1航空燃气涡轮发动机概述
航空涡轮发动机的研究现状与展望

航空涡轮发动机的研究现状与展望航空领域是一个不断发展的领域,而航空涡轮发动机作为飞机的动力装置,也在不断地进行着研究和发展。
本文将对航空涡轮发动机的研究现状和展望进行论述。
一、航空涡轮发动机的研究现状1.1 传统燃气涡轮发动机传统燃气涡轮发动机是最常见的一种涡轮发动机,其工作原理是通过高速旋转的涡轮叶片驱动空气压缩机进行气压增加,在燃油的喷射下加热气体,并驱动涡轮以满足飞机的推力需求。
这种发动机的优点是可靠性高、推力大、效率较高,但也存在一些缺点,比如在起飞阶段需要消耗较大的燃料,这对环境和空气质量也会有一定的影响。
1.2 新型燃气涡轮发动机随着科技的不断发展,新型的燃气涡轮发动机也得到了广泛的研究。
其中比较有代表性的是涡扇发动机、超高涵道比涡轮发动机等。
涡扇发动机是一种大涵道比的发动机,因为它具有较强的气流特性,能够提高燃油效率,所以被广泛应用于商用飞机。
超高涵道比涡轮发动机的优势在于可以提高燃油效率,同时也可以减少噪音和振动,这种发动机的发展也在逐渐推动飞机的革新和进步。
1.3 喷气推进发动机除了燃气涡轮发动机,喷气推进发动机也是一种非常重要的涡轮发动机。
它的工作原理是通过喷射高速气流来提供飞机的推力。
喷气推进发动机相对于传统的燃气涡轮发动机,具有燃油效率高、噪音小、起飞阶段不消耗过多燃料等优点,在商用飞机和军用飞机中都有着广泛的应用。
二、航空涡轮发动机的展望2.1 新能源涡轮发动机的研究随着全球环境问题的日益严重,人们对于环保型涡轮发动机的研究和应用越来越关注。
纯电动飞机的出现为研究新能源涡轮发动机提供了重要的契机。
新型的新能源涡轮发动机可以使用氢气、天然气、甲醇、乙醇等可再生能源作为燃料,与此同时,它也具有减少二氧化碳排放、降低噪音污染等优势。
因此,新能源涡轮发动机在未来的研究中将会得到更多的重视。
2.2 数字化技术的应用数字化技术在现代飞机制造和运营中发挥着越来越重要的作用。
在涡轮发动机领域的应用中,数字化技术可以用于增强控制和监测系统的准确性和可靠性、提高航空发动机的性能和可持续性、实现更高效的设计和制造过程等。
航空燃气涡轮发动机概述

航空燃气涡轮发动机概述航空燃气涡轮发动机是现代航空工业中最重要的动力装置之一、它具有高效率、高功率密度和高可靠性等优点,被广泛应用于各类飞机中。
本文将概述航空燃气涡轮发动机的工作原理、结构组成、分类、性能指标以及未来发展方向等内容。
航空燃气涡轮发动机的工作原理基于燃烧室内的燃气推动涡轮。
它由压气机、燃烧室和涡轮组成。
首先,压气机将空气压缩,提高其温度和压力。
然后,压缩空气进入燃烧室,与燃料混合并燃烧,产生高温高压的燃气。
最后,高压燃气通过涡轮使其旋转,产生推力,并从尾喷管排出。
可见,航空燃气涡轮发动机的工作原理是通过涡轮驱动压气机,提供压缩空气并将其推向尾喷管。
航空燃气涡轮发动机的结构组成包括压气机、燃烧室、涡轮、尾喷管和附属系统等。
压气机主要通过叶片的旋转将空气压缩,提高其温度和压力。
燃烧室用于将燃料与压缩空气混合并燃烧,产生高温高压的燃气。
涡轮通过燃气的膨胀驱动压气机,使其继续工作,并产生推力。
尾喷管用于将高压燃气排出,并产生反作用力。
附属系统包括供油系统、冷却系统和控制系统等,用于保证发动机的正常运行。
航空燃气涡轮发动机可以根据压气机的工作循环分类为单转子和双转子发动机。
单转子发动机只有一个压气机和一个涡轮,如连杆式发动机。
双转子发动机具有两个对称的压气机和涡轮,如军用飞机上常用的分段式发动机。
根据尾喷管的形式,航空燃气涡轮发动机还可分为直喷式和径向喷管式。
航空燃气涡轮发动机的性能指标主要包括推力、燃油消耗率、比功率、绕程推力比和起动性能等。
