全等三角形的知识点梳理
全等三角形知识点梳理

全等三角形知识点梳理全等三角形是指具有相同形状和相等大小的三角形。
在几何学中,全等三角形是一个重要的概念,它们具有许多有趣的性质和定理。
本文将对全等三角形的相关知识进行梳理,以帮助读者更好地理解和应用这一概念。
一、全等三角形的定义全等三角形是指具有相同形状和相等大小的三角形。
当两个三角形的对应边长和对应角度都相等时,我们可以说它们是全等三角形。
二、全等三角形的判定条件判定两个三角形是否全等有多种方法,常用的有以下几种:1. SSS判定法:如果两个三角形的三边分别相等,则它们是全等的。
2. SAS判定法:如果两个三角形的两边和夹角分别相等,则它们是全等的。
3. ASA判定法:如果两个三角形的两角和夹边分别相等,则它们是全等的。
4. RHS判定法:如果两个直角三角形的斜边和两个直角边分别相等,则它们是全等的。
三、全等三角形的性质和定理全等三角形具有以下性质和定理:1. 全等三角形的对应角度相等:如果两个三角形全等,它们的对应角度一定相等。
这是全等三角形的基本性质之一。
2. 全等三角形的对应边长相等:如果两个三角形全等,它们的对应边长一定相等。
这也是全等三角形的基本性质之一。
3. 全等三角形的性质可以推导其他性质:由全等三角形的性质,我们可以推导出许多有用的结论,如对应边角相等、对应角边相等等。
4. 全等三角形的周长和面积相等:如果两个三角形全等,它们的周长和面积一定相等。
这是全等三角形的重要性质之一。
5. 全等三角形的角平分线相等:如果两个三角形全等,它们的对应角的角平分线也是相等的。
这是有关全等三角形的重要定理之一。
6. 全等三角形的高线相等:如果两个三角形全等,它们的对应边的高线也是相等的。
这是有关全等三角形的重要定理之一。
四、全等三角形的应用全等三角形的概念和定理在几何学中有广泛的应用,例如:1. 在证明几何定理时,可以利用全等三角形的性质进行推导和证明。
2. 在计算几何问题中,可以利用全等三角形的性质求解未知量。
八年级数学上册《全等三角形》知识点梳理

八年级数学上册《全等三角形》知识点梳理在学习新知识的同时,既要及时跟上老师步伐,也要及时复习巩固,知识点要及时总结,这是做其他练习必备的前提,下面为大家总结了全等三角形知识点梳理,仔细阅读哦。
一、知识网络二、基础知识梳理(一)、基本概念1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理证明两个三角形全等,必须根据已知条件与结论,认真分析图形,准确无误的确定对应边及对应角;去分析已具有的条件和还缺少的条件,并会将其他一些条件转化为所需的条件,从而使问题得到解决。
运用定理证明三角形全等时要注意以下几点。
1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS)三、疑点、易错点1、对全等三角形书写的错误在书写全等三角形时一定要把表示对应顶点的字母写在对应的位置上。
全等三角形知识点梳理

第十二章全等三角形 2018.9 杨1. 全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.对应 边相等。
2. 全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.对应 角相等。
证明三角形全等基本思路:C1J ■已知两■■叫 16夹角 〔和巫)L 找是否有宜常(BL)三角形全等的判定(1)三边分别相等的两个三角形全等,简写成边边边或 SSS1. 如图,A 吐 AD, CB= CD 求证:(1) △ABZ A ADC (2) / B =/ D. 证明:⑴连接AC,在厶ABC 与△ ADC 中,•••△ ABC^A ADC(SSS)(2) ABC^A ADC 「•/ B =/ D.2. 已知在四边形 ABCD 中, AB 二CD,AD 二BC,求证 AD//BC做辅助线,连接AC,利用SSS 证明全 得到/ DAC W ACB ,从而证明平行 三角形全等的判定(2)两边和它们的夹角分别相等的两个三角形全等SAS ).两边和其中一边的对角对应相等的两个三角形不一定全等1. 如图,将两个一大、一小的等腰直角三角尺拼接 (A , B, D 三点共线,AB= CB,EB= DB,Z ABC=Z EBD= 90° ),连接AE, CD,试确定 AE 与CD 的关系,并证 明你的结论. (2) :已知一边一ft* 等,(可以简写成“边角边”或己知一边和它的 找这边的另一"角(汴)找这个充的另—Mfii 邑竺(AAS 1)t£—ft t己*n 角是宜角.a —atrHL)©):已知两角找两儒的夹边〔启SA 〉 找夹边外的任意边(=证明:延长 AE 交CD 于尸,在厶ABE 与厶CBD 中A 吐CB/ AB 氐/ CBD ,BE = BD,Q 秸 •••△ ABEm CBD SAS ,二 AE= CD / EAB=Z DCB•••/ DCB^Z CD * 90°, A / EAB^Z CD * 90°, •••/ AFD= 90°,A AE1CD.2. 