九年级下册物理磁场知识点总结
九年级物理全一册“第二十章 电与磁”必背知识点

九年级物理全一册“第二十章电与磁”必背知识点一、磁现象与磁场1.磁性:物体具有吸引铁、钴、镍等物质的性质叫做磁性。
具有磁性的物体叫做磁体。
2.磁极:磁体上磁性最强的部分叫磁极,分为南极 (S极)和北极 (N极)。
任何磁体都有两个磁极,且同名磁极相斥,异名磁极相吸。
3.磁场:磁体周围存在一种看不见、摸不着,但客观存在的物质叫做磁场。
磁场的基本性质是对放入其中的磁体产生磁力的作用。
磁场有方向,规定小磁针静止时北极所指的方向为该点的磁场方向。
4.磁感线:为了形象地描述磁场的方向和分布情况,我们在磁场中画一些有方向的曲线,这些曲线叫做磁感线。
磁感线的方向就是小磁针在该点的受力方向,也是该点的磁场方向。
磁感线在磁体外部从N极出发回到S极,在磁体内部从S极到N极。
磁感线的疏密程度表示磁场的强弱。
二、电生磁与磁生电1.电生磁:奥斯特实验表明,通电导线周围存在磁场,且磁场方向与电流的方向有关。
通电螺线管外部的磁场与条形磁体的磁场相似,其两端的磁场方向跟电流方向有关,关系由安培定则判断。
2.磁生电:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流,这种现象叫做电磁感应现象,产生的电流叫做感应电流。
感应电流的方向与导体运动方向和磁场方向都有关。
发电机就是根据电磁感应现象制成的,它将机械能转化为电能。
三、电磁铁与电磁继电器1.电磁铁:内部带有铁芯的通电螺线管叫做电磁铁。
电磁铁的磁性有无可以由电流的通断来控制,磁性强弱可以由电流大小和线圈匝数的多少来控制,磁极方向可以由电流方向来控制。
2.电磁继电器:电磁继电器是一种利用电磁铁来控制工作电路通断的开关。
它由电磁铁、衔铁、弹簧、触点等部分组成,可以实现用低电压、弱电流电路的通断来间接控制高电压、强电流电路的通断,还可以实现远距离操纵和自动化控制。
四、电动机与扬声器1.电动机:电动机是将电能转化为机械能的装置。
它的工作原理是通电线圈在磁场中受到力的作用而发生转动。
初中磁场知识点总结

初中磁场知识点总结1. 磁场的基本概念磁场是一种特殊的力场,它是由磁性物质产生的,并且可以影响周围的物质。
在磁场中,磁性物质会受到磁力的作用而产生运动或变形。
磁场是由磁铁、电流和磁性物质产生的,在磁场中,磁力作为一种力,可以使得磁性物质朝着磁场内或外的方向运动。
2. 磁场的特性磁场具有以下几个特性:(1)磁场有方向性:磁场的方向可以用标志磁力线的方向来表示,磁力线是磁场中的一种力线,它的方向与磁场的方向相同。
(2)磁场具有磁力:磁场可以给物体施加力,使其产生运动或变形。
磁力可以使得磁性物质朝着磁场内或外的方向运动,同时也可以使得两个磁性物质相互吸引或排斥。
3. 磁场的产生和表现磁场可以由磁铁、电流和磁性物质产生。
对于磁铁而言,当它受到外力或外磁场的作用时,其内部的分子会排列成一定的方向,从而产生一个磁场。
而对于电流而言,当电流通过导线时,会产生磁场,这种现象被称为安培力。
此外,磁性物质也可以产生磁场,当一个磁性物质受到外磁场的作用时,它会成为另一个磁铁一样,产生一个磁场。
4. 磁场的测量磁场的测量可以通过磁感应计和霍尔磁发电机来进行。
磁感应计是一种用来测量磁场强度的仪器,它利用磁场对磁性物质的作用来测量磁场的大小。
而霍尔磁发电机则是一种利用霍尔效应产生电势的装置,它可以用来测量磁场的强度和方向。
5. 磁场的应用磁场在日常生活中有着广泛的应用,比如磁铁可以用来吸引铁片、指南针可以用来指出地球的方向、电磁感应可以用来发电、磁共振技术可以用来进行医学影像学等。
此外,磁场还在工业生产、交通运输、航空航天、通信技术等领域有着重要的应用价值。
