九年级数学知识点归纳:全等三角形的性质
初中数学全等三角形知识点

初中数学全等三角形知识点(一)、基本概念1、“全等”的理解全等的图形需要满意:(1)外形相同的图形;(2)大小相等的图形; 即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的'性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)敏捷运用定理证明两个三角形全等,需要依据已知条件与结论,仔细分析图形,精确无误的确定对应边及对应角;去分析已具有的条件和还缺少的条件,并会将其他一些条件转化为所需的条件,从而使问题得到解决。
运用定理证明三角形全等时要留意以下几点。
1、判定两个三角形全等的定理中,需要具备三个条件,且至少要有一组边对应相等,因此在查找全等的条件时,总是先查找边相等的可能性。
2、要擅长发觉和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要擅长敏捷选择适当的方法判定两个三角形全等。
(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS)三、疑点、易错点1、对全等三角形书写的错误在书写全等三角形时肯定要把表示对应顶点的字母写在对应的位置上。
切记不要弄错。
2、对全等三角形判定方法理解错误;3、利用角平分线的性质证题时,要克服多数同学习惯于用全等证明的思维定势的消极影响。
【数学知识点】全等三角形的判定与性质

【数学知识点】全等三角形的判定与性质经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。
SSS(边边边):三边对应相等的三角形是全等三角形。
SAS(边角边):两边及其夹角对应相等的三角形是全等三角形。
ASA(角边角):两角及其夹边对应相等的三角形全等。
AAS(角角边):两角及其一角的对边对应相等的三角形全等。
RHS(直角、斜边、边)(又称HL定理(斜边、直角边)):在一对直角三角形中,斜边及另一条直角边相等。
(它的证明是用SSS原理)下列两种方法不能验证为全等三角形:AAA(角角角):三角相等,不能证全等,但能证相似三角形。
SSA(边边角):其中一角相等,且非夹角的两边相等。
1.全等三角形的对应角相等。
2.全等三角形的对应边相等。
3.能够完全重合的顶点叫对应顶点。
4.全等三角形的对应边上的高对应相等。
5.全等三角形的对应角的角平分线相等。
6.全等三角形的对应边上的中线相等。
7.全等三角形面积和周长相等。
8.全等三角形的对应角的三角函数值相等。
三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。
常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
1、自行车架自行车架根据用途分类可以分为停放自行车架与汽车自行车架。
2、篮球架篮球架是篮球场地的必需设备。
篮球运动器材。
包括篮板和篮板支柱,架设在篮球场两端的中央。
目前使用的有液压式、移动式、固定式、吊式、海燕式、炮式等等。
3、相机三脚架三脚架是用来稳定照相机,以达到某些摄影效果,三脚架的定位非常重要。
三脚架按照材质分类可以分为木质、高强塑料材质,合金材料、钢铁材料、火山石、碳纤维等多种。
感谢您的阅读,祝您生活愉快。
九年级数学上册知识点总结

九(上)数学知识点答案第一章证明(一)1、你能证明它吗?(1)三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、(2)等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。
判定定理:有一个角是60度的等腰三角形是等边三角形。
或者三个角都相等的三角形是等边三角形。
(4)含30度的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。
2、直角三角形(1)勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方。
逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
(2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。
(3)直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)3、线段的垂直平分线:垂直平分线是垂直于一条线段并且平分这条线段的直线。
(注意着重号的意义)<直线与射线有垂线,但无垂直平分线>(1)线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
(2)三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(如图1,AO=BO=CO)(3)如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。
九年级数学直角三角形全等的判定2

A D
P
O
EB
“如果一个点到角的两边的距离不相等, 那么这个点不在这个角的平分线上。” 你认为这个结论正确吗? 如果正确,你能证明吗?
了解一下 反证法
如图,△ABC的角平分线AD、BE相 交于点O,点O到△ABC各边的距离 相等吗?点O在∠C的平分线上吗?
