排列组合问题教师版
排列组合例题精选教师(1)

排列组合例题精选教师(1)10.1排列与组合考点⼀:排列问题例1,六⼈按下列要求站⼀横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、⼄必须相邻;(3)甲、⼄不相邻;(4)甲、⼄之间间隔两⼈;(5)甲、⼄站在两端;(6)甲不站左端,⼄不站右端.例1,解(1)⽅法⼀要使甲不站在两端,可先让甲在中间4个位置上任选1个,有A1 4种站法,然后其余5⼈在另外5个位置上作全排列有A55种站法,根据分步乘法计数原理,共有站法:A14·A55=480(种).⽅法⼆由于甲不站两端,这两个位置只能从其余5个⼈中选2个⼈站,有A25种站法,然后中间4⼈有A4 4种站法,根据分步乘法计数原理,共有站法:A25·A44=480(种).⽅法三若对甲没有限制条件共有A66种站法,甲在两端共有2A55种站法,从总数中减去这两种情况的排列数,即共有站法:A6=480(种).(2)⽅法⼀先把甲、⼄作为⼀个“整体”,看作⼀个⼈,和其余4⼈进⾏全排列有A55种站法,再把甲、⼄进⾏全排列,有A22种站法,根据分步乘法计数原理,共有A55·A22=240(种)站法.⽅法⼆先把甲、⼄以外的4个⼈作全排列,有A44种站法,再在5个空档中选出⼀个供甲、⼄放⼊,有A1 5种⽅法,最后让甲、⼄全排列,有A22种⽅法,共有A44·A15·A22=240(种).(3)因为甲、⼄不相邻,中间有隔档,可⽤“插空法”,第⼀步先让甲、⼄以外的4个⼈站队,有A4 4种站法;第⼆步再将甲、⼄排在4⼈形成的5个空档(含两端)中,有A25种站法,故共有站法为A44·A25=480(种).也可⽤“间接法”,6个⼈全排列有A6=240种站法,所以不相邻的站法有A66-A55·A22=720-240=480(种).(4)⽅法⼀先将甲、⼄以外的4个⼈作全排列,有A44种,然后将甲、⼄按条件插⼊站队,有3A22种,故共有A44·(3A22)=144(种)站法.⽅法⼆先从甲、⼄以外的4个⼈中任选2⼈排在甲、⼄之间的两个位置上,有A2 4种,然后把甲、⼄及中间2⼈看作⼀个“⼤”元素与余下2⼈作全排列有A33种⽅法,最后对甲、⼄进⾏排列,有A22种⽅法,故共有A24·A33·A22=144(种)站法.(5)⽅法⼀⾸先考虑特殊元素,甲、⼄先站两端,有A22种,再让其他4⼈在中间位置作全排列,有=48(种)站法.⽅法⼆⾸先考虑两端两个特殊位置,甲、⼄去站有A2 2种站法,然后考虑中间4个位置,由剩下的4⼈去站,有A44种站法,由分步乘法计数原理共有A22·A44=48(种)站法.(6)⽅法⼀甲在左端的站法有A55种,⼄在右端的站法有A55种,且甲在左端⽽⼄在右端的站法有A44种,共有A66-2A55+A44=504(种)站法.⽅法⼆以元素甲分类可分为两类:①甲站右端有A55种站法,②甲在中间4个位置之⼀,⽽⼄不在右端有A14·A14·A44种,故共有A5·A44=504(种)站法.考点⼆:组合问题例2, 男运动员6名,⼥运动员4名,其中男⼥队长各1⼈.选派5⼈外出⽐赛.在下列情形中各有多少种选派⽅法?(1)男运动员3名,⼥运动员2名;(2)⾄少有1名⼥运动员;(3)队长中⾄少有1⼈参加;(4)既要有队长,⼜要有⼥运动员.例2, 解(1)第⼀步:选3名男运动员,有C36种选法.第⼆步:选2名⼥运动员,有C24种选法.共有C36·C24=120种选法. 3分(2)⽅法⼀⾄少1名⼥运动员包括以下⼏种情况:1⼥4男,2⼥3男,3⼥2男,4⼥1男.由分类加法计数原理可得总选法数为C1 4C46+C24C36+C34C2=246种. 6分⽅法⼆“⾄少1名⼥运动员”的反⾯为“全是男运动员”可⽤间接法求解.从10⼈中任选5⼈有C510种选法,其中全是男运动员的选法有C56种.所以“⾄少有1名⼥运动员”的选法为C510-C56=246种. 6分(3)⽅法⼀可分类求解:“只有男队长”的选法为C48;“只有⼥队长”的选法为C48;“男、⼥队长都⼊选”的选法为C38;所以共有2C48+C38=196种选法. 9分⽅法⼆间接法:从10⼈中任选5⼈有C 510种选法.其中不选队长的⽅法有C 58种.所以“⾄少1名队长”的选法为C 510-C 58=196种. 9分(4)当有⼥队长时,其他⼈任意选,共有C 49种选法.不选⼥队长时,必选男队长,共有C 48种选法.其中不含⼥运动员的选法有C 45种,所以不选⼥队长时的选法共有C 48-C 45种选法.所以既有队长⼜有⼥运动员的选法共有例3, 4个不同的球,4个不同的盒⼦,把球全部放⼊盒内. (1)恰有1个盒不放球,共有⼏种放法?(2)恰有1个盒内有2个球,共有⼏种放法?(3)恰有2个盒不放球,共有⼏种放法?例3,解(1)为保证“恰有1个盒不放球”,先从4个盒⼦中任意取出去⼀个,问题转化为“4个球,3个盒⼦,每个盒⼦都要放⼊球,共有⼏种放法?”即把4个球分成2,1,1的三组,然后再从3个盒⼦中选1个放2个球,其余2个球放在另外2个盒⼦内,由分步乘法计数原理,共有C 14C 24C 13×A 22=144种.(2)“恰有1个盒内有2个球”,即另外3个盒⼦放2个球,每个盒⼦⾄多放1个球,也即另外3个盒⼦中恰有⼀个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同⼀件事,所以共有144种放法.(3)确定2个空盒有C 24种⽅法.4个球放进2个盒⼦可分成(3,1)、(2,2)两类,第⼀类有序不均匀分组有C 34C 11A 22种⽅法;第⼆类有序均匀分组有222224A C C ·A 22种⽅法.故共有C 24( C 34C 11A 22+222224A C C ·A 22)=84种.当堂检测答案1,从5名男医⽣、4名⼥医⽣中选3名医⽣组成⼀个医疗⼩分队,要求其中男、⼥医⽣都有,则不同的组队⽅案共有()A ,70 种B ,80种C ,100 种D ,140 种解析:分为2男1⼥,和1男2⼥两⼤类,共有21125454C C C C ?+?=70种,解题策略:合理分类与准确分步的策略。
四年级第二十一讲排列组合教师版