推力是发动机提供的推动力量,决定飞机的加速能力和最大速度。
燃油消耗率是单位推力下消耗的燃油量,直接影响飞机的航程和经济性。
比功率是单位发动机质量下产生的推力,用于衡量发动机的功率密度。
绕程推力比是发动机在巡航状态下产生的推力与起飞推力的比值,用于衡量发动机的高空巡航性能。
起动性能包括发动机的起动时间和起动能力,在冷启动和热启动时对飞机的起飞和复飞具有重要影响。
燃气涡轮发动机01-基础知识

混流式涡轮发动机
总结词
混流式涡轮发动机是一种结合了轴流式和离心式特点的燃气涡轮发动机,具有较高的效率和较广泛的适用范围。
详细描述
混流式涡轮发动机的结构介于轴流式和离心式之间,其压气机采用轴流式设计,而涡轮机则采用离心式设计。这 种设计使得混流式涡轮发动机在低速和高速飞行时都能保持良好的性能。此外,混流式涡轮发动机的适用范围较 广,可以用于多种不同类型的飞行器。
清洁发动机外部和内部的灰尘、污垢等,保持发动机的清洁度。
紧固件检查
检查并紧固发动机上的螺栓、螺母等紧固件,确保其牢固可靠。
定期保养与维修
01
02
03
油液更换
定期更换发动机的润滑油、 燃油等油液,保证发动机 的正常运转。
滤清器更换
定期更换空气滤清器、机 油滤清器等滤清器,防止 杂质进入发动机,影响其 正常运转。
管路是否漏油等。
05
燃气涡轮发动机的发展趋势与未 来展望
技术创新与改进
材料工艺
采用更先进的材料和制造工艺,提高燃气涡轮发动机的性能和耐 久性。
冷却技术
研究和发展更有效的冷却技术,以应对高温、高压的工作环境。
控制系统
改进和优化燃气涡轮发动机的控制系统,提高其稳定性和可靠性。
应用领域的拓展
航空领域
部件检查与更换
定期检查发动机的部件, 如轴承、密封圈等,如有 损坏或磨损严重应及时更 换。
常见故障诊断与排除
发动机过热
01
检查冷却系统是否正常工作,散热器是否清洁,风扇是否正常
运转等。
发动机振动过大
02
检查发动机安装是否牢固,轴承、齿轮等部件是否磨损严重,
航空燃气涡轮发动机原理,王琴芳

航空燃气涡轮发动机原理引言航空燃气涡轮发动机(Gas Turbine Engine)是一种利用燃烧产生的高温高压气体驱动涡轮,从而产生推力的发动机。
它广泛应用于现代航空领域,是飞机的主要动力装置之一。
本文将详细解释航空燃气涡轮发动机的基本原理,包括工作循环、组成部分以及运行过程。
工作循环航空燃气涡轮发动机的工作循环主要包括压缩、燃烧和膨胀三个过程。
1.压缩(Compression):在这个过程中,来自外部的空气经过进气口进入发动机,并经过多级压缩器(Compressor)进行压缩。
压缩器由多个转子和定子组成,通过旋转运动将空气逐渐压缩,并提高其温度和压力。
2.燃烧(Combustion):在这个过程中,经过压缩后的空气进入到燃烧室(Combustion Chamber),与喷入的燃料混合并点燃。
燃烧产生的高温高压气体通过喷嘴喷向涡轮(Turbine)。
3.膨胀(Expansion):在这个过程中,高温高压气体经过涡轮的作用,使其旋转并释放出能量。
涡轮与压缩机共用一根轴,因此涡轮的旋转也会带动压缩机的旋转。
同时,涡轮还通过输出轴将剩余的能量传递给飞机的推进系统,产生推力。
组成部分航空燃气涡轮发动机由多个组成部分构成,下面将对每个部分进行详细解释。
1.进气系统(Inlet System):进气系统负责将外界空气引入发动机内部,并通过滤清器去除杂质。
进气口通常位于飞机的前部,并采用特殊设计以确保稳定流量和适当压力。
2.压缩系统(Compression System):压缩系统由多级压缩器组成,其中的转子和定子通过旋转运动将空气逐渐压缩。
这样做不仅提高了空气的密度和温度,也为燃烧提供了必要的条件。
