改性纤维素
改性纤维素

a
12
5、乳化食品
• 搅打奶油是水包油型乳状液中的气泡,因为气泡 壁很薄难以维持,使用物理改性纤维素如微结晶 纤维素能够维持其的结构完整性。此外,纤维素 醚类能够聚集在气液界面从而保持气泡壁的完整 性。
• 甲基衍生物在界面形成的胶凝稳定了气泡壁,使 产物具有更好的回弹力和稳定性。
• 纤维素胶的持水性可减少搅打产品脱水收缩,使 其在冷藏后恢复原来的性质。
性
微原纤维化纤维素
纤
维
纤维素无机酸酯 纤维素酯类
素
化学改性纤维素
纤维素有机酸酯
羧甲基纤维素(CMC)
纤维素醚类 甲基纤维素(MC)
羟丙基甲基纤维(HPMC)
a
4
制备方法
• 目前改性纤维素的生产方法主要有: 物理方法和化学方法。
(1)微晶纤维素粉(MCC) 用植物纤维原料与无机酸捣成浆状,制 成α-纤维素,使纤维素作部分解聚后 除去非结晶部分提纯而得。
a
11
4、流体食品
• CMC在可溶性固体浓度很高(45%-60%)的体 系中是一种有效的增稠剂,并且同大多数化学改 性纤维素一样能够形成透明的溶液,这种性质正 好是果酱、果汁这类食品所需要的。
• CMC有假塑性,口感爽快,同时具有良好的悬浮 稳定性。由于果汁颗粒是带负电的,所以加入带 负电的胶体可以增加颗粒之间的静电排斥作用, 0.4-0.5%浓度的CMC就可以完全阻止果汁的澄清。
(1)改性纤维素可以提供食品保持完整所需要的结 合力并有助于改善食品品质。目前在以碎鱼、碎虾 为原料生产鱼块和虾块的过程中添加少量的MC可 以使产品具有低温挤压成型性和高温稳定性,可以 保证产品在高温油炸的稳定。
(2)由于纤维素衍生物形成胶凝,含水量较高,可 以增加水相的粘度,所以使用纤维素代替肉制品中 的部分脂肪,可以改善结构性质,产生润滑的稠度, 增强脂肪口感。而这一点也正好符合低脂肪的消费 观念。
新型纤维素材料研究及应用

新型纤维素材料研究及应用近年来,随着人们对环保材料的需求日益增加,纤维素材料受到了越来越广泛的关注。
纤维素材料广泛存在于植物细胞壁中,是一种天然的高分子材料。
在对纤维素材料的研究中,新型纤维素材料的研究及应用成为了研究的重点之一。
一、新型纤维素材料的研究新型纤维素材料的研究主要围绕着其改性方面展开。
纤维素作为一种高分子材料,其化学性质十分稳定,因此在实际应用中需要对其进行改性。
在改性方面,主要采用了化学改性和生物改性两种方法。
化学改性:通过对纤维素进行化学反应,引入不同的官能团,改善其性能。
其中,乙酰化、磺化和丙酮化等是常用的化学改性方法。
例如,将羟基取代为乙酰基,可以提高吸水性能和安定性,从而提高其应用性质。
生物改性:通过利用细菌、真菌、酵母等微生物对纤维素进行酶解,形成新的物质,并进一步对其进行改性。
生物改性具有绿色环保的特点,并且增加了材料的多样性和特殊性能。
例如,利用生物酶降解纤维素,可以得到纤维素纳米晶体纤维,该材料具有高比表面积、高晶度和高强度等优点。
二、新型纤维素材料的应用随着新型纤维素材料的研究,其在各个领域的应用也逐步拓展。
目前,其主要应用于以下三个领域:1.环保领域:新型纤维素材料可以覆盖传统化学材料的应用范围,如食品保鲜、药品包装、化妆品等。
与传统材料相比,新型纤维素材料具有更好的生物降解性和可再生性,不会对生态环境产生负面影响。