第 21 讲摆列组合内容归纳认识摆列、组合公式的出处及含义,掌握详尽的计算方法;辨析摆列、组合之间酌差异与联系,并能够合理应用.典型问题兴趣篇1. 计算:(1)A42(2) A104(3)3 A33A63【答案】 (1)12(2)5040(3)138【剖析】依照摆列公式A n m( m1)(m n1) 计算m(1)A42 4 312(2) A104109875040(3)3A33A631382.费叔叔、小悦、冬冬和阿奇四个人站成一排照相,一共有多少种不相同的摆列方法?【答案】 24【剖析】这种摆列是有序的A44 4 3 2 1 243.体育课上,老师从10 名男生中挑出 4 人站成一排,—共有多少种不相同的摆列方法?【答案】 5040【剖析】先从 10 人中选出 4 人,再让 4 人全摆列C104A4424 210 50404.费叔叔、小悦、冬冬、阿奇四个人一块乘公共汽车去公园,上车后发现有8 个空座位,他们一共有多少种不相同的坐法?【答案】 1680【剖析】先让 4 人选座位,再让 4 人全摆列C84A4470 24 16805.用 1 至 7 这 7 个数字一共能组成多少个没有重复数字的三位数?若是把这些三位数从小到大排起来, 312 是其中第几个 ?【答案】( 1) 210;( 2)第 61 人【剖析】第一个地址有7 中选择第二个地址有6个选择第三个位置有5 个选择(1) A17A61A51210(2)百位是 1开头的有 30个,百位是 2开头的有 30个,312是第 61个6.计算:(1)C52(2) C74(2) A63C63【答案】( 1) 10 (2) 35( 3) 2400【剖析】依照组合公式n A m n2 5 44 765433120 20 2400C m n(1)C52 110(2)C7432135(3)A6C6A n7.图 21-1 中有六个点,任意三个点都不在一条直线上.请问:(1)以这些点为端点,一共能够连出多少条线段?(2)以这些点为极点,一共能够连出多少个三角形?【答案】( 1) 15 条;( 2) 20 个【剖析】( 1)不在同素来线两点确定一条直线C6215 (2)不在同素来线三点确定一个三角形 C6320 个8.费叔叔把 10 张不相同的游戏卡片分给冬冬和阿奇,而且决定给冬冬 8 张,给阿奇 2 张.一共有多少种不相同的分法 ?【答案】 45【剖析】先选出8 张冬冬,剩下 2 张就是阿奇的C108209.小悦要从八门课程中选学三门,一共有多少种选法 ?若是数学课与钢琴课时间矛盾,不能够同时学,她一共有多少种选法 ?【答案】 50【剖析】用消除法八门中任选三门,有56 种,数学课与钢琴课同时上有 6 种,减去不吻合题意的 6 种,C83C1656 650 种10.象棋兴趣小组一共有 9 名同学,请问:(1)若是从中选 3名同学在第二天的清早、中午、夜晚分别做值日,共有多少种选法?(2)若是从中选 3名同学去参加一次全市比赛,共有多少种选法?【答案】( 1) 504 种;( 2) 84 种【剖析】( 1)先选出 3 人再全摆列,A39 8 7504 种(2)这种选人是无序的C38499种拓展篇1. 计算:(1)A52(2) A73(3) A64A62【答案】( 1) 20;( 2) 210;( 3) 330【剖析】(1)A52 5 4 20 (2) A737 6 5 210 (3) A64A62 6 5 4 3 6 53302.如图 21-2 所示,有 5 面不相同颜色的小旗,任取 3 面排成一行表示一种信号,用这 5 面小旗一共能够表示出多少种不相同的信号?【答案】 60【剖析】先从 5 面旗选出 3 面旗,再让三面旗全摆列A5360 种3. 3 名同学一块去图书馆借科幻小说,发现书架上只剩下9 本,且各不相同.若是每人只借 1 本,那么共有多少种不相同的借法?【答案】 504【剖析】先从 9 本书选出 3 本书,再让 3 本书全摆列A93504 种4.用 1、2、3、4、5 这五个数码能够组成多少个没有重复数字的四位数?将这些四位数从小到大摆列起来,4125 是第几个 ?【答案】( 1) 120;(2) 74 个【剖析】( 1)第一个地址有 5 种选法,第二个地址有 4 种选法,第三个地址有三种选法,第四个地址有 2 种选法,A54120 (2)千位以1开头的有 A41A31A2124 个千位以2开头的有 A41A31A2124 个千位以 3 开头的有A41A31A2124 个千位以 4 开头第一个4123,第二个就是4125 所以24 3 2 74个5. 计算:(1)C93(2) C1032C102(3)C4, C1(4) C107, C35510【答案】( 1) 84;( 2) 30;( 3) 5,5 ;( 4)120,120【剖析】 (1)C9384 ; (2) C1032C102120 9030;(3)C545, C515(4)C107120 , C1031206.如图 21-3 所示,从端点O 出发的射线共有7 条,图中一共有多少个锐角?【答案】 21【剖析】夹角最大两条直线间夹角小于90 度,所以这两条直线间的任两条直线组成的角小于90度,C727 6 2 21个7.如图 21-4 所示,在一个圆周上有 8 个点,以这些点为极点或端点,一共能够画出多少条线段 ?多少个三角形 ?多少个四边形 ?【答案】( 1) 28 条;( 2) 56 个;( 3) 70 个;【剖析】(1)不在同素来线两点确定 1 条直线,C8228 条(2)不在同素来线三点确定1个三角形, C8356 个(3)不在同素来线四点确定 1 个四边形,C8470 个8.9 支球队进行足球比赛,实行单循环制,即每两队之间只比赛一场.每场比赛后胜方得3分,平局双方各得 1 分,负方不得分.请问:一共要举行多少场比赛?9 支队伍的得分总和最多为多少 ?【答案】( 1) 36 场( 2) 108 分【剖析】( 1)9 个队中每 2 个队比一场C9236 场(2)分总和最多,那就是全赢363108分9.学校十佳歌手大赛的 10 名获奖选手中,每 3 人都要照一张合影.问:需要拍多少张照片 ? 【答案】 120 张【剖析】没有排序问题所以C8312010.在新学期的班会上,大家要从11 名候选人中选出班干部.请问:(1)选出三人组成班委会,那一共有多少种选法?(2)从剩下的候选人中,选出三人分别担当语文、数学、英语的课代表,一共有多少种选法 ?【答案】( 1) 165 种( 2) 336 种【剖析】( 1)从 11 人中选出 3 人C113165 种(2)从剩下 3 人选出 3 人全摆列C83A3356 6 336种11.费叔叔带着小悦、冬冬、阿奇去参加一次聚会,主持人要求每个人从12 个颜色不相同的彩球中领取一个.请问:(1)小悦是第一个取球的人,她一共选出了 4 个球,准备回头分给大家,那一共有多少种选法 ?(2)小悦回到座位后,把这 4 个球分给大家,一共有多少种分法?(3)最后他们四人手中拿到的球一共有多少种可能?【答案】( 1) 495 种;( 2)24 种;( 3) 11880 种【剖析】( 1)从 12 个球中选出 4 个没有排序问题C124495 种(2)把四个不相同色的球分给4个人A4424 种(3)先从12 个不相同色的球选出4 个不相同色的球,再分给 4 个人,C124A44495 24 11880 种12.周末大打扫,老师要从第一组的10 名男生和 10 名女生中选出 5 人留下打扫卫生.请问:(1)若是老师任意选择,一共有多少种选择方法?