6. 磁场的基本定律关于磁场的基本定律主要有安培力的定律、洛伦兹力的定律和法拉第电磁感应定律。
安培力的定律指出,当导体中有电流通过时,会产生一个磁场。
洛伦兹力的定律指出,当电荷在磁场中运动时,会受到磁场的作用力。
法拉第电磁感应定律指出,当导体中有磁场变化时,会产生感应电流。
九年级物理磁场知识点总结

九年级物理磁场知识点总结1. 磁场的基本概念磁场是由运动电荷产生的一种特殊的力场。
在磁场中,会对处于其中的磁性物体产生力的作用,使其受到磁力的影响。
磁场可以通过磁力线来描述,磁力线是一种用来表示磁场方向和强度分布的线条。
2. 磁场的性质磁场具有一些特殊的性质,这些性质包括:- 磁场的无源性:磁场没有磁荷,不存在单极子,即不存在责任的磁荷。
磁场总是由电流产生的。
- 磁场的闭合性:磁场总是从磁南极到磁北极形成闭合环路。
- 磁场的超导性:超导体能够完全排斥外部磁场,这种现象被称为迈森效应。
3. 磁场的来源磁场是由电流产生的。
电流在通过导线时,会形成一个螺旋状的磁场,这是安培环定律的基础。
另外,磁铁也可以产生磁场,这是由于磁铁内部的微观磁性有序排列形成了一个磁场。
4. 磁场的检测与测量磁场可以通过磁场强度计或者磁力计来进行检测和测量。
磁场强度计是一种能够在磁场中测量磁场强度的仪器,它可以帮助我们了解磁场的分布和强度。
磁力计则是一种能够测量磁场产生的磁力大小的仪器。
5. 磁场与运动电荷磁场对运动电荷有一定的影响,当电荷运动时,会在其周围产生一个磁场。
根据洛伦兹力的定律,当电荷在磁场中运动时,会受到一个垂直于速度和磁场方向的洛伦兹力的作用。
这一定律对于理解磁场和电荷之间的相互作用非常重要。
6. 磁场与磁性物质磁性物质是指具有自身磁性的物质,例如铁、镍、钴等金属。
当这些物质处于外部磁场中时,会受到磁力的作用而产生磁化。
磁化后的磁性物质会具有磁性,能够相互吸引或排斥。
磁铁、电磁铁就是利用这一原理制造的。
7. 磁场与电流电流在通过导线时会产生磁场,这是由于运动的电荷会产生磁场。
磁场对电流也有一定的影响,当电流通过导线时,会在周围产生一个磁场。
因此,电流和磁场是密切相关的,它们之间相互影响。
8. 磁场的应用磁场有许多重要的应用,其中一些包括:- 电磁铁:电磁铁是一种可以通过通电来产生磁场的装置,它在工业生产和实验研究中有着广泛的应用。
九年级物理磁场知识点归纳

九年级物理磁场知识点归纳磁场是物理学中一个重要的概念,它涉及到我们日常生活中许多实际应用和科学原理的理解。
在九年级的物理学习中,我们也会接触到与磁场相关的知识点。
本文将对九年级物理磁场知识点进行归纳,以帮助大家更好地理解和掌握这些知识。
一、磁场概念及性质1. 磁场的定义:磁场是一个物理量,用来描述磁力对于磁体的作用效应。
2. 磁场的表示方式:用磁力线来表示磁场,磁力线是一种无形的线条,用来表示磁场的方向和强弱。
3. 磁场的性质:磁场具有方向性和无源性,即磁力线从磁南极指向磁北极,不存在单极磁体。
二、磁场的产生1. 电流产生磁场:通过安培环路定理可以得到,电流通过导线时会在周围产生磁场。
2. 永磁体产生磁场:永磁体是指自身拥有一定磁性的物体,在没有外界磁场的情况下,可以产生磁场。
三、磁场的力和力矩1. 磁力的定义:当磁场中存在带电粒子或电流元时,磁场对其施加的力就是磁力。
2. 磁力的方向:磁力遵循右手定则,即握住导线,右手拇指指向电流方向,四指弯曲的方向为磁力的方向。
3. 磁力和运动的关系:当带电粒子或电流元在磁场中运动时,磁力会对其进行做功或改变其运动状态。
4. 磁场对磁体的力和力矩:磁场中的磁体受到的力和力矩与磁体的形状、方向和磁场的强弱有关。
四、电磁感应1. 电磁感应现象:当导体中的磁通量发生变化时,会在导体中产生感应电动势。
2. 楞次定律:楞次定律是描述电磁感应现象的定律,它规定了感应电动势的方向和大小。