2.建筑领域:纤维素纳米晶体纤维可以作为水泥添加剂,能够提高水泥的强度、粘度和延展性,同时还能降低水泥的碳排放量,实现绿色环保建筑。
3.医疗领域:纤维素材料的生物相容性好,可以制备成各种医疗用品,如修复组织、细胞培养、药物控释等。
纤维素纳米晶体纤维可以形成三维的纤维素支架,作为人造血管,具有良好的生物相容性和血液相容性。
总之,新型纤维素材料研究及应用在环境保护、建筑和医疗等领域拥有广泛的应用前景。
未来,随着人们对绿色环保材料的需求日益增加,新型纤维素材料将得到进一步的研究和应用。
纤维素的结构层次

纤维素的结构层次
1纤维素的定义
纤维素是一种被广泛使用的天然细胞壁原料,它具有良好的抗拉和抗压性能,并且在固化和改性后具有高稳定性,常用于制造特种塑料、涂料、造纸等各种应用领域。
2纤维素的结构层次
纤维素的结构层次被分为三个不同的部分:原始纤维素、纤维素纤维和改性纤维素。
1)原始纤维素:它由一个多层细胞壁组成,其结构层次由由外层激膜、中层透明或视膜、内层纤维织物组成。
它由水存在的植物细胞壁组成,一般由纤维素单层包裹在植物细胞壁中。
2)纤维素纤维:它是一种纤维素纤维组装体,由多只嵌紧折叠的纤维素单层包裹体组成,每束纤维素纤维由多只水平并联的纤维素包裹体构成。
它具有十分良好的缓冲性能和拉伸性能。
3)改性纤维素:改性纤维素是经过特殊处理的纤维素,它包括水解纤维素和高分子修饰的纤维素。
水解纤维素经过水分解反应以达到改质的目的,改变了纤维素结构层次,为制造各式塑料和涂料提供原材料。
高分子修饰的纤维素则经过化学或物理方法将高分子物质与纤维素结合,以改变纤维素的物理性能。
总而言之,纤维素的结构层次由原始纤维素、纤维素纤维和改性纤维素三个部分组成,无论是水解还是修饰纤维素,其都是为了改善纤维素的性能,适应不同的应用领域而进行的改性。
纤维素改性

2020/4/8
10
2.1.4 生物技术
生物技术作为预处理手段,开始是将酶应用于制浆工 艺的打浆过程。纤维素酶处理虽然使纤维间的结合力增强, 但由于纤维素酶对纤维素链的部分降解,导致纸浆黏度降 低。用无纤维素酶活性的木聚糖处理后,纸浆的减少量低 于总纤维质量的2%,而原纤化程度得到提高,纤维间结合 力增强,打浆时间也大为缩短。
2020/4/8
8
2.1.2 物理预处理方法
各种机械加工处理由于机械应力的作用,可大 大改变纤维素纤维的物理和化学性质,提高纤维素 对各种化学反应和酶水解的可及度和反应性,其作 用的大小与采用的机械处理的方式即机械力大小和 能量大小有关。
常规的物理活化方法包括干法或湿法磨、蒸汽 爆炸、氨爆炸、溶剂交换或者浸润等。在物理预处 理过程中,纤维素的形态结构会发生变化,使可及 的表面和小孔增加。
2020/4/8
14
2.3.3 纤维素的接枝共聚
利用纤维素的羟基作为接枝点,将聚合物连接 到纤维素骨架上,依据接枝聚合物的结构、性质、 相对分子质量的不同,可赋予纤维素多种性能和 用途,同时又不会完全破坏纤维素材料所固有的 优点,成为纤维素化学改性的研究热点.
传统的接枝方法是:通过纤维素与丙烯酸、丙 烯腈、甲基丙烯酸甲酯、丙烯酰胺、苯乙烯等高 分子单体之间进行多相接枝共聚反应,实现纤维 素的多功能化.
