(完整版)AD、DA转换原理数模、模数转换
AD-DA原理

数字系统
D/A
A/D
转
转
换
换
1. 概述
典型数字控制系统框图
1. 概述
分类
网络权电阻DAC 倒梯形电阻网络DAC
DAC
权电流型DAC 权电容型DAC
开关树型DAC
输入/输 出方式
并行 串行
ADC
直接ADC 间接ADC
2.D/A转换器原理
(1) D/A功能: 将数字量成正比地转换成模拟量
4位 数字量
入到寄存器1
WR1 = 0时存入数据 WR1 = 1时锁定
数据由寄存器 1转送寄存器 2从输出端取
模拟量
0
WR2 = 0时存入数据 WR2 = 1时锁定
无控制信号, 随时可取
例1. 单步输入操作 ----- 适用于单个DAC工作
D... 7
CS WR1
Rfb
Iout1 - +
D0
ILE WR2 XFER
一、权电阻型D/A转换器
UREF
R
R
R
R
2n1
2n2
2i
2
R
Sn-1
Sn-2
Si
S1
S0
Rf
1
01
01
0 1 01
0
i
uO
Dn-1
Dn-2
Di
D1
D0
uO i iiRininnf0121Di UD2RRiEnRF1f2U•R•UURUR2R2EERRnFFRnREE1niF2niF0101DDi 2ii,2i , Di D(0,i1) (0, 1)
n1
Di 2i
i0
运算放大器的输出电压为
数电电子第7章 数模(DA)和模数(AD)转换

28
D7
27
D1
21
D0
20 )
VREF R 210
9
i0
Di
2i
VREF R 210
D
模拟输出电流(流入运算放大 器虚地)与10位二进制数的数 值(即数字量)成正比,实现 了数字/模拟电流的转换
式中D为输入二进制数的数值。
接入运算放大器后,则可 将数字量转换为模拟电压,运放 的输出电压:
(二)集成D/A转换器的结构及分类
各种类型的集成DAC器件多由参考电压源,电阻网络和电子开关三个 基本部分组成。
按电阻网络的结构不同,可将DAC分成T形R-2R电阻网络DAC、倒T 形R-2R电阻网络DAC及权电阻求和网络DAC等几类。由于权电阻求和网 络中电阻值离散性太大,精度不易提高,因此在集成DAC中很少采用。T 形R-2R电阻网络DAC、倒T形R-2R电阻网络DAC中只有两种阻值的电阻, 因此最适用于集成工艺,集成DAC普遍采用这种电路结构。倒T形R-2R电 阻网络DAC在集成芯片中比T形R-2R网络DAC应用更广泛。
(二)集成A/D转换器的主要参数 1.分辨率 其含义与DAC的分辨率一样,通 常也可用位数来表示,位数越多,分辨率(有时 也称分辨力)也越高。
2.量化编码电路
用数字量来表示采样信号时,必须把它转化成某个最 小数量单位的整数倍,这个转化过程叫量化,所规定的最 小数量单位叫作量化单位,用S表示。
将量化的数值用二进制代码表示,称为编码。这个二 进制代码便是A/D转换器的输出信号。
量化的方法一般有两种形式:
1)舍尾取整法
2)四舍五入法
用舍尾取整法量化时,最大量化误差为1S,用四舍五 入法量化时,最大量化误差为S/2。所以,绝大多数ADC 集成电路均采用四舍五入量化方式。
AD.DA转换原理

9.2.1 权电阻网络D/A转换器 一、电路组成 三部分:权电阻网络、模拟开关(受代码d3~d0的控制,代 码为1时接VREF,为0时接地)、求和放大器
二、工作原理
即vO正比于Dn
VREF可正可负 优缺点:电阻少,但差值大,不易集成。
9.2.2 倒T型电阻网络D/A转换器 一、电路的组成 电阻网络、模拟开关、求和放大器A、基准电压VREF。
次高位置1, 判断保留或去除; ……………….. 最低位置1,
判断保留或去除;
n位需(n+2)个CP脉冲
工作原理
例如:参考电压VREF=-5V, 模拟vI=3.2. 设初态QAQBQC=000, 环形计数器Q1~Q5=10000,即Q1=1 (1)CP1 ↑ 到来 SA=1, RA=0; SB=0, RB=1; SC=0, RC=1 置成 100→ vO=5×2-1=2.5V ∵ vO < vI 且CP1 ↑过后, Q1~Q5 =01000,即Q2 =1 ∴ vC =0