3. 法拉第电磁感应定律:法拉第电磁感应定律是描述感应电动势大小与变化率的关系。
五、磁场与电流的相互作用1. 安培力定律:安培力定律描述了电流在磁场中受力的规律,即电流元在磁场中受到的力与电流强度、磁场强度和两者之间的夹角有关。
2. 电流在磁场中的运动:电流在磁场中受到磁力的作用,会产生偏转、受力平衡或者做圆周运动等不同的运动方式。
六、电磁感应中的应用1. 发电机原理:发电机是利用电磁感应现象将机械能转化为电能的装置,它包括转子、定子和磁场等组成部分。
九年级磁现象磁场知识点归纳总结

九年级磁现象磁场知识点归纳总结磁现象和磁场是九年级物理学习的重要内容,本文将对九年级磁现象和磁场的知识点进行归纳总结。
经过整理,主要将磁现象和磁场的基本概念、磁性物质、磁场的特性、磁感线、磁力和电流的相互作用、电磁铁和电动机等方面进行详细介绍。
一、磁现象和磁场的基本概念1. 磁现象:指物质表现出的具有吸引力和排斥力的性质。
磁性物质能够被吸引,非磁性物质不能被吸引。
2. 磁场:指存在于磁体周围的特定空间中的力场,即磁力的存在空间。
二、磁性物质1. 磁性物质分类:铁、镍、钴等属于铁磁性物质;铁矿石属于天然磁铁矿;磁体由铁磁性物质制成。
2. 磁性物质的磁化:将非磁性物质接触到磁体上,就能使其也表现出磁性。
3. 磁性物质的磁性不仅与物质本身的结构有关,也与进光照射的程度有关。
三、磁场的特性1. 磁场的方向:磁场有一个方向,被定义为磁感线的方向。
2. 磁感线:用于描述和表示磁场的有向曲线,箭头指向磁场的方向。
磁感线由南极指向北极。
3. 磁感线的性质:磁感线从南极出发,经过空间,最终汇集到北极。
4. 磁感线的密度:磁感线越密集,表示磁场强度越大;磁感线越稀疏,表示磁场强度越小。
四、磁力和电流的相互作用1. 安培力:电流在磁场中受到的磁力称为安培力。
安培力的大小与电流的大小和磁场的强度有关,与电流流动的方向及磁场方向垂直。
2. 洛伦兹力:电流导线中电子在磁场中运动时所受到的力称为洛伦兹力,其方向垂直于电子流的方向和磁感线的方向。
3. 索尔力:当电流通过弯曲的导线时,导线会受到一个由电流和磁场共同决定的作用力,称为索尔力。
4. 电流和磁场的相互作用是基于洛伦兹力的基础上实现的。
五、电磁铁和电动机1. 电磁铁的原理:通过将电流导线绕在铁芯上,产生磁场,使铁芯具有吸引铁磁性物质的能力。
2. 电磁铁的应用:用于各种电磁装置中,如电铃、电磁吸盘、电磁离合器等。
3. 电动机的原理:利用电磁铁的磁力与导线中电流相互作用的原理,将电能转换为机械能。
磁场知识点总结

磁场知识点总结1. 磁场的基本概念磁场是指物体周围存在的一种物理现象,即物体具有磁性时,周围会形成磁场。
磁场可以用于描述磁力的作用和磁力的性质。
磁场是三维空间中的一个向量场,可以用矢量表示,具有方向和大小。
2. 磁场的特性磁场具有以下几个重要特性: - 磁场是无源无旋场:磁场的散度为零,即磁通量在闭合曲面上的积分为零;磁场的旋度也为零,即磁场的环路积分为零。
- 磁场的力线是闭合曲线:磁场的力线是一种特殊的曲线,它们是闭合的,不存在起点和终点。
- 磁场的作用力是相对运动的电荷和磁场之间的相互作用力:根据洛伦兹力定律,带电粒子在磁场中受到的力与其电荷、速度和磁场强度有关。
3. 磁场的量度和单位磁场的量度使用磁感应强度(磁场强度)来表示,符号为B,单位为特斯拉(T)。
磁感应强度的大小表示磁场的强弱,方向表示磁场的方向。
4. 磁场的产生磁场可以通过以下几种方式产生: - 电流:当电流通过导线时,会在导线周围产生磁场。
根据安培环路定理,电流所产生的磁场的强度与电流强度成正比。
- 磁体:磁体是指具有磁性的物体,如铁、钢等。
磁体可以通过磁化来产生磁场,磁场的强度与磁体的磁化强度成正比。