2020/4/8
7
2.1.1 化学预处理方法
至今,氢氧化钠溶液的润胀处理是发现最早、 应用最广、最有效的对纤维素进行预处理的手段 之一。研究发现,碱润胀后纤维素可及度提高。 纤维素在碱溶液中的润胀有一最优的浓度,例如 棉纤维素在氢氧化钠中的润胀以18%最佳。
也可用其它化学试剂对其进行适当的预处理。 例如:用氯化锌处理纤维素,可提高纤维素酶水 解的速率和产率及纤维素的接枝率。甲胺、乙胺 等胺类试剂对棉纤维素有消晶作用,也可提高纤 维素酯化反应的反应活性等。
再生纤维素纤维制造及改性

再生纤维素纤维制造及改性再生纤维素纤维(Regenerated Cellulose Fibers)是一种由天然的再生纤维素基材料制成的纤维。
它们具有良好的柔软度、透气性和吸湿性,因此被广泛用于纺织品、包装材料和医疗领域。
在本文中,我们将详细介绍再生纤维素纤维的制造过程和改性方法。
再生纤维素纤维的制造过程通常分为两个主要步骤:纤维素的溶解和纤维的再生。
首先,天然的纤维素基材料(如木浆或棉花)被打浆处理,以去除其中的非纤维素成分。
然后,将纤维素与溶剂(通常是铜氨液或再生纤维素工业中通常使用的浓硫酸)混合,制成纤维素溶液。
这个溶解步骤是关键的,它要求控制溶液的浓度、温度和pH值,以确保溶液的稳定性和均匀性。
接下来,纤维素溶液通过纺丝或喷丝技术将溶液逐渐引出,形成连续的纤维。
这个过程包括溶液的过滤、升温、喷射、凝固和纤维的拉伸。
在升温过程中,溶液中的溶剂将挥发,纤维素开始凝固。
在凝固过程中,纤维素链之间形成了交联,使得纤维的结构得以固定。
然后,纤维通过拉伸过程,使得纤维的物理性能得到进一步的改善。
然而,再生纤维素纤维的性能通常不足以满足特定应用的需求,因此需要对纤维进行改性。
一种常见的改性方法是添加各种添加剂来改变纤维的性能。
例如,添加柔软剂可以提高纤维的柔软度和舒适性;添加抗菌剂可以防止微生物的生长;添加阻燃剂可以提高纤维的耐火性能。
另一种常见的改性方法是化学处理。
这通常包括纤维的表面处理和纤维的交联。
表面处理可以通过涂覆或浸渍的方式进行,以改变纤维的表面性质。
例如,纤维可以涂覆一层水疏水剂,使其具有较好的防水性能。
交联是通过引入交联剂并进行热处理来改变纤维结构的方法。
这可以提高纤维的强度、耐久性和抗皱性能。
此外,纤维的纺织和后处理过程也可以对纤维进行改性。
例如,纤维可以进行漂白、染色、印花和整理等处理,以改善纤维的外观和手感。
这些方法可以根据具体应用的要求进行选择和组合。
总之,再生纤维素纤维的制造和改性是一个复杂的过程,涉及到纤维素的溶解、纺丝、凝固和拉伸等多个步骤。
改性纤维素膜研究

4、3 聚丙烯腈/醋酸纤维素(PAN/CA) 共混超滤膜的研制与改性
3、1 PAC/CA膜制备: 将LiCl溶于溶剂中,加入一定的不同比例的PAN和 CA,50℃恒温溶解后,用相转化法制膜。 3、2 水通量和截留率测定: 用杯式超滤器。在0.1MPa的压力下,测定水通量 (J)。用0.1%的BSA溶液测定截留率(R)。 3、3 PAN/CA膜的水解改性: 分别用不同浓度的NaOH的乙醇溶液和硫酸溶液对 共混膜进行水解改性,比较不同的水解改性剂和不同水 解时间对膜性能的影响。
Company Logo
五、结语