(2)若是老师决定选出 2 名男生和 3名女生,一共有多少种选择方法?【答案】( 1) 15504 种;( 2) 5400 种【剖析】( 1)从 20 人中选出 5 人C20315504 种(2)从10名男生选 2 人,从 10 名女生选 3人C102C1035400 种超越篇1.有一些四位数,它们由 4 个互不相同且不为零的数字组成,所有这样的四位数从小到大依次摆列,第20 个是多少 ?【答案】 5132【剖析】因为由 4 个互不相同且不为零的数字组成,而且这而且这 4 个数字的和等于11.将4 个数字的和等于11,只有数字1,2,3,5满足千位 1 开头有A31A21 6 个,千位 2 开头有A31A21 6 个,千位 3 开头有A31A21 6 个,千位 5 开头有第一个5123 第二个51326+6+6+2=202.在身高互不相同的 6 个人中,选出 3 个人站成第一排,别的 3 个人站成第二排.请问:(1)若是能够任意站,那么一共有多少种排法?(2)若是要求第二排最矮的人也比第一排最高的人高,那么一共有多少种不相同的排法?【答案】( 1) 720 种;( 2)36 种【剖析】( 1)先从 6 人中选出 3 个人为第一排,再全摆列,剩下 3 人为一排再全摆列C63A33A33720种( 2)最高三人为第二排,其余三人为第一排,让它们每排分别全排列, A33A3336 种3.小口袋中有 4 个球,大口袋中有 6 个球,这些球颜色各不相同.请问:(1)任意取 4 个球出来,那么共有多少种不相同的结果?(2)取出 4 个球,而且恰好从每个口袋中各取 2 个球,共有多少种不相同结果【答案】( 1) 210 种;( 2)90 种【剖析】( 1)从小口袋取出 4 个大口袋取0 个,从小口袋取出 3 个大口袋取袋取出 2 个大口袋取 2 个,从小口袋取出 1 个大口袋取 3 个,从小口袋取出?1 个,从小口0 个大口袋取4个 C44C41C63C42C62 C 43 C 16C64 1 80902415210 种(2)每个袋子取两个,是无序的C42C62 6 1590 种4.在 1 至 30 30 个自然数中任意挑出两个不相同的数,使得它的和是偶数,一共有多少种不相同的挑方法 ?【答案】 210 种【剖析】和偶数,共 2 种情况:奇+奇偶+偶。
排列与组合.版块八.排列组合问题的常用方法总结2.教师版

挡板法(名额分配或者相同物品的分配问题)【例1】 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有 种.【考点】排列组合问题的常用方法总结 【难度】3星 【题型】填空 【关键字】无【解析】注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有129C 其余的就是19所学校选28天进行排列.于是安排方法数为1192928C A .【答案】1192928C A ;【例2】 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种.【考点】排列组合问题的常用方法总结 【难度】2星 【题型】填空 【关键字】无【解析】此例的实质是12个名额分配给8个班,每班至少一个名额,典例分析排列组合问题的常用方法总结 2可在12个名额中的11个空档中插入7块档板,一种插法对应一种名额的分配方式,故有711C 330=种. 【答案】330;【例3】 ()15a b c d +++有多少项?【考点】排列组合问题的常用方法总结 【难度】3星 【题型】解答 【关键字】无【解析】当项中只有一个字母时,有14C 种(即,,,a b c d ),而指数的次数为15, 故这样的项有14C 个;当项中有2个字母时,有24C 种,指数和为15,即将15个1分配给2个字母,用挡板法知为114C ,于是一共这样的项有21414C C ⋅;当项中有3个字母时,同上讨论知这样的项有32414C C ⋅种. 当项中有4个字母时,同上讨论知这样的项有43414C C ⋅种. 于是()15a b c d +++的项数为12132434414414414C C C C C C C 816+⋅+⋅+⋅=.或者化为123415x x x x +++=的不定方程非负整数解的问题,答案为318C 816=. 【答案】816;【例4】 有20个不加区别的小球放入编号为1,2,3的三个盒子里,要求每个盒子内的球数不少编号数,问有多少种不同的方法?【考点】排列组合问题的常用方法总结 【难度】3星 【题型】解答 【关键字】无【解析】为使每个盒子内的球数不少于编号数,先将0,1,2个球分别放入编号为1,2,3的盒子,这样这个问题转化为将17个球放入三个不同盒子的问题.将17个小球排成一排,在其间的16个空隙中插入2个挡板即可.于是所有的方法数为216C 120=. 【答案】120;【例5】 不定方程12350...100x x x x ++++=中不同的正整数解有 组,非负整数解有 组.【考点】排列组合问题的常用方法总结 【难度】3星 【题型】填空 【关键字】无【解析】相当于把100个1分给50个未知数,采用挡板法,于是所有的方法数为4999C ;非负整数解的问题,等价于 ()()()()12350111...1150x x x x ++++++++=的非负整数解问题,等价于1i i y x =+,12350...150y y y y ++++=的正整数解问题,一共有49149C 组.【答案】4999C ,49149C ;【例6】 5个人参加秋游带10瓶饮料,每人至少带1瓶,一共有多少种不同的带法. 【考点】排列组合问题的常用方法总结 【难度】3星 【题型】解答 【关键字】无【解析】把问题转化为5个相同的白球不相邻地插入已经排好的10个相同的黑球之间的9个空隙中的排列问题.59C 126=种.【答案】126;【例7】 将7个完全相同的小球任意放入4个不同的盒子中,共有多少种不同的放法?【考点】排列组合问题的常用方法总结 【难度】3星 【题型】解答 【关键字】无【解析】考虑将74+个球放入4个盒子中,每个盒子都不空,则每个盒子都减去一个球后与题目中的情形一一对应,故只需考虑将11个球放入4个盒子,每个盒子都不空即可.用加号法:将11写成11个1相加,共有10个加号,从中任取3个,刚可将这些数分成4份,共310C 120=种. 【答案】120;【例8】 一个楼梯共18个台阶12步登完,可一步登一个台阶也可一步登两个台阶,一共有多少种不同的走法.【考点】排列组合问题的常用方法总结 【难度】3星 【题型】解答 【关键字】无【解析】根据题意要想12步登完只能6个一步登一个台阶,6个一步登两个台阶,因此,把问题转化为6个相同的黑球与6个相同的白球的排列问题,共有612C 924=种不同的走法.