在厶 ABC^H ^ CDE 中,CA=CB,CD=CE,ACB=Z DCE=90 , AE 与 BD 交与点 F(1) 求证:△ ACE^A BCD(2) 求证:AE1 BDD 1,利用SAS 证明全等,AC=BC DC=EC Z BCD Z ACE2,全等得到角相等 Z CAE Z DCBZ CAB+Z EAB+Z ABC=90Z DCB/ EAB+Z ABC=90两角和它们的夹边分别对应相等的两个三角形全等, 简称角边角或ASA两个角和其中一个角的对边分别相等的两个三角形全等,简称角角边或 AAS求证:三角形一边的两端点到这边的中线或中线延长线的距离相等.如图,ABC 的中线,且 CF 丄AD 于点F , BE !AD,交AD 的延长线于点 E,求 证:BE= CF.证法1:••• ABC 的中线,A BD *CD.v BE!AD , CF !AD,•••/ BED=Z CFD= 90° .在厶 BED 与△ CFD 中Z BED=Z CFDZ BDE=Z CDFBD * CD•••△ BED^A CFD AAS , A BE= CF..• S △ ABD * E S ^ ACD =且S A ABD * S A ACd (等底同高的两个三角形面积相等 ),A 2AD- BE= 2AD- CE A BE * CF. 三角形全等的判定(4)斜边和一条直角边分别对应相等的两个直角三角形全等,简称“斜边、直角边” 或“ HL ”.如图,E , F 分别为线段 AC 上的两点,且 DEL AC 于点E, BF ! AC 于点F ,若AB* CD AE= CE BD 交 AC 于点 M.求证:BM * DM ME= MF.解:结论:AE = CD AE! CD.三角形全等的判定⑶证法2:VS证明:••• AE^ CE 二AE+ EF= CF+ EF「. AF= CE. AB= CD在Rt△ ABF与Rt △ CDE中AF= CE••• Rt A ABF^Rt△CDE HL ,••• BF= DE.v DEL AC BF丄AC,•••/ DEM kZ BFMk 90°./ BFM kZ DEM在厶BFM与厶DEM中 / BM B/ DMEBF= DE,•••△ BFM^A DEM AAS, ••• BM= DM ME= MF.角的平分线的性质角平分线的性质:角的平分线上的点到角的两边的距离相等.文字命题的证明方法:a. 明确命题中的已知和求证;b. 根据题意,画出图形,并用数学符号表示已知和求证;c. 经过分析,找出由已知推出要证的结论的途径,写出证明过程.C方法总结:(1)角平分线的性质是证明线段相等的另一途径.(2)在已知角平分线的条件下,也可想到翻折构造全等的方法.角平分线的性质是证线段相等的常用方法之一,角平分线的性质与判定通常是交叉使用,作角的平分线或过角的平分线上一点作角两边的垂线段是常用的辅助线.1. 在厶ABC中,人。
三角形的全等知识点总结

三角形的全等知识点总结在几何学中,全等是一个重要的概念,它意味着两个或多个图形在形状和大小上完全相同。
在三角形中,全等三角形是非常常见的,它们具有相等的边和角。
本文将对三角形的全等知识点进行总结,以帮助读者更好地理解和掌握这一概念。
一、全等三角形的定义全等三角形的定义是:如果两个三角形的对应边相等,对应角相等,那么这两个三角形是全等的。
二、全等三角形的判定条件1. SSS判定法(边边边):如果两个三角形的三条边分别相等,则这两个三角形是全等的。
2. SAS判定法(边角边):如果两个三角形的一条边和这个边上的两个角分别与另一个三角形的一条边和这个边上的两个角相等,则这两个三角形是全等的。
3. ASA判定法(角边角):如果两个三角形的一条角和这个角对应的两边分别与另一个三角形的一条角和这个角对应的两边相等,则这两个三角形是全等的。
4. RHS判定法(直角边斜边):如果两个直角三角形的一条直角边和斜边分别与另一个直角三角形的一条直角边和斜边相等,则这两个直角三角形是全等的。
三、全等三角形的性质1. 全等三角形的对应角相等,即对应顶点的角是相等的。
2. 全等三角形的对应边相等,即对应边的长度是相等的。
3. 全等三角形的对应高线相等。
4. 全等三角形的周长和面积完全相同。
四、全等三角形的性质运用利用全等三角形的性质可以进行各种几何推理和证明。
1. 利用全等三角形可以证明两条线段相等。
2. 利用全等三角形可以证明两个角相等。
3. 利用全等三角形可以证明两个三角形全等。
4. 利用全等三角形可以证明两个四边形全等。
五、全等三角形的应用全等三角形的知识在实际生活和工程中具有广泛的应用。
1. 在建筑工程中,利用全等三角形可以计算高楼房屋的高度,简化测量过程。
2. 在地图测量中,利用全等三角形可以计算两地的距离和高度。
3. 在设计中,利用全等三角形可以保证建筑物的比例和对称性。