A
OE
B
D
C
如图,已知△ABC的外角∠CBD和∠BCE 的平分线相交于点F, 求证:点F在∠DAE的平分线上
1.2.2直角三角形全等的判定(二)
回忆:直角三角形全等的判定方法。
证明:角平分线上的点到这个角两边的 距离相等。
A
思考与表达:
ቤተ መጻሕፍቲ ባይዱ
怎么想 要证PD=PE
怎么写
O
只需证△POD≌△POE
已知∠POD==∠POE
OP=OP
只要证∠PDO==∠PEO
D C
P
EB
2、证明:在一个角的内部,且到角 的两边距离相等的点,在这个角的平 分线上。
如图,在△ABC中,∠C=90度,点D 在BC上,DE垂直平分AB,且DE=DC。 求∠B的度数。
;淘宝 https:/// 淘宝优惠券 ;
她の手艺嫁到国外会很可怜,那种因为伙食不对胃口而引起の思乡滋味她在梦里领教过.两人边吃边聊,一个问得似是无心,一个答得仿佛随意,孰真孰假,难以琢磨.“...等配送点建好,你家要安装一个信箱.”信件老插在门口不像话.“什么时候能建好?”如果她还没搬走の话,装一个也无 妨.“大概一两个月吧...”夜里清凉,哪怕没电照样能睡得舒爽安稳.云岭村の桥头今早就杵着一块牌子,上边写着今天餐厅只营业到下午三点,很多客人被挡了回去.也有人不以为然,像云非雪她们那样坚持进村看个究竟.结果发现除了路灯,周围の房屋一
初三数学三角形知识点总结归纳

三角形的定义三角形是多边形中边数最少的一种。
它的定义是:由不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。
三条线段不在同一条直线上的条件,如果三条线段在同一条直线上,我们认为三角形就不存在。
另外三条线段必须首尾顺次相接,这说明三角形这个图形一定是封闭的。
三角形中有三条边,三个角,三个顶点。
三角形中的主要线段三角形中的主要线段有:三角形的角平分线、中线和高线。
这三条线段必须在理解和掌握它的定义的基础上,通过作图加以熟练掌握。
并且对这三条线段必须明确三点:(1)三角形的角平分线、中线、高线均是线段,不是直线,也不是射线。
(2)三角形的角平分线、中线、高线都有三条,角平分线、中线,都在三角形内部。
而三角形的高线在当△ABC是锐角三角形时,三条高都是在三角形内部,钝角三角形的高线中有两个垂足落在边的延长线上,这两条高在三角形的外部,直角三角形中有两条高恰好是它的两条直角边。
(3)在画三角形的三条角平分线、中线、高时可发现它们都交于一点。
在以后我们可以给出具体证明。
今后我们把三角形三条角平分线的交点叫做三角形的内心,三条中线的交点叫做三角形的重心,三条高的交点叫做三角形的垂心。
三角形的按边分类三角形的三条边,有的各不相等,有的有两条边相等,有的三条边都相等。
所以三角形按的相等关系分类如下:等边三角形是等腰三角形的一种特例。
判定三条边能否构成三角形的依据△ABC的三边长分别是a、b、c,根据公理“连接两点的所有线中,线段最短”。
可知:△③a+b>c,①a+c>b,②b+c>a△定理:三角形任意两边的和大于第三边。
△由②、③得b―a<c,且b―a>―c△故|a―b|<c,同理可得|b―c|<a,|a―c|<b。
从而得到推论:三角形任意两边的差小于第三边。
上述定理和推论实际上是一个问题的两种叙述方法,定理包含了推论,推论也可以代替定理。
另外,定理和推论是判定三条线段能否构成三角形的依据。
如:三条线段的长分别是5、4、3便能构成三角形,而三条线段的长度分别是5、3、1,就不能构成三角形。
初中数学知识归纳三角形的全等性质与计算

初中数学知识归纳三角形的全等性质与计算三角形是初中数学中重要的概念之一,对于理解三角形的性质以及进行计算至关重要。
本文将对三角形的全等性质进行归纳,并介绍一些相关的计算方法。
一、全等性质的概念与判定全等是指两个事物在形状、大小、性质等方面完全相同。
在三角形中,当两个三角形的对应边和对应角完全相等时,我们可以判断这两个三角形是全等的。
1. 全等三角形的判定条件全等三角形的判定条件有五种,分别是:(1)SSS判定法:如果两个三角形的三条边相等,则这两个三角形是全等的。
(2)SAS判定法:如果两个三角形的一条边和该边上的两个夹角分别与另外一个三角形的一条边和该边上的两个夹角相等,则这两个三角形是全等的。