5. 磁场的性质磁场具有以下几个重要性质: - 磁场的极性:磁场有南极和北极之分,相同极性的磁体会相互排斥,不同极性的磁体会相互吸引。
- 磁场线:磁场线是用来描述磁场分布的曲线,它们是从磁体的北极到南极的闭合曲线。
- 磁场的磁力:磁场可以对带电粒子产生力的作用,这种力被称为磁力。
磁力的大小与电荷、速度和磁场强度有关。
6. 磁场的重要观点磁场的研究和应用涉及到很多重要观点,以下是其中几个重要观点: - 安培环路定理:安培环路定理是描述电流所产生的磁场的定理,它说明了电流所产生的磁场的强度与电流强度成正比。
- 洛伦兹力定律:洛伦兹力定律是描述带电粒子在磁场中受力的定律,它说明了带电粒子在磁场中受到的力与其电荷、速度和磁场强度有关。
初中物理磁场知识点总结

初中物理磁场知识点总结一、磁场的概念与性质磁场是一种无形的物理场,它描述了磁力的作用和分布。
磁场是由磁性物质或电流产生的一种力场,能够对周围的磁性物质或运动电荷产生作用力。
磁场的强度和方向可以通过磁力线来形象地表示,磁力线的密度反映了磁场的强度,而其切线方向则表示磁场的方向。
二、磁场的来源1. 永久磁铁:永久磁铁是最常见的磁场来源之一,它由磁性材料制成,如铁、钴、镍等,这些材料的原子内部电子排列特定,使得它们能够保持持久的磁性。
2. 电流:电流通过导线时,会在导线周围产生磁场。
这一现象由安培定律描述,即电流与磁场之间存在直接关系。
电流越大,产生的磁场越强。
三、磁场的测量磁场的强度通常用磁感应强度(B)来表示,单位是特斯拉(T)。
测量磁场强度的工具是磁强计,它可以精确地测量出磁场的大小和方向。
四、磁场的分类1. 均匀磁场:磁场强度在空间中处处相等的磁场称为均匀磁场。
这种磁场通常由长直导线或磁铁的远场区域产生。
2. 非均匀磁场:磁场强度在空间中变化的磁场称为非均匀磁场。
这种磁场常见于磁铁的近场区域或复杂的磁场分布区域。
五、磁场的基本定律1. 奥斯特定律:描述了电流与磁场之间的关系,即电流周围会产生磁场,磁场的方向与电流的方向垂直。
2. 安培定律:详细描述了电流与磁场之间的关系,特别是对于封闭回路中的电流,其产生的磁场可以通过安培环路定理来计算。
3. 毕奥-萨伐尔定律:用于计算由稳定电流产生的磁场,适用于计算复杂电流分布产生的磁场。
六、磁场对物体的作用1. 磁力:磁场对置于其中的磁性物质产生磁力。
磁力的大小与磁场强度、物体的磁化程度以及物体在磁场中的位置有关。
2. 洛伦兹力:运动电荷在磁场中会受到的力称为洛伦兹力。
洛伦兹力的方向垂直于磁场和电荷运动的方向,大小与电荷的速度和磁场强度成正比。
七、磁场的应用1. 电动机和发电机:利用磁场与电流的相互作用,电动机可以将电能转换为机械能,而发电机则可以将机械能转换为电能。
物理磁场知识点总结

物理磁场知识点总结一、磁场的基本概念和性质磁场是一个矢量场,具有方向性,方向由被测点附近正常情况下运动带电荷子的方向决定。
磁场具有强度,其强度由磁场中的磁通量密度决定,磁通量密度单位为特斯拉(Tesla)。
磁场是连续的,磁通量在磁场中连续流动,遵循磁场规律。
二、磁场的产生和影响因素磁场是由运动的带电粒子(主要是电子)产生的。
当电流通过导线时,会在导线周围产生磁场。
电流的方向、大小和导线的形状会影响磁场的分布。
自旋磁矩和轨道磁矩也会产生磁场。
带电粒子(如电子)具有固有的自旋磁矩,当粒子的自旋磁矩与周围的磁场相互作用时,会产生局部磁场。
此外,带电粒子在原子核周围运动会产生轨道磁矩,轨道磁矩与自旋磁矩相互作用,可以导致磁场的产生。
影响磁场强弱的因素包括电流的大小、线圈匝数以及线圈中是否有铁芯等。
电流越大、线圈匝数越多、有铁芯,则产生的磁场就越强,反之则越弱。
三、磁极和磁相互作用磁体各部分磁性强弱不同,磁性最强的区域叫磁极。