4. 在计算机图形学中,利用全等三角形可以进行图形变换和模型重建。
(完整版)全等三角形知识点总结

全等三角形 知识梳理一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 S S S 全等形全等三角形应用边角边 S A S 判定角边角 A S A 角角边 A A S 斜边、直角边 H L 作图 角平分线性质与判定定理二、基础知识梳理(一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS)证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);2.回顾三角形判定公理,搞清还需要什么;3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。
人教版八年级上册第十二章全等三角形知识点总结及复习

全等三角形知识点总结及复习一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识梳理 (一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
全等三角形定义 :能够完全重合的两个三角形称为全等三角形。
(注:全等三角形是相似三角形中的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
由此,可以得出:全等三角形的对应边相等,对应角相等。
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边; (4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角; 2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
第十二章全等三角形知识点归纳

第十二章 全等三角形一、知识要点1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边; (4)有公共角的,角一定是对应角; (5)有对顶角的,对顶角一定是对应角; 2、全等三角形的判定和性质3、证题的思路:(A S A )(A A S )⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎧⎪⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎨⎪⎩⎪⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边(SAS)(HL)(SSS) (AAS)(SAS)(ASA)(AAS) 4、应注意的问题(1)要正确区分“对应边”与“对边”、“对应角”与“对角”的不同含义;(2)符号“≌”表示的双重含义:①“∽”表示形状相同;②“=”表示大小相等; (3)表示两个三角形全等时,表示对应的顶点的字母要写在相对应的位置上; (4)要正确区分判定三角形全等的结论的不同含义;(5)要记住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等.5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 6、全等三角形问题中常见的辅助线的作法 (1)连接法(连接公共边构造三角形全等); (2)延长法(延长至相交、倍长中线)(3)截长补短法(适合于证明线段的和、差等问题)(4)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线 二、考点解密(1)常见全等的判定和性质考察1、已知△ABD ≌△CDB ,AB 与CD 是对应边,那么AD= ,∠A= ;2、如图,已知△ABE ≌△DCE ,AE=2cm ,BE=1.5cm ,∠A=25°∠B=48°;那么DE= cm ,EC= cm ,∠C= 度;∠D= 度;CBAFE DC B A第2小题 第3小题 第4小题3、如图,△ABC ≌△DBC ,∠A=800,∠ABC=300,则∠DCB= 度; 4、如图,已知,∠ABC =∠DEF ,AB =DE ,要说明△ABC ≌△DEF ,(1)若以“SAS ”为依据,还须添加的一个条件为 ;(2)若以“ASA ”为依据,还须添加的一个条件为 ;(3)若以“AAS ”为依据,还须添加的一个条件为 ;5.已知△ABC ≌△DEF ,△DEF 的周长为32 cm ,DE =9 cm ,EF =12 cm 则AB =____________,BC =____________,AC =____________.6.一个三角形的三边为2、5、x ,另一个三角形的三边为y 、2、6,若这两个三角形全等,则x +y =__________.7.下列命题中正确的是( )①全等三角形对应边相等; ②三个角对应相等的两个三角形全等; ③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。