【答案】924;【例9】 有10个三好学生名额,分配到高三年级的6个班里,要求每班至少1个名额,共有多少种不同的分配方案.【考点】排列组合问题的常用方法总结【难度】3星 【题型】解答 【关键字】无【解析】将10写成10个1相加,其中有9个加号,选出其中的5个加号,于是10可以被分成6数之和,且每个数都不小于1,故共有59C 126=种分配方案.【答案】126;【例10】 某中学准备组建一个18人的足球队,这18人由高一年级10个班的学生组成,每个班至少一个,名额分配方案共有_____种.【考点】排列组合问题的常用方法总结 【难度】3星 【题型】填空 【关键字】无【解析】用隔板法,18人排成一排,有17个间隔,在17个间隔里插入9个隔板,故共有917C 种分配方案.【答案】917C【例11】 10个优秀指标名额分配到一、二、三3个班,若名额数不少于班级序号数,共有多少种不同的分配方法?【考点】排列组合问题的常用方法总结 【难度】2星 【题型】解答 【关键字】无【解析】先拿3个指标分配给二班一个,三班两个,然后,问题就转化为7个优秀名额分配给三个班级,每班至少一个.用隔板法,有2615C =种方法.【答案】15插空法(当需排的元素不能相邻时)【例12】 从1231000,,,,个自然数中任取10个互不连续的自然数,有多少种不同的取法.【考点】排列组合问题的常用方法总结 【难度】3星 【题型】解答 【关键字】无【解析】把问题转化为10个相同的黑球与990个相同的白球,其中黑球不相邻的排列问题,也就是从990个白球形成的991个空档中选择10个放黑球,共有10991C 种不同的取法.【答案】10991C【例13】 某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为( )A .12B .16C .24D .32【考点】排列组合问题的常用方法总结 【难度】3星 【题型】选择【关键字】2010年,西城1模【解析】将三个人插入五个空位中间的四个空档中,有34A 24 种排法. 【答案】C ;【例14】 三个人坐在一排8个座位上,若每个人左右两边都有空位,则坐法种数为_______.【考点】排列组合问题的常用方法总结 【难度】2星 【题型】填空 【关键字】无【解析】将三个人插入5个空位中间的四个空档中,共有34A 43224=⨯⨯=种. 【答案】24;【例15】 要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,排法种数有____种.【考点】排列组合问题的常用方法总结 【难度】3星 【题型】填空 【关键字】无【解析】6个歌唱节目排列有66Α种,歌唱节目的空隙及两端共7个位置排入4个舞蹈节目,有47Α种方法.因此,由计数原理总方法有6467ΑΑ种.【答案】6467ΑΑ【例16】 马路上有编号为l ,2,3,……,10 十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有_____种. (用数字作答)【考点】排列组合问题的常用方法总结 【难度】3星 【题型】填空 【关键字】无【解析】关掉的灯不能相邻,也不能在两端.又因为灯之间没有区别,因而问题为在7盏亮着的灯形成的不包含两端的6个空中选出3个空放置熄灭的灯.有3620C =种.【答案】20;【例17】 为配制某种染色剂, 需要加入三种有机染料、两种无机染料和两种添加剂, 其中有机染料的添加顺序不能相邻.现要研究所有不同添加顺序对染色效果的影响, 总共要进行的试验次数为 .(用数字作答)【考点】排列组合问题的常用方法总结 【难度】3星 【题型】填空 【关键字】无【解析】先将无机染料和添加剂全排,有44Α种,包括两端共5个空,再将3种有机染料插入空中,有35Α种,故总要试验的次数为43451440=ΑΑ.【答案】1440;【例18】 一排9个座位有6个人坐,若每个空位两边都坐有人,共有______种不同的坐法.【考点】排列组合问题的常用方法总结 【难度】3星 【题型】填空 【关键字】无【解析】六个人全排后,将3空位插入六个人之间的五个空档中,共6365A C 720107200=⨯=种坐法.【答案】7200;【例19】 某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加.当甲乙同时参加时,他们两人的发言不能相邻.那么不同发言顺序的种数为( )A .360B .520C .600D .720【考点】排列组合问题的常用方法总结 【难度】2星 【题型】选择【关键字】2009年,海淀区2模【解析】只有甲参加时,有3454C 240=Α种;同理,只有乙参加时也有240种;甲、乙都参加时,先从剩下的5人中选2个排好,然后将甲、乙两人插入3个空中,故共有2253120=ΑΑ种. 因此不同发言顺序的种数为2402120600⨯+=.【答案】C ;【例20】 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?【考点】排列组合问题的常用方法总结 【难度】2星 【题型】解答 【关键字】无【解析】相当于在一个有10个位置的节目单中,有序插入2个歌唱节目,还剩余8个位置,由于剩余的8个节目的相对位置固定,故此时10个节目的位置确定.故所有的排法数为21010990A =⋅=. 【答案】90;【例21】 某人连续射击8次有四次命中,其中有三次连续命中,按“中”与“不中”报告结果,不同的结果有多少种.【考点】排列组合问题的常用方法总结 【难度】2星 【题型】解答 【关键字】无【解析】把问题转化为四个相同的黑球与四个相同白球,其中只有三个黑球相邻的排列问题,将三黑球“捆绑”在一起看成一个“黑球”,与另一个黑球插入四个白球的空档中,共有25A 20=种不同的结果. 【答案】20;捆绑法(当需排的元素有必须相邻的元素时)【例22】 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?【考点】排列组合问题的常用方法总结 【难度】2星 【题型】解答 【关键字】无【解析】先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:4444A A 576⋅=.【答案】576;【例23】 四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种.【考点】排列组合问题的常用方法总结 【难度】2星 【题型】填空 【关键字】无【解析】先选取4个小球中的2个捆绑在一个,然后此3个群体放入3个盒子,一共的方法数有2343C A 36⋅=种.