任何磁体都有两个磁极:南极(S极)和北极(N极)。
同名磁极相互排斥,异名磁极相互吸引。
磁极间的相互作用是以磁场作为媒介的,因此两磁体不用在物理层面接触就能发生作用。
四、磁化和去磁使原来没有磁性的物体获得磁性的过程叫做磁化。
磁化后的物体失去磁性的过程叫做退磁或去磁。
五、磁场的应用磁场的应用范围广泛,涉及到电磁感应、磁性材料应用、医学影像诊断、磁悬浮和地磁导航等领域。
例如,磁悬浮列车利用磁力驱动实现高速悬浮行驶;磁共振成像(MRI)利用磁场进行人体内部结构成像诊断;磁体治疗仪利用磁场的生物效应进行治疗;磁控靶向给药系统通过磁场引导药物到达特定部位等。
总之,物理磁场是一个复杂而重要的物理概念,掌握其基本概念、性质、产生和应用等方面的知识点对于深入理解电磁现象和应用电磁技术具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级下册物理磁场知识点总结
物理对我们来说并不陌生。
在我们的周围,大至整个宇宙,小至我们身边,无时无刻不在发生种种的物理现象。
接下来在这里给大家分享一些关于九年级下册物理磁场知识点,供大家学习和参考,希望对大家有所帮助。
九年级下册物理磁场知识点
篇一
1、物体具有吸引铁、钴、镍等物体的性质,该物体就具有了磁性。
具有磁性的物体叫做磁体。
2、磁体两端磁性的部分叫磁极,磁体中间磁性最弱。
当悬挂静止时,指向南方的叫南极(S),指向北方的叫北极(N)。
任一磁体都有两个磁极。
相互作用规律:同名磁极互相排斥,异名磁极互相吸引。
3、磁化:使没有磁性的物体获得磁性的过程。
方式有:与磁体接触;与磁体摩擦;通电。
有些物体在磁化后磁性能长期保存,叫永磁体(如钢);有些物体在磁化后磁性在短时间内就会消失,叫软磁体(如软铁)。
4、磁体周围存在一种看不见,摸不着的物质,能使磁针偏转,叫做磁场。
磁场对放入其中的磁体会产生磁力的作用。
5、磁场方向:磁场的方向:在磁场中的某一点,小磁针静止时北极所指的方向就是该点的磁场方向。
磁场中某点的磁场方向、磁感线方向、小磁针静止时北极指的方向相同。
6、在物理学中,为了研究磁场方便,我们引入了磁感线的概念。
磁感线总是从磁体的北极出来,回到南极。
7、地球也是一个磁体,周围也存在着磁场,叫地磁场。
所以小磁针静止时会由于同名磁极互相排斥,异名磁极互相吸引的原理指向南北,由此可知,地磁南极在地理北极附近,地磁北极在地理南极附近。
8、地磁南极与地理北极、地磁北极与地理南极并不完全重合,中间有一个夹角,叫做磁偏角,是由我国宋代学者沈括首先发现的。
篇二
电生磁
1、奥斯特实验证明:通电导线的周围存在着磁场,磁场的方向跟电流的方向有关,这种现象叫做电流的磁效应。
这一现象是由丹麦物理学家奥斯特在1820年发现的。
2、把导线绕在圆筒上,做成螺线管,也叫线圈,在通电情况下会产生磁场。
通电螺线管的磁场相当于条形磁体的磁场,通电螺线管的两端相当于条形磁体的两个磁极。
3、通电螺线管的磁场方向与电流方向有关。
磁场的强弱与电流强弱、线圈匝数、有无铁芯有关。
4、在通电螺线管里面加上一根铁芯,就成了一个电磁铁。
电磁铁磁场的强弱与电流的强弱、线圈的匝数、铁芯的有无有关。
可以制成电磁起重机、扬声器和吸尘器等。
5、判断通电螺线管的磁场方向可以使用安培(右手)定则:将右
手的四指顺着电流方向抓住螺线管,姆指所指的方向就是该螺线管的N极。
电磁继电器扬声器
1、继电器是利用低电压、弱电流电路的通断,来间接地控制高电压、强电流电路的装置。
实质上它就是利用电磁铁来控制工作电路的一种开关。
2、电磁继电器由电磁铁、衔铁、簧片、触点组成;其工作电路由低压控制电路和高压工作电路两部分组成。
3、扬声器是把电信号转换成声信号的一种装置。
它主要由固定的永久磁体、线圈和锥形纸盆构成。
电动机