1 1 0.001 10 2 1 1023
2、转换误差(实际精度) 转换误差:实际与理论值的最大偏差(例如:≤00…01时的 输出电压) 是一个由各种因素引起的转换误差的综合指标。
因素:VREF波动;运放的零漂;
模拟开关的导通内阻及压降; 电阻阻值偏差;二极管特性不一致
二、D/A转换器的转换速度 用建立时间t set定量描述D/A转换器的转换速度 t set :从输入数字量发生突变开始,到输出电压进入与稳态值相 1 差 2 LSB 范围以内的时间。 一般定为:从全0变为全1所需的时间。 不包含运放的单片集成DAC: t set <0.1µ m 包含运放的单片集成DAC: t set <0.15µ m 外加运放的DAC的最大转换时间:
电工电子技术第12 章数模(DA)和模数(AD)转换

第12章数/模(D/A)和模/数(A/D)转换主要内容:(1):D/A是将数字量转换成模拟量。
(2): A/D是将模拟量转换成数字量。
12.1概述本章主要讨论数/模和模/数转换器的原理及应用。
图12-1 A/D、D/A转换器在生产过程中的应用12.2数/模转换器(D/A转换器)12.2.1D/A转换器的构成1.R-2RT型网络D/A转换器的基本原理它由模拟电子开关、T型电阻网络、基准电源和运算放大器等几部分组成。
12-2 4位梯形电阻网络D/AA点的总电流可表示为32103210 0123 22223210(2222)321032U U U UR R R RD D D DR R R RUR D D D DRI I I I I∑=+++=+++=+++求和运算放大器的作用是将求和后的电流I转换成模拟电压输出,其输出电压为fRfffRDDDDRURIRIUo)2222(201122333+++-=-=-=∑(12-2) 电阻网络D/C可以做到n位,且R f =R/2,此时对应的输出电压为)2222(20112211DDDDUUonnnnnR++++-=---- (12-3)输出的模拟电压正比于输入的数字信号,这样就实现了数字信号到模拟信号的转换。
(12-1)2.倒T型电阻网络D/A转换器分别从虚线A、B、C、D处向右看的二端网络等效电阻都是R,则从参考电压端输入的电流为RVI REFREF=图12-3倒T型电阻网络D/A转换器从图12-3所示电路U REF向左看,其等效电路如图12-4所示,等效电阻为R,因此总电流I=U REF/R。
图12-4 倒T 型电阻网络所有Si 都接0位的简化等效电路各支路电流自左向右依次为:R V I I RV I I R V I I RV I I REFREF REFREF REFREF REFREF 161618814412210123========则电路中电流i 的大小取决于电路中开关(数字信号)的状态,其合成电流为0011223301233103221041111()16842(2222)2REFREF i I d I d I d I d V d d d d RV d d d d R=+++=+++=⋅+⋅+⋅+⋅ 集成运算放大器的输出电压u o 为321032104(2222)2REF F o F F F V R u R i R i d d d d R=-=-=-⋅+⋅+⋅+⋅ 将上述结论推广到n 位倒T型电阻网络D/A 转换器,同学们可以自己推算一下。
AD_DA转换基本原理

RF
D0
D1
D2
D3 IΣ
A
uo
S0 I/16
S1 I/8
S2 I/4
n 位数模转换器
S3
∑ u o =
I⋅R F 2 n+1
n
2iD i
i= 0
I/2
-VEE
21
四、结论
⑴ 由于采用了恒流源,所以电子 开关中导通电阻对转换精度没 有影响。这样就可以降低对电 子开关的要求;
⑵ 又由于采用的恒流源是与二进 制权相等的,因此只要保持权 电流恒定就可以提高转换电压 的精度。
2、转换速率(SR)
在大信号工作状态下输出模拟电压的变化
率。
