位系统(GPS)、以太网络、数字信号处理器(DSP)、嵌入式计算机等硬件技术及面向对象编程(OOP)的软件技术,为微机型故障录波装置的性能改善提供了必要条件。本文介绍了一种基于当前先进的计算机技术的高性能的变电站故障录波装置的设计方案,较详细地分析说明了其软硬件结构和功能。 关键词: 变电站 故障录波 GPS 以太网 PC/104 0 引言 随着电力网络的扩大复杂化和区域互联趋势的到来,电力系统的行为也将越来越复杂。一些原有的假设条件和简化模型的适用性都将接受进一步的挑战与检验。在此情况下丰富详尽的现场实测数据,尤其是故障或非正常状态下的数据,无疑将具有越来越重要的价值。它们不仅是分析故障原因检验继电保护动作行为的依据,也为电力工作者研究了解复杂系统的真实行为,发现其规律提供宝贵的资料,因此故障录波装置作为电力系统暂态过程的记录设备,电力系统对其要求也越来越高了,计算机技术的不断突飞猛进,为微机型故障录波装置进一步扩大信息量,提高可靠性、准确性、灵活性、实时性以及共享信息资源提供了必要的有利条件。 本文提出了一种利用当前先进的计算机技术实现微机型故障录波装置的方案,以提高故障录波装置的性能,使之更好地适应电力系统发展的需要。 1 故障录波器的整体结构 该系统以网络为核心,把各个单元连接成为一个有机整体,作为一个分布式的系统,它采用多CPU并行工作方式构成。主要可以分为三大部分 :下位机单元、中层通讯管理单元、上位机单元。下层采集卡相互独立,中层管理单元负责与上位机的通讯及保存掉电后可能丢失的数据,上位机负责人机接口及与其他系统通过网络通信。结构如图1所示。
1.1下位机单元(数据采集系统) 数据采集系统,包括开关量采集系统和模拟量采集系统。装置中可插入开关量采集板4块,模拟量采集板6块,每块开关量采集板可监测32路开关量,每块模拟量采集板可监测16路模拟量。具有监测量多,可根据实际选择投入采集卡数的优点。 开关量采集系统的CPU采用的Inter公司的MCS—96系列的单片微处理器80C196KB。具有高精度片内定时/计数器、程序运行监视器、高速输入/输出通道(HIS/HSO)、串行口、片内232 Byte通用寄存器阵列、中断控制器等硬件资源,软件指令丰富,控制能力很强。视投放的开关量输入板的多少,开关量采集系统可监视16/32/48/64路开关量输入回路,每个输入回路均经光隔后输入;每个开关量输入板上都带有一路测频电路。因此整个开关量采集系统最多可以监测4路频率。 模拟量采集系统的CPU采用TI公司的TMS320C3X系列的浮点数数字信号处理器TMS320C32,具有片内定时/计数器、同步串行口、DMA控制器、片内512 Byte的RAM、中断控制器等硬件资源。与80C196KB相比,其片内总线采用哈佛结构,CPU内部也采用多总线结构,同时片内有大量的寄存器可供编程直接使用,使CPU在完成仿真功能的同时,也足以完成模拟量的采集工作。充分发挥了DSP数据处理能力强的功能,能够促进系统实时性能的提高,并采用了高性能的A/D转换器,精度高性能稳定。 1.2中层管理单元: 由于DSP芯片及MCS—96芯片内部都不带有以太网卡控制器,为了完成数据的双向流动,系统设计时加入中层通讯管理单元。 CPU为嵌入式微型计算机PC/104,模块本身带有16M内存,8M电子盘,10M网口。 底版构成:主要提供PC/104总线接口 ,另外附有GPS接收系统及外扩定时/计数器。 1.3上位机单元: 采用工业控制计算机,全钢结构机箱,防尘、防电磁干扰、防震性能好,内部配置为Pentium-166MMX以上、64M内存、不小于2.1G硬盘、10M波特率网卡及内置MODEM可以上传信息至调度。 2.系统软件设置 本装置的软件主要分为三个部分,上位机分析软件、中层通讯软件、下位机数据采集软件。上位机分析软件基于Windows98/NT为工作平台,采用强大的VC++语言编制,支持多线程、多任务和网络功能,利用面向对象的编程思想,使软件具有模块化、封装功能、代码共享、灵活性、易维护性、增量型设计、局部存储与分布处理等优点,可保证软件系统不断扩展与维修,系统功能的易扩展性和可维护性。中层通讯软件我们采用FTP公司的PCTCP支撑环境,使用Borland c 编程实现。在PCTCP软件包的使用过程中,除了在Borland c集成环境中加入头文件(/include)和库文件(/lib)的目录外,还要把mconfig.lib 、mnetlib、mpc.lib、socket.lib四个静态库文件连接进工程中。