3.燃烧室(Combustion Chamber):燃烧室是将压缩空气与喷入的燃料混合并点燃的地方。
在燃烧过程中,释放出的能量会使气体温度和压力升高,为后续的膨胀提供动力。
4.涡轮(Turbine):涡轮是航空燃气涡轮发动机中最重要的组成部分之一。
第一讲 燃气涡轮发动机概述

推力18000-22000 kg 耗油率比小涡扇低1/3 授课人 贾斯法
高涵道比涡扇发动机特点
起飞推力大 耗油率低 噪声低
授课人 贾斯法
第一代宽体客机
B747
1970年
L1011 (1972) DC-10 (1971)
71
高涵道比涡扇发动机
已在现代民机上广泛采用 A300、A310、A320、A330、A340, B737、B747、B757、B767、B777, A3XX B747-500X、 B717、A318、湾流Ⅴ
授课人
贾斯法
51
F-22用发动机-F119-PW-100
总压比 35 涵道比 ~0.2 涡轮前燃气温度 ~1850~1950 K 3+6___1+1 反向转动的双转子 推力 157.5 kN 推重比 10.0
授课人 贾斯法
52
F119 与 F100 比较
级数 17---11 少 6 级 零件数少 40% 中间推力大 47% 可使战斗机超声速巡航 巡航耗油率低 11% 可靠性、维修性好
授课人
贾斯法
40
加力式涡轮风扇发动机扇发动机 F-4“鬼怪”式战斗机 用涡扇(斯贝MK202)换装涡喷(J79)后 飞机性能的改进 最大M数 由 2.2→2.4 最大航程 ↑54% 加速到M=2的时间 ↓1/3 爬升到12000m的时间 ↓20%
授课人 贾斯法
41
加力式涡轮风扇发动机
60年代后期采用高循环参数 总压比≈25、T3≈1600K 发展高性能核心机 研制成专为先进战斗机用的、推重比为8.0一 级8的发动机 F100-PW-100→F-15 (1974)
2006年3月
航空发动机结构设计
涡轮发动机的工作原理、特点

一.涡轮发动机的工作原理、特点答:1.燃气涡轮喷气发动机工作原理:航空燃气涡轮喷气发动机是一种热机,将燃油燃烧释放出的热能转变为流经发动机气流的动能。
由于气流的速度增加而直接产生反作用推力,因此,这种发动机既是热机也是推进器特点:与航空活塞发动机相比,燃气涡轮喷气发动机结构简单,重量轻,推力大,推进效率高,而且在很大的飞行速度范围内,发动机的推力随飞行速度的增加而增加,然而其较高的耗油率逐渐被涡扇发动机所替代。
2.涡轮风扇发动机组成:进气道、风扇、低压压气机、高压压气机、燃烧室、高压涡轮、低压涡轮和喷管工作原理:涡扇发动机内路的工作情形与涡喷发动机相同。
即流入内含的空气通过高速旋转的风扇,低压压气机和高压压气机对空气做功,压缩空气,提高空气压力。
高压空气在燃烧室内和燃气混合,燃烧,将化学能转变为热能,形成高温高压的燃气。
高温高压燃气首先在高压涡轮内膨胀,推动高压涡轮旋转,去带动高压压气机,然后再低压涡轮内膨胀,推动低压涡轮旋转,去带动低压压气机和风扇,最后燃气通过喷管排入大气产生反作用推力。
特点:与涡喷发动机相比,涡扇发动机具有推力大,推进效率高,噪音低,在一定的飞行速度范围内燃油消耗率低等优点。
但涡扇发动机结构复杂,速度特性差。
目前民航干线飞机大多装配涡扇发动机。
二.轴流式压气机的基元增压原理答:轴流式压气机主要是利用扩散增压的原理来提高空气压力的。
(根据气动知识得知亚音速气流流过扩张形通道时)速度降低,压力升高。
参数分析。