【答案】36【例24】 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有【考点】排列组合问题的常用方法总结 【难度】2星 【题型】填空 【关键字】无【解析】注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有129C 其余的就是19所学校选28天进行排列.【答案】1192928C A ⋅【例25】 停车站划出一排12个停车位置,今有8辆不同型号的车需要停放,若要求剩余的4个空车位连在一起,则不同的停车方法共有__________种.【考点】排列组合问题的常用方法总结 【难度】3星 【题型】填空 【关键字】无【解析】先将8辆车全排有88Α种,再将4个空车位看成整体插入8辆车形成的9个空档中,有19C 种方法,故所求的方法为889Α.【答案】889Α;【例26】 四个不同的小球放入编号为1234,,,的四个盒中,则恰有一个空盒的放法共有_______种.(用数字作答)【考点】排列组合问题的常用方法总结 【难度】3星 【题型】填空 【关键字】无【解析】4个盒子选一个为空的方法14C 种,4个小球放入剩下3个盒子,每盒都至少有一个,只有112,,这种可能,故总共有111234432322C C C C 144=ΑΑ种放法. 换一种思路,从4个小球中取2个放在一起,有24C 种不同的方法,把取出的两个看成一个大球,与另外两个小球放入4个盒子中的3个,有34Α种不同的方法,故共有2344C 144=Α种放法.【答案】144;除序法(平均分堆问题,整体中部分顺序固定,对某些元素有顺序限制的排列,可以先不考虑顺序限制排列后,再除去规定顺序元素个数的全排列.)【例27】 6本不同的书平均分成三堆,有多少种不同的方法?【考点】排列组合问题的常用方法总结 【难度】2星 【题型】解答 【关键字】无【解析】分出三堆书()()()123456,,,,,a a a a a a 由顺序不同可以有33A 6=种,而这6种分法只算一种分堆方式,故6本不同的书平均分成三堆方式有22264233C C C 15A =种 【答案】15【例28】 6本书分三份,2份1本,1份4本,则有不同分法?【考点】排列组合问题的常用方法总结 【难度】3星 【题型】解答 【关键字】无【解析】分出三堆书()()()123456,,,,,a a a a a a 由顺序不同可以有22A 4=种,而这4种分法只算一种分堆方式,故分堆方式有41162122C C C 15A =种 【答案】15;【例29】 用1,2,3,4,5,6,7这七个数字组成没有重复数字的七位数中,⑴若偶数2,4,6次序一定,有多少个?⑵若偶数2,4,6次序一定,奇数1,3,5,7的次序也一定的有多少个? 【考点】排列组合问题的常用方法总结 【难度】2星 【题型】解答 【关键字】无 【解析】略【答案】⑴7733A A ;⑵773434A A A【例30】 一天的课程表要排入语文,数学,物理,化学,英语,体育六节课,如果数学必须排在体育之前,那么该天的课程表有多少种排法?【考点】排列组合问题的常用方法总结 【难度】3星【题型】解答 【关键字】无【解析】在六节课的排列总数中,体育课排在数学之前与数学课排在体育之前的概率相等,均为12,故本例所求的排法种数就是所有排法的12,即661A 3602=种.或者由于数学和体育的次序固定,方法数为6622A 360A =. 【答案】360【例31】 甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有( ) A .20种 B .30种 C .40种 D .60种【考点】排列组合问题的常用方法总结 【难度】3星 【题型】选择【关键字】2008年,海南宁夏高考【解析】A ;从五天中抽出三天来安排甲乙丙共有35C 10=种,其中甲要排在三天中的第一天,乙与丙还有两种顺序,故共有20种安排方法.【答案】A ;【例32】 某考生打算从7所重点大学中选3所填在第一档次的3个志愿栏内,其中A 校定为第一志愿,再从5所一般大学中选3所填在第二档次的3个志愿栏内,其中B C ,校必选,且B 在C 前,问此考生共有 种不同的填表方法(用数字作答).【考点】排列组合问题的常用方法总结 【难度】3星 【题型】填空【关键字】2009年,东城1模【解析】第一档次的志愿填法有26Α种;第二档次的学校除B C ,外另一个有13C 种选法,排顺序有3332=Α种(因为B 在C 前和B 在C 后的排法是一样多的),因此不同的填表方法共有21633C 270⨯=Α种.【答案】270递推法【例33】 一楼梯共10级,如果规定每次只能跨上一级或两级,要走上这10级楼梯,共有多少种不同的走法? 【考点】排列组合问题的常用方法总结 【难度】3星 【题型】解答 【关键字】无【解析】设上n 级楼梯的走法有n a 种,易知121,2a a ==,当2n ≥时,上n 级楼梯的走法可分两类:第一类:是最后一步跨一级,有1n a -种走法,第二类是最后一步跨两级,有2n a -种走法,由加法原理知:12n n n a a a --=+,据此3123a a a =+=,4235a a a =+=,5348a a a =+=,如是很容易计算出上10级台阶的走法数为89.【答案】89;用转换法解排列组合问题【例34】 某人连续射击8次有四次命中,其中有三次连续命中,按“中”与“不中”报告结果,不同的结果有多少种.【考点】排列组合问题的常用方法总结 【难度】2星【题型】解答 【关键字】无【解析】把问题转化为四个相同的黑球与四个相同白球,其中只有三个黑球相邻的排列问题.25A 20=种. 【答案】20【例35】 6个人参加秋游带10瓶饮料,每人至少带1瓶,一共有多少钟不同的带法.【考点】排列组合问题的常用方法总结 【难度】2星 【题型】解答 【关键字】无【解析】把问题转化为5个相同的白球不相邻地插入已经排好的10个相同的黑球之间的9个空隙种的排列问题.59C 126=种.【答案】126;【例36】 从1,2,3,…,1000个自然数中任取10个不连续的自然数,有多少种不同的取法.【考点】排列组合问题的常用方法总结 【难度】3星 【题型】解答 【关键字】无【解析】把问题转化为10个相同的黑球与990个相同白球,其其中黑球不相邻的排列问题.于是答案为10991C .【答案】10991C【例37】 某城市街道呈棋盘形,南北向大街5条,东西向大街4条,一人欲从西南角走到东北角,路程最短的走法有多少种.【考点】排列组合问题的常用方法总结 【难度】3星 【题型】解答 【关键字】无【解析】无论怎样走必须经过三横四纵,因此,把问题转化为3个相同的白球与四个相同的黑球的排列问题.37C 35=种.【答案】35;【例38】 一个楼梯共18个台阶12步登完,可一步登一个台阶也可一步登两个台阶,一共有多少种不同的走法.【考点】排列组合问题的常用方法总结 【难度】3星 【题型】解答 【关键字】无【解析】根据题意要想12步登完只能6个一步登一个台阶,6个一步登两个台阶,因此,把问题转化为6个相同的黑球与6个相同的白球的排列问题.612C 924=种.