全等三角形的知识点归纳

全等三角形的知识点归纳1.全等三角形的定义:如果两个三角形的对应的边相等,对应的角也相等,则这两个三角形是全等三角形。
2.全等三角形的符号表示:通常使用三个粗体字母表示全等三角形,例如△ABC≌△DEF,表示△ABC全等于△DEF。
3.全等三角形的性质:a.边-边-边(SSS)全等:如果两个三角形的三条边相等,则这两个三角形全等。
b.顶角-底角-顶角(ASA)全等:如果两个三角形中两个顶角和它们的夹边相等,则这两个三角形全等。
c.底边-底角-底边(SAS)全等:如果两个三角形中两条底边和它们夹的角相等,则这两个三角形全等。
d.直角-直角-斜边(RHS)全等:如果两个直角三角形的一个直角和斜边相等,则这两个直角三角形全等。
e.角-边-角(AAS)全等:如果两个三角形中两个夹角和它们的夹边相等,则这两个三角形全等。
f.边-角-边(ASA)全等:如果两个三角形中一条边和夹角相等,另一条边和夹角的夹边相等,且夹角不是直角,则这两个三角形全等。
4.全等三角形的性质推论:a.如果两个三角形是全等的,则它们对应的边和角是一一对应的。
b.全等三角形的一边等于另一个全等三角形的一边,一角等于另一个全等三角形的一角。
c.全等三角形的对应边和对应角是相等的。
d.全等三角形的对应边平行。
e.全等三角形的对应边垂直。
f.全等三角形的对应角相等。
g.如果一个角等于一个角,两边分别等于两边,那么两个三角形可能全等,也可能不全等。
5.全等三角形的判定方法:a.SSS判定法:如果两个三角形的三条边分别相等,则这两个三角形全等。
b.SAS判定法:如果两个三角形的两条边和夹角相等,则这两个三角形全等。
c.ASA判定法:如果两个三角形的两个夹角和一条边相等,则这两个三角形全等。
d.RHS判定法:如果两个直角三角形的一个直角和斜边相等,则这两个直角三角形全等。
6.全等三角形的性质应用:a.利用全等三角形的性质,可以证明两个三角形的各边之比相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《全等三角形》
一、结构梳理
二、知识梳理
(一)概念梳理
1.全等图形
定义:两个能够完全重合的图形称为全等图形,全等图形的形状和大小都相同.例如图1中的两个图形形状相同,但大小不同,不能重合在一起,因此不是全等图形,图2中的两个图形面积相同,但形状不同,也不是全等图形.
2.全等三角形
这是学好全等三角形的基础.根据全等形定义:能够完全重合的两个三角形叫全等三角形.完全重合有两层含义:(1)图形的形状相同;(2)图形的大小相等.符号“≌”也形象、直观地反映了这一点.“∽”表示图形形状相同,“=”表示图形大小相等.
(二)性质与判定梳理
1.全等图形性质:全等多边形的对应边、对应角分别相等.
全等三角形的对应边、对应角分别相等.
2.全等三角形的判定
这是学好全等三角形的关键.只给定一个条件或两个条件画三角形时,都不能保证所画出的三角形全等,只要有三个条件对应相等就可以,于是判定两个三角形全等的方法有:
(1)三边对应相等的两个三角形全等,简记为:SSS ;
(2)两角和它们的夹边对应相等的两个三角形全等,简记为:ASA;
(3)两角和其中一角的对边对应相等的两个三角形全等,简记为:AAS;
(4)两边和它们的夹角对应相等的两个三角形全等,简记为:SAS.
若是直角三角形,则还有斜边、直角边公理(HL)。
由此可以看出,判断三角形全等,无论用哪一条件,都要有三个元素对应相等,且其中至少要有一对应边相等.
(5)注意判定三角形全等的基本思路
从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有
图
2
三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边(角)去迅速准确地确定要补充的边(角),不致盲目地而能有目标地完善三角形全等的条件.从而得到判定两个三角形全等的思路有:
⎪⎩
⎪⎨⎧→→SSS SAS 找另一边找夹角 ⎪⎪⎩
⎪⎪⎨⎧⎪⎩⎪⎨⎧→→→→→SAS AAS ASA AAS 找该角的另一边找这条边上的对角找这条边上的另一角边就是角的一条边
找任一角边为角的对边 ⎩⎨⎧→→AAS
ASA 找任一边找两角的夹边 (6)学会辨认全等三角形的对应元素
辨认全等三角形的对应元素最有效的方法是,先找出全等三角形的对应顶点,再确定对应角和对应边,如已知△ABC ≌EFD ,这种记法意味着A 与E 、B 与F 、C 与D 对应,则三角形的边AB 与EF 、BC 与FD 、AC 与ED 对应,对应边所夹的角就是对应角,此外,还有如下规律:(1)全等三角形的公共边是对应边,公共角是对应角,对顶角是对应角;(2)全等三角形的两个对应角所夹的边是对应边,两条对应边所夹的角是对应角.