1、通电导体在磁场中会受到力的作用。
它的受力方向跟电流方向、磁感线方向有关。
2、电动机由转子和定子两部分组成。
能够转动的部分叫转子;固定不动的部分叫定子。
3、当直流电动机的线圈转动到平衡位置时,线圈就不再转动,只有改变线圈中的电流方向,线圈才能继续转动下去。
这一功能是由换向器实现的。
换向器是由一对半圆形铁片构成的,它通过与电刷的接触,在平衡位置时改变电流的方向。
实际生活中电动机的电刷有很多对,而且会用电磁场来产生强磁场。
4、电动机构造简单、控制方便、体积小、效率高、功率可大可小,被广泛应用在日常生活和各种产业中。
它在电路图中用M表示。
电动机工作时是把电能转化为机械能。
磁生电
1、在1831年由英国物理学家法拉第首先发现了利用磁场产生电流的条件和规律。
当闭合电路的一部分在磁场中做切割磁感线运动时,电路中就会产生电流。
这个现象叫电磁感应现象,产生的电流叫感应电流。
2、没有使用换向器的发电机,产生的电流,它的方向会周期性改变方向,这种电流叫交变电流,简称交流电。
它每秒钟电流方向改变的次数叫频率,单位是赫兹,简称赫,符号为Hz。
我国的交流电频率是50Hz。
3、使用了换向器的发电机,产生的电流,它的方向不变,这种电流叫直流电。
(实质上和直流电动机的构造完全一样,只是直流发电机是磁生电,而直流电动机是电生磁)
4、直流电动机原理:是利用通电线圈在磁场里受力转动的原理制成的。
5、实际生活中的大型发电机由于电压很高,电流很强,一般都采用线圈不动,磁极旋转的方式来发电,而且磁场是用电磁铁代替的。
九年级下册物理学习方法
图象法
应用图象描述规律、解决问题是物理学中重要的手段之一.因图象中包含丰富的语言、解决问题时简明快捷等特点,在高考中得到充分体现,且比重不断加大。
涉及内容贯穿整个物理学.描述物理规律的最常用方法有公式法和图象法,所以在解决此类问题时要善于将公式与图象合一相长。
对称法
利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快速简便地求解问题。
像课本中伽利略认为圆周运动最美(对称)为牛顿得到万有引力定律奠定基础。
估算法
有些物理问题本身的结果,并不一定需要有一个很准确的答案,但是,往往需要我们对事物有一个预测的估计值.像卢瑟福利用经典的粒子的散射实验根据功能原理估算出原子核的半径。
采用“估算”的方法能忽略次要因素,抓住问题的主要本质,充分应用物理知识进行快速数量级的计算。
微元法
在研究某些物理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解.像课本中提到利用计算摩擦变力做功、导出电流强度的微观表达式等都属于利用微元思想的应用。
九年级下册物理学习技巧
1、理象记忆法:如当车起步和刹车时,人向后、前倾倒的现象,来记忆惯性概念。
2、浓缩记忆法:如光的反射定律可浓缩成三线共面、两角相等,平面镜成像规律可浓缩为“物象对称、左右相反”。
3、口诀记忆法:如“物体有惯性,惯性物属性,大小看质量,不论动与静。
”
4、比较记忆法:如惯性与惯性定律、像与影、蒸发与沸腾、压力与压强、串联与并联等,比较区别与联系,找出异同。
5、推导记忆法:如推导液体内部压强的计算公式。
即p=F/S=G/S=mg/s=pvg/s=pshg/=pgh。
6、归类记忆法:如单位时间通过的路程叫速度,单位时间里做功的多少叫功率,单位体积的某种物质的质量叫密度,单位面积的压力叫压强等,都可以归纳为“单位……的……叫……”类。
7、顾名思义法:如根据“浮力”、“拉力”、“支持力”等名称,易记住这些力的方向。
8、因果(条件记忆法):如判定使用左、右手定则的条件时,可根据由于在磁场中有电流,而产生力,就用左手定则;若是电力在磁场中运动,而产生电流,就用右手定则。