【答案】924;【例39】 求()10a b c ++的展开式的项数.【考点】排列组合问题的常用方法总结 【难度】3星 【题型】解答【关键字】无【解析】展开使的项为a b c αβγ,且10αβγ++=,因此,把问题转化为2个相同的黑球与10个相同的白球的排列问题.212C 66=种. 【答案】66【例40】 亚、欧乒乓球对抗赛,各队均有5名队员,按事先排好的顺序参加擂台赛,双方先由1号队员比赛,负者淘汰,胜者再与负方2号队员比赛,直到一方全被淘汰为止,另一方获胜,形成一种比赛过程.那么所有可能出现的比赛过程有多少种?【考点】排列组合问题的常用方法总结 【难度】3星 【题型】解答 【关键字】无【解析】设亚洲队队员为a 1,a 2,…,a 5,欧洲队队员为b 1,b 2,…,b 5,下标表示事先排列的出场顺序,若以依次被淘汰的队员为顺序.比赛过程转化为这10个字母互相穿插的一个排列,最后师胜队种步被淘汰的队员和可能未参加参赛的队员,所以比赛过程可表示为5个相同的白球和5个相同黑球排列问题,比赛过程的总数为610C =252(种)【答案】252;【例41】 圆周上共有15个不同的点,过其中任意两点连一弦,这些弦在圆内的交点最多有多少个? 【考点】排列组合问题的常用方法总结 【难度】3星 【题型】解答 【关键字】无【解析】因两弦在圆内若有一交点,则该交点对应于一个以两弦的四端点为顶点的圆内接四边形,则问题化为圆周上的15个不同的点能构成多少个圆内接四边形,因此这些现在圆内的交点最多有415C 1365 个. 【答案】1365;。
排列组合公式(教师版)

一、排列组合公式(四下)第3讲排列组合公式四年级春季知识点一、熟练掌握排列的定义和公式.二、熟练掌握组合的定义和公式.三、能够用排列组合解决简单的问题.四、初步区分排列和组合.一、排列、组合计算1、计算:(1)25A =_______;(2)37A =______;(3)4266A A -=_______.【答案】(1)20(2)210(3)330【解析】(1)255420A =⨯=(2)37765210A =⨯⨯=(3)4266654365330A A -=⨯⨯⨯-⨯=.2、计算:(1)24A ;(2)410A ;(3)42663A A -⨯.【答案】12;5040;270【解析】(1)244312A =⨯=;(2)410109875040A =⨯⨯⨯=;(3)()42663654336565341270A A -⨯=⨯⨯⨯-⨯⨯=⨯⨯⨯-=.3、0121112C +C __________.=【答案】2【解析】全选和一个都不选都是有一种方法,112+=.课堂例题方法精讲4、计算:(1)35C ;(2)3210102C C -⨯;(3)45C ,15C ;(4)710C ,310C .【答案】10;30;5,5;120,120【解析】(1)()3554332110C =⨯⨯÷⨯⨯=;(2)()()3210102109832121092130C C -⨯=⨯⨯÷⨯⨯-⨯⨯÷⨯=;(3)()41555432432155C C =⨯⨯⨯÷⨯⨯⨯==,;(4)()710109876547654321120C =⨯⨯⨯⨯⨯⨯÷⨯⨯⨯⨯⨯⨯=,()3101098321120C =⨯⨯÷⨯⨯=.5、计算:(1)01233333C C C C +++;(2)0123444444C C C C C ++++;(3)012345555555C C C C C C +++++;(4)0121010101010C C C C ++++ ;(5)012345111111111111C C C C C C +++++.【答案】8;16;32;1024;1024【解析】(1)012333332228C C C C +++=⨯⨯=;(2)0123444444=2222=16C C C C C ++++⨯⨯⨯;(3)0123455555552222232C C C C C C +++++=⨯⨯⨯⨯=;(4)012101010101010=2=1024C C C C ++++ ;(5)01234511111111111111221024C C C C C C +++++=÷=.二、排列问题6、小高、墨莫、卡莉娅和宣萱四个人到野外郊游,其中三个人站成一排,另外一个人拍照,请问:一共会有多少张不同的照片?【答案】24【解析】从4个人中选3人出来排列,3443224A =⨯⨯=.7、甲、乙、丙、丁、戊5人一起出去游玩,在某一风景点排成一排合照.如果甲站在最右边,那最多可以照____________张不同的照片.【答案】24【解析】另外四个人任意占无要求,所以总的方法数是44432124A =⨯⨯⨯=.8、有8个选手,要在8个人中选出冠军、亚军和季军,有_____________种可能.【答案】336【解析】有一定的顺序,所以答案是38876336A =⨯⨯=.9、从1~5这5个数字中选出4个数字(不能重复)组成四位数,共能组成多少个不同的四位数?千位是1的四位数有多少个?其中比3000小的有多少个?【答案】120;24;48【解析】(1)455432120A =⨯⨯⨯=;(2)3443224A =⨯⨯=;(3)比3000小的有1开头和2开头的,1千多的数和2千多的数一样多,共有342243248A ⨯=⨯⨯⨯=.。
小学六年级数学第讲:排列组合(教师版)

第十九讲排列组合一、排列问题在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从n个不同的元素中取出m(m n≤)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.排列的基本问题是计算排列的总个数.从n个不同的元素中取出m(m n≤)个元素的所有排列的个数,叫做从n个不同的元素P.的排列中取出m个元素的排列数,我们把它记做mn根据排列的定义,做一个m元素的排列由m个步骤完成:步骤1:从n个不同的元素中任取一个元素排在第一位,有n种方法;步骤2:从剩下的(1n-)种方法;n-)个元素中任取一个元素排在第二位,有(1……步骤m :从剩下的[(1)]n m --个元素中任取一个元素排在第m 个位置,有11n m n m --=-+()(种)方法;由乘法原理,从n 个不同元素中取出m 个元素的排列数是121n n n n m ⋅-⋅-⋅⋅-+()()(),即121m n P n n n n m =---+()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘.二、排列数一般地,对于m n =的情况,排列数公式变为12321n n P n n n =⋅-⋅-⋅⋅⋅⋅()(). 