在程序的运行前还要执行ethdrv 来加载这个协议。下位机数据采集软件采用的是TMS320C3x汇编语言编制,主要是考虑系统实时性的要求和对硬件的操作。 2.1.数据采集站软件 数据采集站软件的主要功能为录波启动判断、故障录波、GPS对时、数据存储与网络上传。数据采集和处理包括开关量采集模块和模拟量采集模块两部分。 开关量采集模块的主要功能有完成定时启动、手动启动、空接点启动及条件启动中的低频启动、高频启动、变频启动的各条件下的事件记录、频率记录。时间记录分辨率为0.5ms. 模拟量采集模块的主要功能有:完成手动启动、条件启动中的突变量启动、过流启动、过压启动、欠压启动、负序过流启动、零序过流启动、负序过压启动、电流变差启动条件下的模拟量的采集。采样频率为19.2kHz 。 2.2 中层通讯软件 由系统的配置可知,将有大量的模拟量与开关状态数据需要传送,所以采集卡通过双端口RAM将采样数据传递给中层管理机后,中层管理机单元通过以太网与上位机进行通信,提高了输送容量。上位机与中层管理机之间是基于TCP/IP协议的以太网通讯,由SOCKET编程实现。我们所要实现的是在上位机的WINDOWS端和中层管理机的DOS端的通讯,为了便于开发和维护以及使用中的方便和可靠,本文使用了面向连接的SOCKET模型作为解决方案。采用客户机—服务器模型,上位机作为客户端,中层管理机的DOS端为服务器端。 (1) 确定DOS端为服务器程序,由于系统投入运行后,DOS端只运行该单一软件,所以上电启动以后可以使其进入睡眠状态(等待连接),只有和WINDOWS端建立起通讯以后,DOS本身的功能才有意义。 (2) 确定WINDOWS端为客户端程序,利用多线程技术,通过子线程和DOS建立通讯,可以在运行中向主线程发出消息而由主线程作出相应的处理(连接出错判断给用户提示信息等)。 (3) 在DOS端利用网卡中断程序完成数据的接收,同下位机的数据采集一样,DOS端的数据接收可以选择查询方式以及中断方式,利用中断方式可以满足系统的实时性。 (4) 在WINDOWS端利用事件驱动完成数据接收,当以太网发送数据到客户机端时,On Receive()函数被触发,从而接收数据 因此,以太网的通讯模型分为两部分,即服务器模型和客户机模型,下位机先上电,即建立通讯所用的SOCKET,等待上位机建立连接的请求,而上位机后上电,建立通讯所使用SOCKET之后,即向采集站发送连接请求,采集站接到分析站的连接请求之后与其建立连接,则这一通讯连接一直维持到应用程序退出,而不是在有数据传送时才建立连接,而传送完毕后关闭连接。服务器和客户机的SOCKET都处于实时监听的状态,若是接收事件发生,自动触发On Receive()函数进行接收数据及处理。服务器以循环方式发送正常状态数据,或随机发送故障数据。一旦发生故障,则跳过刷新时间记录这一部分,故障数据发送完毕之后,开始进行时间记数,客户端(上位机)是以随机方式发送系统定值及条件启动。 确定通讯方案后,根据在上位机和中层管理机之间通过以太网传递的数据包括以下几种 (1)正常状态数据:正常状态时,接入录波器采集卡的各线路电压、电流、开关状态在固定刷新周期的采样值,由下位机通过网络传送给上位机。 (2)故障数据:发生故障时接入录波器采集卡的各线路电压、电流自故障前10周波至复位期间的采样值以及系统频率采样值。由下位机通过网络传送上位机。 (3)自检信息:采集卡及采集卡系统管理单元异常或故障信息由下位机通过网络传送给上位机。 (4)系统定值;条件起动的定值,包括:突变量启动、过流启动、过压启动、欠压启动、负序过流启动、零序过流启动、负序过压启动、电流变差启动、低频启动、高频启动、变频启动、空接点启动,包括:由0状态变为1状态时启动 、1状态变位0状态时启动、变位就起动、变位不启动以及正常数据刷新周期的设定值,由上位机传给采集站。 (5)手动启动命令:由上位机传送给下位机,即便此时没有故障,当采集站收到信息后,将采样数据以故障数据的形式发送给上位机。 2.3 上位机分析软件 上位机分析软件的功能主要有:数据处理和故障分析、数据的保存、数据的显示与打印、录波数据远程通讯、图形编辑、实时显示、系统参数设置和浏览、数据格式转换等。其中,数据的保存功能属于后台运行程序,只要上位机有新的录波波次,系统就会根据故障元件和故障时间自动存储文件,供用户分析。 2.3.1数据处理与故障分析 录波数据的处理和分析的主要内容为上位机在接收到实时录波数据后,整理并