基元级组成:由工作叶栅和整流器叶栅组成,两处叶栅通道均是扩形的三.压气机转子的结构形式分析图3-40答:(图3-40为CFM56发动机风扇后增压级转子,鼓筒靠精密螺栓固定于风扇轮盘后端,其外圆上作出三道凸缘,用拉刀一次拉出三级燕尾形榫槽,因此三级叶片数目相同,虽然对性能有一定影响,但加工却大大地简化)轴流式压气机转子的基本结构型式有三种:鼓式盘式鼓盘式特点鼓式:结构简单、零件数目少、加工方便、有较高的抗弯刚度,但由于受到强度的限制,目前在实际中应用的不广泛。
飞机涡轮发动机四种类型简介
涡轮发动机四种类型简介
涡轮喷气发动机:又称空气涡轮喷气发动机,是以空气为氧化剂,靠喷管高速喷出的燃气产生反作用推力的燃气涡轮航空发动机,简称“涡喷”。
装备该发动机的飞机即为喷气飞机。
该发动机须由压气机、燃烧室、涡轮和尾喷管几大部件构成。
推力用牛或千克表示。
涡轮螺旋桨发动机:从涡喷发动机派生而来,是一种由螺旋桨提供拉力和喷气反作用提供推力的燃气涡轮航空发动机。
其主要部件比涡喷多了一组螺旋桨,它由涡轮驱动。
该发动机简称“涡桨”。
特点是推力大、耗油省,大多用于运输机,海上巡逻机等机种。
功率用当量马力表示。
涡轮轴发动机:从涡喷发动机派生而来,是一种将燃气通过动力涡轮输出轴功率的燃气涡轮航空发动机。
其工作特点是几乎将全部可用能量转变为轴功率输出,高速旋转轴通过减速器用来驱动直升机的旋翼及尾桨。
其功率用轴马力来表示。
是当代直升机的主要动力装置。
涡轮风扇发动机:从涡喷发动机派生而来,是一种由喷管排出燃气和风扇排出空气共同产生反作用推力的燃气涡轮航空发动机。
其主要部件比涡喷发动机多了一个风扇。
该发动机简称“涡扇”或“内外涵发动机”。
一部分推力靠喷管中高速喷出的燃气产生,另一部分推力由风扇推动的空气反作用力产生。
特点是推力大,耗油省。
常用于现代客机、运输机、战斗机、轰炸机。
航发原理-第十一章发动机特性
2.
推力F变化原因;
F = Wa ⋅ Fs
Wa = KA 2 Pt 2 Tt 2 q ( λ2 )
① 随着H ↑,当H<11km时,T0 ↓, P0 ↓; 当H≥11km 时, T0 →, P0 ↓; ② 当H<11km时, T0 ↓ ,Tt0 ↓, Tt2 ↓ ,Wa ↑; P0 ↓ ,Pt0 ↓, Pt2 ↓, Wa ↓ 。 Pt2 ↓比Tt2 ↓对流量的影 响更大,因此 Wa ↓ ; ③ 当H≥11km时, T0 →, Wa → ;P0 ↓, Wa ↓ ,因 此Wa ↓ ↓; ④ 推力F=Wa与Fs的乘积; 由于Wa ↓比Fs ↑的变化快, F 因此F ↓ ;当H≥11km时, Wa ↓ ↓, Fs → , ↓↓。
5. 燃油流量相似参数
6. 耗油率相似参数
( sfc )cor
288.15
=
( sfc )m
Tt 0
发动机转速特性及其相似换算
11.2 单轴涡喷发动机特性
一、 速度特性 (调节规律Tt4=Tt4max=const.,气流在尾喷管中完全膨胀)
a) Ma0 ↑, Fs ↓,当Ma0增大至某一数值时, Fs =0; b) Ma0 ↑, Wa ↑ ; c) Ma0 ↑,开始 F ↓或↑慢,随后 F ↑ ↑ 到最大值而后↓ ↓ 直至F=0 ; d) Ma0 ↑,sfc ↑直至到一定Ma0 后sfc ↑ ↑。
nD2 = const Tt 2
n = const Tt 2
几何相似的WP/WS发动机工作状态相似的充分必要条件是:
Ma0 = const
n = const Tt 2
Ma0 = const
n = const Tt 2
发动机在工作状态相似时的重要性质:
航空燃气涡轮发动机原理
航空燃气涡轮发动机原理
航空发动机是飞机的心脏,它直接影响着飞机的性能和安全。
它是利用燃气产生的推力来使活塞做往复运动,从而产生升力和推力。
航空发动机按工作原理可分为压气机、燃烧室、涡轮、喷管和尾喷管等部分,下面就来介绍一下航空发动机的基本工作原理。
1.压气机
压气机是用来产生空气动力的机械,通常在飞机中扮演着压缩空气的角色。