一般未采用运放的DAC转换器的变化率较快,若
采用了运放此变化率会降下来,因此实用中常选
配高速运放来提高转换速率。
28
三、温度系数
在输入不变的情况下,输出模拟电压 随温度变化产生的变化量。一般用满刻度 输出条件下温度每升高 1℃时,输出电压 变化的百分数作为温度系数。
D0
D1
I / 16 I / 8 I / 4 I / 2
I
⋅
1 24
I
⋅
1 23
I
⋅
1 22
I
⋅
1 21
RF (R)
D2
D3 IΣ
A
uo
S0
S1
S2
S3
2R 2R
I/16
2R R
I/8
2R R
I/4
2R R
I/2 +VREF
I/16 I/8 I/4 I/2
I
11
3、总电流(假定D0~D3为全1)为:
R
AD和DA的工作原理

AD和DA的工作原理AD和DA的工作原理AD:模数转换,将模拟信号变成数字信号,便于数字设备处理。
DA:数模转换,将数字信号转换为模拟信号与外部世界接口。
具体可以看看下面的资料,了解一下工作原理:1. AD转换器的分类下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、∑-Δ调制型、电容阵列逐次比较型及压频变换型。
1)积分型(如TLC7135)积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。
其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。
初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。
2)逐次比较型(如TLC0831)逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。
其电路规模属于中等。
其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。
3)并行比较型/串并行比较型(如TLC5510)并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。
由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。
串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。
还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。
这类AD速度比逐次比较型高,电路规模比并行型小。
第五章 数模(DA)及模数(AD)转换

二、量化和编码 量化过程是一种非线性过程,它是将幅度连续 变化的输入信号变换成一组幅度不连续的输出 信号,即数字量。因取样—保持电路输出的信 号本质上仍然是模拟信号,若用一单位量去测 量它并取其整数,对于不足一个测量单位的剩 余部分采取近似处理,然后将测得的数值用一 个二进制代码表示,这就是从模拟到数字的转 换过程。 一般把取整量的过程叫做量化,量化过程产生 的误差称为量化误差;把用代码表示量化电压 的过程称为编码。图6.8所示为一个三位模数 转换器的理想转换曲线,水平轴上标度为模拟 电压,垂直轴上的标度是相应于这些输入电压 的数字输出。
图 6.6
倒置R-2R网络D/A转换器
返回1 返回2
根据图6.6我们可求得其输出电压为:
u0 VREF RF n 1 n2 1 0 ( D 2 D 2 D 2 D 2 ) n 1 n 2 1 0 n R2
(6-2-5)
当RF=R时有:
VREF u0 n ( Dn 1 2n 1 Dn 2 2n 2 D1 21 D0 20 ) (6-2-6) 2
u0 VREF n 1 n2 1 0 ( D 2 D 2 D 2 D 2 ) n 1 n2 1 0 n 2 10 8 27 2
= 5(V)
二、R-2R梯形网络的D/A转换器