(3)ASA判定法:如果两个三角形的两个角和这两个角所夹的边分别与另外一个三角形的两个角和这两个角所夹的边相等,则这两个三角形是全等的。
(4)AAS判定法:如果两个三角形的两个角和一个非夹角的对应边分别与另外一个三角形的两个角和一个非夹角的对应边相等,则这两个三角形是全等的。
(5)HL判定法:如果两个三角形的一条直角边和斜边分别与另外一个三角形的一条直角边和斜边相等,则这两个三角形是全等的。
通过以上的判定法则,我们可以准确地判断两个三角形是否全等,这对于后续计算和推理非常重要。
二、全等性质的应用1. 三角形全等导致的性质(1)对应顶点性质:两个全等三角形的对应顶点是相等的。
即,如果三角形ABC与三角形DEF全等,则∠A=∠D,∠B=∠E,∠C=∠F。
(2)对应边性质:两个全等三角形的对应边是相等的。
即,如果三角形ABC与三角形DEF全等,则AB=DE,BC=EF,AC=DF。
(3)对应角性质:两个全等三角形的对应角是相等的。
即,如果三角形ABC与三角形DEF全等,则∠ABC=∠DEF,∠BCA=∠EFD,∠CAB=∠FDE。
2. 利用全等性质进行计算根据全等性质,我们可以利用已知的边长或角度来计算其他未知的边长或角度。
精品 九年级数学复习 三角形认识 全等三角形 知识点及练习题

三角形认识三角形定义:组成的图形叫做三角形。
用符号“△”表示。
注意:三条线段必须①;②三角形三要素:、、。
三角形三边的不等关系:;三角形的分类:(1)按角分类: 三角形、三角形、三角形。
(2)按边分类:三角形的高线:三角形的三条高,简称三角形的心。
三角形的中线:三角的三条中线,简称三角形的心。
三角形的角平分线:三角形三个角的平分线,简称三角形的心。
三角形外角的性质:(1)。
(2)。
在三角形中,两内角平分线形成的夹角公式:在三角形中,两外角平分线形成的夹角公式:在三角形中,一内角一外角形成的夹角公式:多边形的对角线的条数:①从n边形的一个顶点可以引________条对角线。
将多边形分成________个三角形.②n 边形共有___________条对角线.正多边形:各个角_______,各条边_______的多边形叫正多边形.如正三角形,正四边形,正六边形等等. n边形的内角和等于外角和等于_________多边形的外角和与它的边数_______ (填“有”或“无”)关系.镶嵌:用一些不重叠...摆放的多边形把平面的一部分完全覆盖....,通常把这类问题叫做平面镶嵌(或用多边形覆盖平面)。
满足条件:同一个顶点处的各个角的和等于360°,且相邻的多边形有公共边.。
能单独进行平面镶嵌的只有三角形、四边形和正六边形。
例1.一条线段的长为a,若要使3a-l,4a+1,12-a这三条线段组成一个三角形,则a的取值范围______例2.等腰三角形的周长是 12cm,一边比另一边的差是 3cm,求三边长分别是多少?例3.已知等腰三角形一腰上的中线把这个三角形的周长分成 9cm和 15cm两部分,求这个三角形的腰长。
例4.如图,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.例5.如图,以五边形的每个顶点为圆心,以 1为半径画圆,求圆与五边形重合的面积.1.下列说法错误的是( ).A.三角形的三条高一定在三角形内部交于一点B.三角形的三条中线一定在三角形内部交于一点C.三角形的三条角平分线一定在三角形内部交于一点D.三角形的三条高可能相交于外部一点2.a 、b 、c 为三角形的三边长,化简c b a c b a c b a c b a -+-+-----++,结果是( )A.0B.2a+2b+2cC.4aD.2b-2c3.一边长为5cm ,另一边长为10cm 的等腰三角形有( )A.1 个B.2 个C.1 个或2 个D.0 个4.一个等腰三角形的两边是7和3,则该三角形的周长是( )A.17B.13C.17 或13D.7 或35.已知三角形的两边长分别是3 和8,且第三边长是奇数,那么第三边的长度为( )A.7 或5B.7C.9D.7 或96.如果三角形的两边长为2 和9,且周长为奇数,那么满足条件的三角形共有( )A.1 个B.2 个C.3 个D.4 个7.如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定8.已知△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,则∠BOC 一定( )A.