表示从n 个不同元素中取n 个元素排成一列所构成排列的排列数.这种n 个排列全部取出的排列,叫做n 个不同元素的全排列.式子右边是从n 开始,后面每一个因数比前一个因数小1,一直乘到1的乘积,记为!n ,读做n 的阶乘,则n n P 还可以写为:!n n P n =,其中!12321n n n n =⋅-⋅-⋅⋅⋅⋅()() .在排列问题中,有时候会要求某些物体或元素必须相邻;求某些物体必须相邻的方法数量,可以将这些物体当作一个整体捆绑在一起进行计算.三、组合问题日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m n C .一般地,求从n 个不同元素中取出的m 个元素的排列数m n P 可分成以下两步:第一步:从n 个不同元素中取出m 个元素组成一组,共有m n C 种方法;第二步:将每一个组合中的m 个元素进行全排列,共有m m P 种排法.根据乘法原理,得到m m m n n m P C P =⨯.因此,组合数12)112321mm n n m m P n n n n m C m m m P ⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⨯⨯()(()()(). 这个公式就是组合数公式.四、组合数的重要性质一般地,组合数有下面的重要性质:m n m n n C C -=(m n ≤)这个公式的直观意义是:m n C 表示从n 个元素中取出m 个元素组成一组的所有分组方法.n m n C -表示从n 个元素中取出(n m -)个元素组成一组的所有分组方法.显然,从n 个元素中选出m 个元素的分组方法恰是从n 个元素中选m 个元素剩下的(n m -)个元素的分组方法.例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即3255C C =.规定1n nC =,01n C =. 五、插板法一般用来解决求分解一定数量的无差别物体的方法的总数,使用插板法一般有三个要求:①所要分解的物体一般是相同的:②所要分解的物体必须全部分完:③参与分物体的组至少都分到1个物体,不能有没分到物体的组出现.在有些题目中,已知条件与上面的三个要求并不一定完全相符,对此应当对已知条件进行适当的变形,使得它与一般的要求相符,再适用插板法.六、使用插板法一般有如下三种类型:⑴ m 个人分n 个东西,要求每个人至少有一个.这个时候我们只需要把所有的东西排成一排,在其中的(1)n -个空隙中放上(1)m -个插板,所以分法的数目为11m n C --.⑵ m 个人分n 个东西,要求每个人至少有a 个.这个时候,我们先发给每个人(1)a -个,还剩下[(1)]n m a -- 个东西,这个时候,我们把剩下的东西按照类型⑴来处理就可以了.所以分法的数目为1(1)1m n m a C ----.⑶ m 个人分n 个东西,允许有人没有分到.这个时候,我们不妨先借来m 个东西,每个人多发1个,这样就和类型⑴一样了,不过这时候物品总数变成了()n m +个,因此分法的数目为11m n m C -+-.1.使学生正确理解排列、组合的意义;正确区分排列、组合问题;2.了解排列、排列数和组合数的意义,能根据具体的问题,写出符合要求的排列或组合;3.掌握排列组合的计算公式以及组合数与排列数之间的关系;4.会、分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对排列组合的一些计数问题进行归纳总结,重点掌握排列与组合的联系和区别,并掌握一些排列组合技巧,如捆绑法、挡板法等。
排列组合练习题教师版

排列组合练习题40题学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释)1.我班制定了数学学习方案: 星期一和星期日分别解决4个数学问题, 且从星期二开始, 每天所解决问题的个数与前一天相比, 要么“多一个”要么“持平”要么“少一个”.在一周中每天所解决问题个数的不同方案共有()A.50种B.51种C.140种D.141种【答案】D【解析】试题分析:因为星期一和星期日分别解决4个数学问题,所以从这周的第二天开始后六天中“多一个”或“少一个”的天数必须相同,所以后面六天中解决问题个数“多一个”或“少一个”的天数可能是0、1、2、3天,共四种情况,所以共有0112233 6656463141C C C C C C C+++=种考点:排列组合问题2.从0,1,3,4,5,6六个数字中,选出一个偶数和两个奇数,组成一个没有重复数字的三位数,这样的三位数共有()A、24个B、36个C、48个D、54个【答案】C【解析】若包括0,则还需要两个奇数,且0不能排在最高位,有C32A21A22=3×2×2=12个若不包括0,则有C21C32A33=3×2×6=36个共计12+36=48个考点:排列组合3.有10件不同的电子产品,其中有2件产品运行不稳定。
技术人员对它们进行一一测试,直到2件不稳定的产品全部找出后测试结束,则恰好3次就结束测试的方法种数是()A.16 B.24 C.32 D.48【答案】C【解析】试题分析:前两次测试的是一件稳定的,一件不稳定的,第三件是不稳定的,共有211 22832A C C=种方法.考点:排列与组合公式.4.一个袋中有6个同样大小的黑球,编号为1、2、3、4、5、6,现从中随机取出3个球,以X表示取出球的最大号码. 则X所有可能取值的个数是()A.6 B.5 C.4 D.3【答案】C【解析】试题分析:随机变量X的可能取值为6,5,4,3取值个数为4.1 / 10考点:离散型随机变量的取值.5.在1,2,3,4,5,6这六个数字组成的没有重复数字的三位数中,各位数字之和为偶数的共有( )A .60个B .36个C .24个D .18个【答案】A【解析】依题意,所选的三位数字有两种情况:(1)3个数字都是偶数,有33A 种方法;(2)3个数字中有2个是奇数,1个是偶数,有23C 13C 33A 种方法,故共有33A +23C 13C 33A =60种方法,故选A .6.将A ,B ,C ,D ,E 排成一列,要求A ,B ,C 在排列中顺序为“A,B ,C”或“C,B ,A”(可以不相邻),这样的排列数有( )A .12种B .20种C .40种D .60种【答案】C【解析】五个元素没有限制全排列数为55A ,由于要求A ,B ,C 的次序一定(按A ,B ,C 或C ,B ,A)故除以这三个元素的全排列33A ,可得5533A A ×2=40. 7.将7支不同的笔全部放入两个不同的笔筒中,每个笔筒中至少放2支,则不同的放法有( )A .56种B .84种C .112种D .28种【答案】C【解析】根据题意先将7支不同的笔分成两组,若一组2支,另一组5支,有27C 种分组方法;若一组3支,另一组4支,有37C 种分组方法.