与飞机其他机械相比,发动机具有体积小、重量轻、推力大、推重比高等特点。
1.燃烧室
燃烧室是用来引燃燃料和空气以产生高温高压燃气的部分。
燃烧室是发动机的核心部件,其容积大小直接决定着发动机的最大推力。
1.涡轮
涡轮是航空发动机中转动部件之一,它将发动机排出的高温高压气体做功,使之变成具有一定速度的高压气体。
在航空发动机中,涡轮又是推动活塞运动的动力装置。
涡轮是由电动机或燃气轮机驱动的,其传动方式有齿轮传动和齿轮-轴传动两种。
涡轮旋转时带动轴旋转,产生一个与轴方向相反的推力,这就是推力矢量控制技
— 1 —
术(IFCV)。
— 2 —。
航空燃气涡轮发动机工作原理
2020年4月25日
9
二、推力公式推导
• 推力 • 附加阻力 • 压差阻力 • 摩擦阻力
F qmgV9 qmaV0 (p9 p0 )A9
01
Xa (p p0 )dA
0
9
X p (p p0 )dA 01
Xf
2020年4月25日
10
二、推力公式推导
• Feff与F
F FX X X
2020年4月25日
20
一、性能指标
1、推力 发动机推力大小仅仅反映飞机的推力需求, 不能反映不同推力级发动机之间的性能优劣 例如: GE90(BY777) F=392000N, qma=1420kg/s
D=3.524m wp-11(无人机) F=8500N, qma=13kg/s
D=0.3m
2020年4月25日
Fp
2020年4月25日
15
一、性能指标
1、推力(动量变化) • 空气:Fa qma (V9 V0 ) • 燃油: Ff qmf (V9 0)
Fm Fa Ff qmgV9 qmaV0
qma qmf 排出燃气流量 排出进口空气流量 • 大涵道比(民用)涡扇 燃油/空气 几/ ‰ • 小涵道比(军用)涡扇 燃油/空气 几/%
2020年4月25日
7
二、推力公式推导
• Feff
Feff Fin Fout
01
9
qmgV9 qmaV0 p0 A0 pdA p9 A9 pdA X f
0
01
9
p0dA p0 A9 p0 A0
0
9
p0 A0 = p0dA p0 A9
0
2020年4月25日
8
二、推力公式推导
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
它完成了发动机将热能转变为机械能的工作; 对燃气发生器所获得的机械能进行不同的分配,就形
成不同型式的发动机;
涡桨发动机的螺旋桨,涡扇发动机的风扇,涡轴发动 机的悬翼的躯动力都来自燃气发生器。
燃气涡轮发动机其他分类(P4)
民航方面的情况(p5)
第二节 涡轮喷气发动机的工作 过程
▪ 涡轮轴发动机
➢ 燃气发生器后的燃气可用能全部用于驱动动力 涡轮而不在喷管内膨胀产生推力
➢ 动力涡轮轴上输出的功率可以用来带动直升机 的旋翼
涡轮轴发动机与涡桨发动机的不同之处 : 燃气几乎全部在动力涡轮中膨胀,由尾喷
管排出时,气流速度较低。
小结
➢ 燃气发生器
压气机, 燃烧室, 涡轮 产生高温高压燃气 又称为发动机的核心机
➢ 适用于低空低速的运输机和民航机
定轴式:具有大减速臂的减速器(黑色部分) 大大增加了发动机的重量
自由涡轮式:自由涡轮转速较低,可以采用 小减速比的减速器来减轻发动机的重量
涡轮螺旋浆发动机特点:
推力主要靠螺旋浆产生的拉力,燃气中 剩下的很少能量在尾喷管中膨胀,产生一 小部分推力(约10%)
(4)涡轮轴发动机
▪ 有效推力=发动机内推力 - 短舱的阻力
产生连续推力的原因
➢ 力学角度→作用力与反作用力的结果
➢ 能量角度→推力是能量转换的表现形式, 稳定燃烧是产生推力的能量基础
➢ 热力学角度→等压循环是产生连续推力的基础
有效推力