小于直角B.等于直角C.大于直角D.不能确定9.将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角 边重合,则∠1 的度数为( )A.45° B.60° C.75° D.85°第9题图 第10题图 第11题图10.如图,△ABC 中,∠ACB=900,∠A=500,将其折叠,使点A 落在边CB 上A /处,折痕为CD ,则∠A /DB=( )A.40°B.30°C.20°D.10°11.如图,∠1、∠2、∠3、∠4应满足的关系式是( )A.∠1+∠2=∠3+∠4B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3D.∠1+∠4=∠2-∠312.若从一个多边形的一个顶点出发,最多可以引9条对角线,则它是( )A.十三边形B.十二边形C.十一边形D.十边形13.若一个多边形共有十四条对角线,则它是( )A.六边形B.七边形C.八边形D.九边形14.一个多边形的每个内角都相等,每个内角与相邻外角的差为100°,则这个多边形是( )A.七边形B.八边形C.九边形D.十边形15..如图,△ABC中BC边上的高是_______,△ACD中CD边上的高是______,△BCE中BC边上的高是______,以CF为高的三角形是__________。
2021年九年级数学中考复习——几何专题:全等三角形性质与判定(二)

2021年九年级数学中考复习——几何专题:全等三角形性质与判定(二)1.已知:如图,E是∠AOB平分线上的一点,EC⊥OA,ED⊥OB,垂足分别为C,D,连接CD.求证:(1)OC=OD;(2)OE是CD的垂直平分线.2.补充完成下列推理过程:.如图,在△ABC中,AB=AC,点D,E分别是BC,AC上的点,且BD=CE,连接AD,DE,若∠ADE=∠B.求证:AD=DE.证明:∵AB=AC∴∠B=∠C()∵∠ADC=∠B+∠()且∠ADE=∠B∴∠ADC=∠ADE+∠又∵∠ADC=∠ADE+∠CDE∴∠BAD=∠CDE在△BAD和△CDE中.∠B=∠C∠BAD=∠CDE=∴△BAD≌△CDE()∴AD=DE()3.如图,在Rt△ABC中,∠B=90°,过A作AC的垂线交∠BCA的角分线于点D.CD交AB于点F.(1)求证:∠ADF=∠AFD;(2)如图2,DE⊥AF,若AC+BC=16,DE=4,求BC的长.4.如图,在四边形ABCD中,∠C=90°,连接BD,∠ABD=45°,且∠ADB=∠CDB,过A点作AE⊥BD于点E,交BC于点F,求证:AD=BF.5.如图,在△ABC中,点D是BC上一点,且AD=AB,AE∥BC,∠BAD=∠CAE,连接DE交AC于点F.(1)若∠B=70°,求∠C的度数;(2)若AE=AC,AD平分∠BDE是否成立?请说明理由.6.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=16,DE=4,求△ADC的面积.7.(1)如图(1),已知CE与AB交于点E,AC=BC,∠1=∠2.求证:△ACE≌△BCE.(2)如图(2),已知CD的延长线与AB交于点E,AD=BC,∠3=∠4.探究AE与BE的数量关系,并说明理由.8.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=60°,∠B=80°,求∠F的度数.9.把两个含有45°角的直角三角板如图放置,点D在BC上,连结BE、AD,且AD的延长线交BE于点F.(1)求证:AF⊥BE;(2)若BD=2,AE=8,求EC,AC的长.10.阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2,∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC =∠BAD =90°,得S 四边形ABCD =S △ABC +S △ADC =S ABC +S ABE =S △AEC ,这样,四边形ABCD 的面积就转化为等腰直角三角形EAC 面积.(1)根据上面的思路,我们可以求得四边形ABCD 的面积为 cm 2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG =FN =HM =GH +MN =2cm ,∠G =∠N =90°,求五边形FGHMN 的面积.