R-2R梯形网络如图6.5所示。这种网络仅需二 种规格电阻(R、2R),避免了宽范围的电阻问 题,特别适用于用集成电路来实现,一般R是 在几kΩ 至10kΩ 之间。从最高位到最低位, 每一位在输出中占的比例是逐位减半,它的 优点是电阻比率简单。
返回
6.2.2
常用的数/模转换
计算机接口技术第7章模数(AD)与数模(DA)转换

T型电阻型
通过改变T型电阻网络的配置,实现多位二 进制码到模拟信号的转换。
权电容型
通过改变电容的充放电状态,实现多位二进 制码到模拟信号的转换。
数模转换器的性能指标
分辨率
表示DAC能够表示的最大二进制位数, 通常以位数表示。
非线性误差
04 ADC与DAC的未来发展
高分辨率ADC与DAC的发展趋势
总结词
随着科技的进步,高分辨率ADC和DAC已成为研究的热点, 它们在医疗、科学仪器和通信等领域具有广泛的应用前景。
详细描述
高分辨率ADC和DAC能够提供更高的转换精度和分辨率,从 而提高信号的测量和重现能力。未来,随着半导体工艺的进 步,高分辨率ADC和DAC的性能将进一步提升,有望在更高 精度的应用领域发挥更大的作用。
信号处理系统需要对信号进行滤波、放大、调制解调 等处理。模数转换器和数模转换器在此类系统中都发 挥着重要的作用。
在通信系统中,ADC和DAC的应用也十分广泛。例 如在无线通信中,需要将接收到的模拟信号转换为数 字信号进行解调,再将解调得到的数字信号通过DAC 转换为模拟信号进行输出。在发射端,则需要进行相 反的转换过程。
模数转换器的性能指标
分辨率
指模数转换器能转换的最小模 拟电压值,通常以二进制位数
表示。
精度
指模数转换器的实际输出值与 理论输出值之间的误差。
转换速率
指模数转换器完成一次转换所 需的时间。
非线性失真
指模数转换器输出信号与输入 信号之间的非线性关系。
02 数模转换器(DAC)
数模转换器的工作原理
数字信号通过DAC转换成模拟信 号,通常由二进制码表示的数字
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟量:
uo=K(D3×23+D2×22+D1×21+D0×20)10
uo=K(1×23+1×22+0×21+1×20)10
(K为比例系数)
2020/4/8
3
组成D/A转换器的基本指导思想:将数字量按 权展开相加,即得到与数字量成正比的模拟量。
n位D/A转换器方框图
D/A转换器的种类很多,主要有: 权电阻网络DAC、 T形电阻网络DAC 倒T形电阻网络DAC、 权电流DAC
2020/4/8
4
权电阻型D/A转换器
模拟开关, 受Di控制
输入代码,为1时,模拟开关上拨;
2020/4/8
为0时,模拟开关下拨。
求和放大 器
权电阻
网络
5
运算放大器总的输入电流为
I
n1
Ii
i0
n1
i0
UR 2n1 R
Di 2i
UR 2n1 R
n1
Di 2i
i0
运算放大器的输出电压为
U
Rf
I
RfUR 2n1 R
n 1
Di 2i
i0
若Rf=1/2R,代入上式后则得
U
RfUR 2n1 R
n1
Di 2i
i0
UR 2n
n1
Di 2i
i0
2020/4/8
6
当D=Dn-1…D0=0时 U=0
当D=Dn-1…D0=11…1时, 最大输出电压
Um
2n 1 2n UR
因而U的变化范围是
2n 1 0 ~ 2n UR
1
数/模和模/数转换
2020/4/8
典型数字控制系统框图
2
D/A转换
7.1.1 D/A转换基本原理
数/模转换就是将数字量转换成与它成正 比的模拟量。
数字量: (D3D2D1D0)2=(D3×23+D2×22+D1×21+D0×20)10 (1101) 2 =(1×23+1×22+0×21+1×20)10
8
2. 工作原理
由于集成运算放大器的电流求和点Σ为虚地, 所以每个2R电阻的上端都相当于接地,从网络的A、 B、C点分别向右看的对地电阻都是2R。
2020/4/8
9
因此流过四个2R电阻的电流分别为I/2、I/4、 I/8、I/16。电流是流入地,还是流入运算放大器, 由输入的数字量Di通过控制电子开关Si来决定。故 流入运算放大器的总电流为:
因此,这种形式的DAC目前被广泛的采用。
2020/4/8
15
3 DAC的主要技术参数
1.分辨率
分辨率是指输出电压的最小变化量与满量程输出 电压之比。
输出电压的最小变化量就是对应于输入数字量最
低位为1,其余各位均为0时的输出电压。 满量程输出电压就是对应于输入数字量全部为1
时的输出电压。 对于n位D/A转换器,分辨率可表示为:
5. 温度系数
在输入不变的情况下,输出模拟电压随温度变化 而变化的量,称为DAC的温度系数。
一般用满刻度的百分数表示温度每升高/8
19
7.1.4 集成D/A转换器及其应用
常 用 的 集 成 DAC 有 AD7520 、 DAC0832 、 DAC0808、DAC1230、MC1408、AD7524等,这里 仅对AD7520作简要介绍。
精度由电阻的精度定,而此电路中阻值差别大,对集成不利
2020/4/8
7
倒T形电阻网络DAC
双向模拟开关 DD1电= =.源10电时时组电路接接成路组运 地。由成放解码网络、模拟开关、求和放求 算大放和器大集和器成基运准
基准参 考电压
2020/4/8
R-2R倒T 形电阻解 码网络
图7-2 倒T型电阻网络DAC原理图
具体使用时需要外接集成运算放大器和基准
17
3. 转换精度
转换精度是指电路实际输出的模拟电压值和理论 输出的模拟电压值之差。通常用最大误差与满量程 输出电压之比的百分数表示。通常要求D/A转换器 的误差小于ULSB/2。
例如,某D/A转换器满量程输出电压为10V,如 果 误 差 为 1% , 就 意 味 着 输 出 电 压 的 最 大 误 差 为 ±0.1V。百分数越小,精度越高。
2020/4/8
13
对于n位的倒T形电阻网络DAC,则 :
由此可见,输出模拟电压uO与输入数字量D成 正比,实现了数模转换。
2020/4/8
14
电路特点: (1)解码网络仅有R和2R两种规格的电阻, 这对于集成工艺是相当有利的;
(2)这种倒T形电阻网络各支路的电流是直 接加到运算放大器的输入端,它们之间不存在传 输上的时间差,故该电路具有较高的工作速度。
1 分辨率 = 2n 1
位数越多,能够分辨的最小输出电压变化量就
越小,分辨率就越高。也可用位数n来表示分辨率。
2020/4/8
16
2. 转换速度
D/A转换器从输入数字量到转换成稳定的模拟 输出电压所需要的时间称为转换速度。
不同的DAC其转换速度也是不相同的,一般约 在几微秒到几十微秒的范围内。
2020/4/8
I I D3 I D2 I D1 I D0 2 4 8 16
2020/4/8
10
由于从UREF向网络看进去的等效电阻是R,因 此从UREF流出的电流为:
I U REF R
2020/4/8
11
故:
I
UREF 24 R
(D323
D22 2
D121
D020 )
2020/4/8
12
因此输出电压可表示为 :
1. D/A转换器AD7520 AD7520是10位的D/A转换集成芯片,与微处理
器完全兼容。该芯片以接口简单、转换控制容易、通 用性好、性能价格比高等特点得到广泛的应用。
2020/4/8
20
图7-3 AD7520内部逻辑结构图
该芯片只含倒T形电阻网络、电流开关和反
馈电阻,不含运算放大器,输出端为电流输出。
转换精度是一个综合指标,包括零点误差、增益 误差等,它不仅与D/A转换器中元件参数的精度有 关,而且还与环境温度、集成运放的温度漂移以及 D/A转换器的位数有关。
2020/4/8
18
4. 非线性误差
通常把D/A转换器输出电压值与理想输出电压值 之间偏差的最大值定义为非线性误差。
D/A转换器的非线性误差主要由模拟开关以及 运算放大器的非线性引起。
第7章 数/模和模/数转换
模拟量:温度、湿度、压力、流量、速度等。
从模拟信号到数字信号的转换称为模/数转换 (简称A/D转换),实现模/数转换的电路叫做A/D 转换器(简称ADC);
从数字信号到模拟信号的转换称为数/模转换 (简称D/A转换),实现数/模转换的电路称为D/A 转换器(简称DAC)。
2020/4/8