由于膜广泛应用于人们的生产和生活中,纤维 素作为制膜材料,对其进行优化具有非常大的前 景,目前,正有不少人对其进行不懈的研究,相信 不久的将来,定会有很大的收获。
Company Logo
LOGO
Company Logo
二、纤维素的分子结构
纤维素(Cellulose)是一种天然高分子化合 物,是由若干个葡萄糖彼此以β -1,4-苷键连接 而成的线型分子,其分子结构式(C6H10O5)n为:
Company Logo
三、纤维素改性反应概述
这些反应包括酯化反应、醚化反应和接枝共 聚反应。 反应主要取决于两个因素:(1)纤维素葡萄糖 基环上游离羟基的反应活性;(2)反应物到达纤 维素分子上羟基的可及度,即反应物接近羟基的 难易程度。由于固态的纤维素使大部分高反应羟 基封闭在晶区内,所以在反应前,须对纤维素进行 物理或化学处理。
Company Logo
结果表明: (1)加有氯化锂(LiCI)的二甲基乙酰胺(DMAC) 是PAN/CA共混体系的良溶剂. (2)当聚合物的质量分数为14%,PAN/CA共混 比为50/50时,所制得的共混超滤膜的性能较好。 (3)对共混超滤膜进行水解改性的实验发现: 膜的截留率上升,水通量下降。 (4)用酱油、药酒为料液的超滤实验表明:共 混膜和水解改性膜的耐污染性能优于聚丙烯腈 (PAN)、聚砜(PS)和磺化聚砜(SPS)膜。
改性纤维素

+ CH3COOH
Байду номын сангаас
H2SO4
P OCOCH3
3
+ H2O
醋酸纤维物性稳定,不燃,可用作制造电 影胶片的片基材料、制漆和各种塑料制品,最 大用途是制造人造丝。
d. 纤维素醚
将碱纤维素与氯乙酸钠反应可制得具有多种 重要用途(胶体保护剂、粘接剂、增稠剂、表面 活性剂等)的羧甲基纤维素:
羟甲基纤维素
羧甲基纤维素可形成高粘度的胶体、溶 液、有粘着、增稠、流动、乳化分散、赋 形、保水、保护胶体、薄膜成型、耐酸、 耐盐、悬浊等特性,且生理无害,因此在 食品、医药、日化、石油、造纸、纺织、 建筑等领域生产中得到广泛应用。
硝化纤维素有军用和民用两大应用领 域,军用部分主要集中在兵器火炸药行业 生产,实行军品管理。民用部分主要用作 涂料,赛璐珞,人造纤维,电影胶片油墨 等多个领域。
硝化炸药
乒乓球
胶片底黑
纤维素乙酸酯 纤维素乙酸酯常被称为醋酸纤维素,物 性稳定,不燃,由乙酸或乙酸酐在硫酸催化 下与纤维素反应制得:
P OH
b. 粘胶纤维
纤维素黄原酸酯
粘胶纤维
粘胶纤维吸湿性好,穿着舒服,可纺织 性优良,常与棉毛或各种合成纤维混纺、 交织、用于各类服装及装饰用纺织品。高 强力粘胶纤维还可用于轮胎帘子线、运输 带等工业用品。
c. 纤维素酯
纤维素与酸反应酯化可获得多种具 有重要用途的纤维素酯。重要的有: 硝化纤维素:
硝化纤维
e. 应用前景
纤维素原料丰富、耐酸碱腐蚀、成本较 低,改性纤维素技术及其应用越来越受到重 视。改性纤维素目前较多应用于传统环保领 域,国外已经延伸到高附加值的药物缓释领 域,总之,随着不可再生资源的日益短缺, 纤维素改性材料在各个行业中将具有更广阔 的应用前景。
再生纤维素纤维制造及改性

⑵与酸反应
适当条件下发生酸性水解(纤维素大分
子的配糖连接对酸不稳定),如条件剧烈, 则水解的最终产物为葡萄糖。
⑶与碱反应
在适当条件下发生配糖连接碱性降解及