参考答案1.证明:(1)∵OE 平分∠AOB ,∴∠COE =∠DOE ,∵EC ⊥OA ,ED ⊥OB ,∴∠OCE =∠ODE =90°,又∵OE=OE,∴△OCE≌△ODE(AAS),∴OC=OD;(2)∵△OCE≌△ODE,∴OC=OD,CE=DE,∴OE是CD的垂直平分线.2.解:∵AB=AC,∴∠B=∠C(等边对等角),∵∠ADC=∠B+∠BAD(三角形的外角性质),且∠ADE=∠B,∴∠ADC=∠ADE+∠BAD,又∵∠ADC=∠ADE+∠CDE,∴∠BAD=∠CDE,在△BAD和△CDE中.,∴△BAD≌△CDE(AAS)∴AD=DE(全等三角形的对应边相等);故答案为:等边对等角;BAD,三角形的外角性质;BAD;BE,CE;AAS;全等三角形的对应边相等.3.证明:(1)∵CD平分∠ACB,∴∠ACD=∠BCF,∵DA⊥AC,∴∠DAC=∠B=90°,∴∠ACD+∠D=90°,∠BCF+∠CFB=90°,∴∠D=∠CFB,∴∠ADF=∠CFB=∠AFD;(2)如图,过点D作DH⊥BC,交CB的延长线于H,在△ACD和△HCD中,,∴△ACD≌△HCD(AAS),∴AC=CH,∵∠ABC=∠H=90°,DE⊥AB,∠ABH=90°,∴AB∥DH,DE∥BH,∴DE=BH=4,∵AC+BC=16,∴CH+BC=BH+BC+BC=4+2BC=16,∴BC=6.4.证明:∵AE⊥BD,∴∠AEB=∠AED=∠BEF=90°,∵∠ABD=45°,∴∠BAE=45°=∠ABE,∴AE=BE,∵∠C=90°,∠BEF=90°,∴∠BDC+∠DBC=90°,∠BFE+∠DBC=90°,∴∠BFE=∠BDC,∵∠BDC=∠ADB,∴∠ADB=∠BFE,即∠ADE=∠BFE,在△AED和△BEF中,∴△AED≌△BEF(AAS),∴AD=BF.5.解:(1)∵∠B=70°,AB=AD,∴∠ADB=∠B=70°,∵∠B+∠BAD+∠ADB=180°,∴∠BAD=40°,∵∠CAE=∠BAD,∴∠CAE=40°,∵AE∥BC,∴∠C=∠CAE=40°;(2)AD平分∠BDE,理由是:∵∠BAD=∠CAE,∴∠BAD+∠CAD=∠CAE+∠CAD,即∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS)∴∠B=∠ADE,∵∠B=∠ADB,∴∠ADE=∠ADB,即AD平分∠BDE.6.(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,在Rt△BED和Rt△CFD中∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵DE=DF,DE=4,∴DF=4,∵AC=16,∴△ADC的面积是==32.7.(1)证明:在△ACE和△BCE中,∵,∴△ACE≌△BCE(SAS);(2)AE=BE.理由如下:在CE上截取CF=DE,在△ADE和△BCF中,∵,∴△ADE≌△BCF(SAS),∴AE=BF,∠AED=∠CFB,∵∠AED+∠BEF=180°,∠CFB+∠EFB=180°,∴∠BEF=∠EFB,∴BE=BF,∴AE=BE.8.证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).(2)由(1)可知,∠F=∠ACB,∵∠A=60°,∠B=80°,∴∠ACB=180°﹣(∠A+∠B)=180°﹣(60°+80°)=40°,∴∠F=∠ACB=40°.9.证明:(1)∵△ABC和△ECD都是等腰直角三角形,∴∠ECD=∠BCA=0°,CE=CD,BC=AC,∴在△ECB和△DCA中,,∴△ECB≌△DCA(SAS),∴∠BEC=∠ADC,又∠ADC+∠DAC=90°,∴∠BEC+∠DAC=90°,∴∠AFE=90°,即AF⊥BE.(2)解:∵AE=8,∴EC+AC=8①,∵DB=2,∴BC﹣DC=2.∵BC=AC,EC=DC,∴AC﹣EC=2②,∴由①、②得:EC=3,AC=5.10.解:(1)由题意可得,AE=AC=2,∠EAC=90°,则△EAC的面积是:=2(cm2),即四边形ABCD的面积为2cm2,故答案为:2;(2)连接FH、FM,延长MN到O,截取NO=GH,在△GFH和△NFO中,,∴△GFH≌△NFO(SAS),∴FH=FO,∵FG=FN=HM=GH+MN=2cm,GH=NO,∴HM=OM,在△HFM和△OFM中,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学知识点归纳:全等三角形的