Fef GgC5 GaC0 (P5 P0 ) A5
01
5
0 (P P0 )dA 01 (P P0 )dA Df
内推力 F GgC5 GaC0 (P5 P0 ) A5
当燃气在喷管中 完全膨胀时
F GgC5 GaC0
忽略流量差别时 F Ga (C5 C0 )
发动机地面试车
F GaC5
涡喷发动机的推力分布
推力的分布
由图可以看出 ➢进气道,压气机,燃烧室产生的力是向前
的; ➢涡轮,喷管产生的力是向后的。 ➢向前的力减去向后的力就等于推力。 ➢其中以压气机产生的力所占的比例最大。
▪ 使用成本低(燃油、购买成本、维护费用)
第五节 涡轮喷气发动机的演变 和各种燃气涡轮发动机适用范围
一、涡轮风扇发动机(*)
涡喷发动机的推进效率一般只有 0.5~0.75,特别是飞行速度不高,为了提供 推重比,排气速度提高了,推进效率更加下 降。
p
1
2 c5
/
c0
降低发动机排气速度C5(涡轮前总温)可 以提高推进效率
➢ 假设工质完成的是一个封闭的热力循环
➢ 略去压缩与膨胀过程中工质与各部件之间的热量交换, 忽 略实际过程中的摩擦, 假设在燃烧室中进行的燃油燃烧释 放出热能的化学反应过程为外部热源对工质加热的过程, 并且忽略由流动阻力和加热所引起的压力降低, 从而用定 压加热过程代替之
➢ 喷入的燃油的质量忽略不计, 而且假定工质是定质量的定 比热容的完全气体
摩擦降低了总压,热阻损失降低了总温
第三节 涡轮喷气发动机推力和 效率(*)
一、推力的产生
气流流过发动机时,发动机的内壁及各部件对气体 施加作用力,使其动量发生变化,而气体必然同时 给予发动机及各部件以反作用力。这些反作用力在 轴向分力的合力,即推力。
▪ 推力:提供给飞机,克服飞机前进阻力或使飞机 加速而作功的力。
在等压加热过程2-3中,加给工质的热量为:
q1= Cp(T3 - T2) 在等压放热过程4-1中,工质放出的热量为:
q2= Cp(T4 - T1) 由于理想循环 w0 = q1- q2 所以,布莱顿循环的理想循环作功为:
w0 = Cp(T3- T2)- Cp(T4- T1) 式中:T1、T2、T3、T4分别为工质状态 1、2、3、4时的温度。
k 1 k
1)]
k
T3* 越大,表示涡轮前的温度越高,
循环功越大,热效应越高。
循环的热效率
1
1
k 1
k
(发动机增压比 P2* / P0 )越高,热效率越高
用机械能的形式表示
L
LT
c52 2
Lk
c02 2
Lk 、LT分别表示压气机的压缩功和涡轮的膨胀功。
对于涡轮喷气发动机,两者相等,所以有:
第一次翻修或两次大修的工作时数 ▪ 维护的繁简程度
二、基本要求
▪ 推重比高,单位迎风面积小
同等推力时,发动机尺寸小,重量轻。 同等推力时,发动机迎风面积小,阻力小。
▪ 单位燃油消耗率低 ▪ 可靠性好
工作稳定性、结构完整性、寿命 事故率:每十万(百万)工作小时的故障次数 提前拆换率:不到寿命而提前返修的台数/总台数
(一)火箭发动机
特点: 自己携带燃料和氧化剂,靠燃烧压缩工质。
分类: 固体燃料、液体燃料、混合燃料
(二)空气喷气发动机
▪ 空气喷气发动机:利用空气中的氧气与燃料 进行混合燃烧,作为工质的动力装置。
分类:无压气机的发动机 燃气涡轮发动机(有压气机的发动机)
1、无压气机的发动机
分类:冲压式发动机、脉冲式发动机。
涡扇发动机的由来
设 1)加与不加外罩核心机工作状态不变,即核心机
产生的可用功不变时; 2)外罩和核心机出口气流速度相同; 3)喷管完全膨胀、忽略燃气和空气流量差别
根据可用功相等:
Ga1
C521
2
C02
Ga2
C522 C02 2
飞机动力装置
第三部分:燃气涡轮发动机 刘熊
第一章 航空燃气涡轮发动机概述