端基的“剥皮”反应,导致纤维素的聚合
度降低。与浓NaOH溶液作用,生成碱纤维
素。
感谢下载
18
⑷酯化反应
与各种无机酸和有机酸反应,生成各种酯化 物,如硝化纤维素、醋酸纤维素、纤维素黄酸酯 等。 ⑸醚化反应
能很好地溶解在铜氨溶液和复合有机溶液体 系中
对金属离子具有交换吸附能力(木质素和半 纤维素的作用)
具有良好的对水和其他溶液的吸附性,吸附 性的强弱与纤维素结构及毛细管作用有关
200 ℃以下热稳定性尚好, 200 ℃以上聚合
度下降
感谢下载
17
⒋纤维素的化学性质
⑴氧化反应
分子中的部分羟基被氧化成羧基或醛基, 同时分子链发生断裂。
• 1891年,克罗斯(Cross)、贝文 (Bevan)和比德尔(Beadle)等首先制
成了纤维素黄酸钠溶液,因其粘度很大, 命名为“粘胶”。
• 1893年,出现最早制备化学纤维的方法 (粘胶遇酸后,纤维素又重新析出)。
• 1905年,穆勒(Mueller)等发明了稀硫酸
和硫酸盐组成的凝固浴,使粘胶纤维的性
50
• 改性—兼具0粘200胶8 2纤009 维201与0 2合011 成201纤2 维优良性能和特 殊功能的纤维素纤维;
• 开发环境友好型非粘胶法纤维素纤维绿色生产 工艺。
感谢下载
7
生产纤维素纤维的基本原料
一、植物纤维的原料来源及其化学成分 植物纤维(植物的一种细胞)是制造
纤维素浆粕的原料,纤维素浆粕是生产再 生纤维素纤维的原料。 ⒈木材纤维
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
12
5、乳化食品
• 搅打奶油是水包油型乳状液中的气泡,因为气泡 壁很薄难以维持,使用物理改性纤维素如微结晶 纤维素能够维持其的结构完整性。此外,纤维素 醚类能够聚集在气液界面从而保持气泡壁的完整 性。
• 甲基衍生物在界面形成的胶凝稳定了气泡壁,使 产物具有更好的回弹力和稳定性。
• 纤维素胶的持水性可减少搅打产品脱水收缩,使 其在冷藏后恢复原来的性质。
(2)纤维素醚类
• 纤维素醚类是以天然纤维素为基本原料, 经过碱化、醚化反应的生成产物。生产流 程如下图所示:
a
6
(3)纤维素酯类
• 纤维素酯类是指在酸催化作用下,纤维素 分子中的羟基与酸、酸酐、酰卤等发生酯 化反应的生成物。
• 与无机酸如硝酸、硫酸、磷酸等进行反应 的生成物是纤维素无机酸酯。
• 与有机酸如或酰卤的生成物是纤维素有机 酸酯。
a
7
性质和应用
性质:物理改性纤维素能够调节体液的流变 性质、水化作用及组织特性;化学改性的纤 维素在食品中五个重要的功能分别为:流变 性、乳化性、泡沫稳定性、控制冰晶形成和 增长以及结合水的能力。长期以来,纤维素 衍生物在食品工业中得到了广泛的应用。 下面具体讨论改性纤维素在食品中的应用。
1、焙烤食品
• 热凝胶型的衍生物对于面包和蛋糕的结构 非常有利。MC有界面活性,升高温度时形 成弹性胶凝可增加生面团的强度和出品率, 通过减少淀粉的凝沉速度有助于延缓老化, 延长货架寿命。HPMC也具有类似的作用。 除此之外,在无麸质面包的生产中,纤维 可以作为麸质的替代品来模仿其粘弹性和 口感。
a
9
2、鱼、肉制品
概述
• 纤维素是一种天然高分子化合物,由很多 D-吡喃葡萄糖彼此以β-(1,4)苷键连接而 成的线型分子,其结构式为(C6H10O5)n。