性质
一、全等图形、全等三角形:
全等图形:能够完全重合的两个图形就是全等图形。
2全等图形的性质:全等多边形的对应边、对应角分别相等。
3全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。
同样,如果两个三角形的边、角分别对应相等,那么这两个三角形全等。
说明:全等三角形对应边上的高,中线相等,对应角的平分线相等;全等三角形的周长,面积也都相等。
这里要注意:(1)周长相等的两个三角形,不一定全等;(2)面积相等的两个三角形,也不一定全等。
二、全等三角形的判定:
一般三角形全等的判定
(1)边边边公理:三边对应相等的两个三角形全等(“边边边”或“SSS”)。
(2)边角公理:两边和它们的夹角对应相等的两个三角形全等。
(3)角边角公理:两个角和它们的夹边分别对应相等的两个三角形全等。
(4)角角边定理:有两角和其中一角的对边对应相等的两个三角形全等。
2直角三角形全等的判定
利用一般三角形全等的判定都能证明直角三角形全等.斜边和一条直角边对应相等的两个直角三角形全等.
注意:两边一对角和三角对应相等的两个三角形不一定全等。
三、角平分线的性质及判定:
性质定理:角平分线上的点到该角两边的距离相等。
判定定理:到角的两边距离相等的点在该角的角平分线上。
四、证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:
确定已知条(包括隐含条,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);
2回顾三角形判定公理,搞清还需要什么;3正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。
知识点总结
一、全等图形、全等三角形:
全等图形:能够完全重合的两个图形就是全等图形。
2全等图形的性质:全等多边形的对应边、对应角分别相等。
3全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。
同样,如果两个三角形的边、角分别对应相等,那么这两个三角形全等。
说明:全等三角形对应边上的高,中线相等,对应角的平分线相等;全等三角形的周长,面积也都相等。
这里要注意:(1)周长相等的两个三角形,不一定全等;(2)面积相等的两个三角形,也不一定全等。
二、全等三角形的判定:
一般三角形全等的判定
(1)边边边公理:三边对应相等的两个三角形全等(“边边边”或“SSS”)。
(2)边角公理:两边和它们的夹角对应相等的两个三角形全等。
(3)角边角公理:两个角和它们的夹边分别对应相等的两个三角形全等。
(4)角角边定理:有两角和其中一角的对边对应相等的两个三角形全等。
2直角三角形全等的判定
利用一般三角形全等的判定都能证明直角三角形全等.斜边和一条直角边对应相等的两个直角三角形全等.
注意:两边一对角和三角对应相等的两个三角形不一定全等。
三、角平分线的性质及判定:
性质定理:角平分线上的点到该角两边的距离相等。
判定定理:到角的两边距离相等的点在该角的角平分线上。
四、证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:
确定已知条(包括隐含条,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);
2回顾三角形判定公理,搞清还需要什么;3正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。
常见考法
(1)利用全等三角形的性质:①证明线段(或角)相等;②证明两条线段的和差等于另一条线段;③证明面积相等;
(2)利用判定公理来证明两个三角形全等;
(3)题目开放性问题,补全条,使两个三角形全等。
误区提醒
(1)忽略题目中的隐含条;
(2)不能正确使用判定公理。