第一节 航空燃气涡轮发动机简介
燃气涡轮发动机的发展
喷气发动机的分类
▪ 发动机:将燃油燃烧释放出的热能转变为机 械能的装置
▪ 喷气发动机:把燃料的化学能转化为发动机 高速喷出燃气的动能,从而获得反作用力, 推进飞行器飞行的发动机。
冲压式发动机:在起飞时推力为零,低速时性能不好
脉冲式发动机:空气和燃料间歇地供入燃烧 室,靠燃烧压缩工质
2、燃气涡轮发动机
燃气涡轮发动机的四种基本类型: ▪ 涡轮喷气发动机 ▪ 涡轮风扇发动机 ▪ 涡轮螺旋浆发动机 ▪ 涡轮轴发动机
(1)涡轮喷气发动机
涡轮喷气发动机结构
特点:涡轮只带动压气机压缩空气,发动机的 全部推力来自喷出气流的反作用力。
燃料使用效率高,噪声小,能获得较大加力比。
(3)涡轮螺旋浆发动机
▪ 涡轮螺旋桨发动机
➢ 由燃气涡轮发动机和螺旋桨组成,在它们之间还安 排了一个减速器
➢ 涡轮螺旋桨发动机的工作原理
螺旋桨产生拉力 气体流过发动机时产生反作用推力
➢ 在较低的飞行速度下,具有较高的推进效率, 所以 它在低亚音速飞行时的经济性较好
L c52 c02 22
发动机涡轮前温度越高,循环功越大,排气速度 越大
发动机在实际工作过程中的损失
▪ 气流在进气道、压气机压缩过程中的流动损失 ▪ 气流在燃烧室中有流动损失和加热过程中的热
阻损失,压力下降。 ▪ 气流膨胀过程中有流动损失。 ▪ 定压放热过程只有热损失,没有流动损失,所
以,实际的放热过程与理想循环的放热过程相 同。
度的增加而增加
(2)涡轮风扇发动机(内外涵发动机)
▪ 涵道比:外涵道空气流量/内涵道空气流量
高涵道比涡扇发动机 低涵道比涡扇发动机
▪ 涡轮风扇发动机
➢ 由进气道, 低压压气机,高压压气机,燃烧室,高 压涡轮,低压涡轮,喷管,风扇和外涵道组成
➢ 涡扇发动机推力:
内、外涵道气流反作用力的总和。
➢ 优点:
N s/kg,dN s/kg)
Fs F / Ga
表示每公斤空气每秒所产生的推力
流量相同,单位推力越大,发动机 推力越大
3、推重比Fw
定义:发动机地面最大工作状态下的推力/发动 机的净重
涡喷发动机推重比为3.5~4 涡轮风扇发动机推重比达8以上
4、单位迎面推力FA
定义:发动机推力/发动机最大迎风面积
➢ 喷入大气中的燃气与大气进行定压的放热过程。
▪ 0→2:绝热压缩 (进气道、压气机) ▪ 2→3:等压加热 (燃烧室) ▪ 3→5:绝热膨胀 (涡轮、喷管) ▪ 5→0:等压放热 (外界大气)
布莱顿循环
1kg工质所作的循环功(加热量与放热量之
差):
L Cp[T3*(1
1
k 1
)
T0 (
sfc 3600G f 3600G f
F
Ga Fs
HuG f Gaqs
Hu为燃油的热值(kJ/kg)
qs
Fs c0
0
sfc 3600c0
Hu0
Sfc与总效率、飞行速度有关
(三)使用性能指标
▪ 发动机的可靠性 ▪ 起动迅速可靠
从静止加速到慢车状态的过程 ▪ 加速性
从慢车加速到最大转速所需的时间 ▪ 发动机的寿命
k 1
)k
T3 p3
而 p1 = p4 ,p2 = p3 代入上式,得:
T1 T4 T2 T3
T3 T4 T2 T1
代入得: T
1 T1 T2
1
1
(
p2
)
k 1 k
1 1 k1
k
p1
为工质被压缩后的压力p2与压缩前的压力p1的比值,
并称为增压比。
▪ 燃气涡轮喷气发动机的理想化条件
去带动压气机。
喷管:使燃气继续膨胀, 加速, 提高燃气的速度。
一、涡轮喷气发动机的理想循环
布莱顿循环
布莱顿循环由绝热压缩过程 1-2、等压加热过程2-3、绝 热膨胀过程3-4和等压放热过 程4-1组成。由于这个循环在 等压加热,故也称为等压加 热循环。涡轮喷气发动机和 冲压喷气发动机的理想循环 就是布莱顿循环。