• 纤维素是草食动物和昆虫的主要碳水化合 物营养物质,对于人类没有营养价值,但 是通过一定的方法对纤维素进行特殊的处 理就可以改变纤维素固有的特性,形成具 有其他功能性质的衍生物,在食品工业中 得到广泛的应用。
性
微原纤维化纤维素
纤
维
纤维素无机酸酯 纤维素酯类
素
化学改性纤维素
纤维素有机酸酯
羧甲基纤维素(CMC)
纤维素醚类 甲基纤维素(MC)
羟丙基甲基纤维(HPMC)
a
4
制备方法
• 目前改性纤维素的生产方法主要有: 物理方法和化学方法。
(1)微晶纤维素粉(MCC) 用植物纤维原料与无机酸捣成浆状,制 成α-纤维素,使纤维素作部分解聚后 除去非结晶部分提纯而得。
(1)改性纤维素可以提供食品保持完整所需要的结 合力并有助于改善食品品质。目前在以碎鱼、碎虾 为原料生产鱼块和虾块的过程中添加少量的MC可 以使产品具有低温挤压成型性和高温稳定性,可以 保证产品在高温油炸的稳定。
(2)由于纤维素衍生物形成胶凝,含水量较高,可 以增加水相的粘度,所以使用纤维素代替肉制品中 的部分脂肪,可以改善结构性质,产生润滑的稠度, 增强脂肪口感。而这一点也正好符合低脂肪的消费 观念。
a
10
3、可食性膜
• 改性纤维素具有良好的成膜性质,制得的 可食性膜能够阻止食品吸水或失水,防止 食品氧化和串味,调节生鲜食品的呼吸强 度,提高食品表面机械强度,改善食品表 观。
• 此外,这类膜还可减少食品的吸油量。MC 和HPMC通过热凝胶作用产生一种持水性 的凝胶,油炸时可阻碍油的进入,使得糊 的吸油量下降至50%。
a
14
7、其它食品
• 纤维网络的高持水性和保水性对食品的组 织结构具有很好的效果,例如可使膨化食 品口感松脆,而纤维结构也可防止干混合 物凝结成块。例如:CMC可防止挂面断条 和酥条,并使产品质量耐煮耐泡,韧性良 好;也能阻止糖果、糖衣和糖浆中糖结晶 的生长,并可作为啤酒的泡沫稳定剂等。
a
15
a
13
6、疗效食品
• 纤维质可预防结肠癌和心脏病,增加肠液的粘度, 阻碍葡萄糖的扩散,从而减慢葡萄糖的吸收而降 低血糖含量。
• 此外,纤维吸水后膨胀性强,不消化,用于饼干 可作为减肥食品。
• 在疗效食品中,CMC提供了体积、良好的质地和 口感,微结晶纤维素也可作为无热量的填充剂。
• HPMC水溶性较好,不被人体消化或肠道微生物 发酵,可以降低人体胆固醇含量且可以作为治疗 高胆固醇病的辅助药物。
主要内容
• 改性纤维素的概念 • 改性纤维素的类型 • 改性纤维素的制备 • 改性纤维素的性质和应用
概念
• 天然纤维素经过适当的处理,改变其原有 的性质以适应特殊的需要,得到具有特殊 理化性能的纤维素衍生物就称为改性纤维 素,可以用来制备纤维素食品胶。
类型
纤维素粉
改 物理改性纤维素 微晶纤维素(MCC)
a
Hale Waihona Puke 114、流体食品• CMC在可溶性固体浓度很高(45%-60%)的体 系中是一种有效的增稠剂,并且同大多数化学改 性纤维素一样能够形成透明的溶液,这种性质正 好是果酱、果汁这类食品所需要的。
• CMC有假塑性,口感爽快,同时具有良好的悬浮 稳定性。由于果汁颗粒是带负电的,所以加入带 负电的胶体可以增加颗粒之间的静电排斥作用, 0.4-0.5%浓度的CMC就可以完全阻止果汁的澄清。