(三)基本图形梳理
注意组成全等三角形的基本图形,全等图形都是由图形的平移、旋转、轴对称等图形变换而得到的,所以全等三角形的基本图形大致有以下几种:
1.平移型 如图3,下面几种图形属于平移型:
它们可看成有对应边在一直线上移动所构成的,故该对应边
的相等关系一般可由同一直线上的线段和或差而得到.
2.对称型 如图4
,下面几种图形属于对称型:
它们的特征是可沿某一直线对折,直线两旁的部分能完全重合(轴对称图形),重合的顶点就是全等三角形的对应顶点.
3.旋转型 如图5,下面几种图形属于旋转型:
它们可看成是以三角形的某一顶点为中心旋转
所构成的,故一般有一对相等的角隐含在
对顶角、某些角的和 或差中. 三、易混、易错点剖析
1.探索两个三角形全等时,要注意两个特例
(1两个三角形不一定全等;如图6(1已知两边 已知一边一角 已知两角 图3
图4
图6(1)
角都是600,但这两个三角形显然不全等; (2)两边和其中一边的对角对应相等的两个
三角形不一定全等,如图6(2),中的△ABC 和△ABD 中,
虽然有AB=AB ,AC=AD ,∠B=∠B ,但它们显然不全等. 2.在判定三角形全等时,还要注意的问题 在判定三角形全等时,应做到以下几点:
(1)根据已知条件与结论认真分析图形;
(2)准确无误的确定每个三角形的六个元素;
(3)根据已知条件,确定对应元素,即找出相等的角或边;
(4)对照判定方法,看看还需什么条件两个三角形就全等;
(5)想办法找出所需的条件来.
四、例题:
例1.如图7(1),E 、F 分别是四边形ABCD 的边BA 、DC 延长线上的点,AB//CD ,AD//BC ,且AE=CF ,EF 交AD 于G ,交BC 于H .
(1)图中的全等三角形有 对,它们分别是 ;(不添加任何辅助线)
(2)请在(1)问中选出一对你认为全等的三角形进行证明. 我选择的是: .
解:(1)2,△AEG ≌△CFH 和△BEH ≌△DFG . (2)如求证明:△AEG ≌△CFH .
证明:在平行四边形ABCD 中,有∠BAG=∠HCD , 所以∠EAG=1800-∠BAG=1800-∠HCD=∠FCH . 又因BA ∥DC ,所以∠E=∠F .又因AE=CF ,所以△AEG ≌△CFH .
点评:本题简单地考察学生对图形的识别能力以及证明能力,
主要是根据全等三角形的判定条件去寻找,然后再作出证明.
例2.如图8,在△ABD 和△ACE 中,有下列四个等式:
○
1AB=AC ○2AD=AE ○31=∠2○4BD=CE. 请你以其中三个等式作为题设,余下的作为结论,
写出一个真命题(要求写出已知,求证及证明过程).
(提示:答案不唯一).
点评:本题是条件组装题,答案不唯一,它重点考查学生的
创新意识和能力,四个命题进行组合,有六种情况,这六种情况中 有的是假命题,请同学们注意分辨.
例3.如图9,点E 在AB 上,AC=AD ,
请你添加一个条件,使图中存在全等三角形,并给予证明。
所添条件为 ,
你得到的一对全等三角形是∆ ∆≅ .
(提示:可选择BD BC DAB CAB DE CE =∠=∠=、、等条件中的一个。
可得到ADB ACB ADE ACE ∆≅∆∆≅∆或, 证明过程略).
H G F
E D C B A 图6 图7(2) E C D B
A 图10 A
B C D 图6(2) 2 1 E C B
A 图8 图10
图7(1)
例4.如图10,AB=CD=ED,AD=EB,BE⊥DE,垂足为E.
(1)求证:△ABD≌△EDB
(2)只需添加一个条件,即________,可使四边形ABCD为矩形.
请加以证明.
提示:(1)证明略
(2)添加AB∥CD,或添加AD=BC或BE=BC或∠A=∠ADC或∠ADC=90°或∠A=∠C或∠C=90°或∠ABD=∠BDC或∠A=∠ABC或∠ADB=∠DBC或∠ABC=90°等.证明略.。