然后分配到2个不同的笔筒中,故共有(27C +37C )22A =112种放法.8.两家夫妇各带一个小孩一起到动物园游玩,购票后排队依次入园,为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数为( )A .48种B .36种C .24种D .12种【答案】C【解析】爸爸排法为22A 种,两个小孩排在一起故看成一体有22A 种排法.妈妈和孩子共有33A 种排法,∴排法种数共有22A 22A 33A =24种.故选C . 9.2013年8月31日,第十二届全民运动会在辽宁省举行.某运动队有男运动员6名,女运动员4名,选派5人参加比赛,则至少有1名女运动员的选派方法有( )A .128种B .196种C .246种D .720种【答案】C【解析】“至少有1名女运动员”的反面为“全是男运动员”.从10人中任选5人,有510C3 / 10种选法,其中全是男运动员的选法有56C 种.所以“至少有1名女运动员”的选法有510C -56C =246种. 10.三张卡片的正反面分别写有1和2,3和4,5和6,若将三张卡片并列,可得到不同的三位数(6不能作9用)的个数为( )A .8B .6C .14D .48【答案】D【解析】先排首位6种可能,十位数从剩下2张卡中任取一数有4种可能,个位数1张卡片有2种可能,∴一共有6×4×2=48(种).11.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有( )A .8种B .10种C .12种D .32种【答案】B【解析】从A 到B 若路程最短,需要走三段横线段和两段竖线段,可转化为三个a 和两个b的不同排法,第一步:先排a 有35C 种排法,第二步:再排b 有1种排法,共有10种排法,选B 项.12.某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有( )A .35种B .16种C .20种D .25种【答案】D【解析】试题分析:学生从7门课程中选修4门,其中甲、乙两门课程不能都选,有三种方法,一是不选甲乙共有45C 种方法,二是选甲,共有35C 种方法,三是选乙,共有35C 种方法,把这3个数相加可得结果为25考点:排列组合公式13.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( )A .324B .648C .328D .360【答案】C【解析】试题分析:首先应考虑“0”是特殊元素,当0排在个位时,有=9×8=72(个),当0不排在个位时,有=4×8×8=256(个),于是由分类加法计数原理,得符合题意的偶数共有72+256=328(个).考点:排列组合知识14.学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有 ( )A.36种B.30种C.24种D.6种【答案】B【解析】试题分析:先将语文、数学、英语、理综4科分成3组,每组至少1科,则不同的分法种数为24C ,其中数学、理综安排在同一节的分法种数为1,故数学、理综不安排在同一节的分法种数为24C -1,再将这3组分给3节课有33A 种不同的分配方法,根据分步计数原理知,不同的安排方法共有(24C -1)33A =30,故选B.考点:分步计数原理,排列组合知识15.现有4名教师参加说课比赛,共有4道备选题目,若每位教师从中有放回地随机选出一道题目进行说课,其中恰有一道题目没有被这4位教师选中的情况有( )A .288种B .144种C .72种D .36种【答案】B【解析】试题分析:从4题种选一道作为不被选中的题有4种,从4位教师中选2位,这两位是选同样题目的有246C =种,被选中两次的题目有3种方案,剩下的两位教师分别选走剩下的2题,共4632=144⨯⨯⨯种.考点:排列组合.16.用红、黄、蓝等6种颜色给如图所示的五连圆涂色,要求相邻两个圆所涂颜色不能相同,且红色至少要涂两个圆,则不同的涂色方案种数为( ) A .610 B .630 C .950 D .1280【答案】B【解析】试题分析:采用分类原理:第一类:涂两个红色圆,共有11111111114554555544605A A A A A A A A A A 种;第二类:涂三个红色圆,共有115525A A 种;故共有630种.17.如图,用四种不同颜色给图中的A ,B ,C ,D ,E ,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有( )A .288种B .264种C .240种D .168种【答案】B【解析】先分步再排列先涂点E ,有4种涂法,再涂点B ,有两种可能:5 / 10(1)B 与E 相同时,依次涂点F ,C ,D ,A ,涂法分别有3,2,2,2种;(2)B 与E 不相同时有3种涂法,再依次涂F 、C 、D 、A 点,涂F 有2种涂法,涂C 点时又有两种可能:(2.1)C 与E 相同,有1种涂法,再涂点D ,有两种可能:①D 与B 相同,有1种涂法,最后涂A 有2种涂法;②D 与B 不相同,有2种涂法,最后涂A 有1种涂法.(2.2)C 与E 不相同,有1种涂法,再涂点D ,有两种可能:①D 与B 相同,有1种涂法,最后涂A 有2种涂法;②D 与B 不相同,有2种涂法,最后涂A 有1种涂法.所以不同的涂色方法有4×{3×2×2×2+3×2×[1×(1×2+1×2)+1×(1×2+1×1)]}=4×(24+42)=264.18.将6名男生、4名女生分成两组,每组5人,参加两项不同的活动,每组3名男生和2名女生,则不同的分配方法有( )A .240种B .120种C .60种D .180种【答案】B【解析】试题分析:从6名男生中选3人,从4名女生中选2人组成一组,剩下的组成一组,则3264120C C =.19.现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙、丙不会开车但能从事其他三项工作,丁、戊都能胜四项工作,则不同安排方案的种数是( )A .240B .126C .78D .72【答案】C试题分析:根据题意,分情况讨论,①甲、乙、丙三人中有两人在一起参加除了开车的三项工作之一,有2112332236C C C A ⨯=种;②甲、乙、丙三人各自1人参加除了开车的三项工作之一即丁、戌两人一起参加开车工作时,有336A =种;③甲、乙、丙三人中有一1人与丁、戌中的一人一起参加除开车的三项工作之一,有11123232136C C C A ⨯=种,由分类计数原理,可得共有3663678++=种,故选C.20.六名大四学生(其中4名男生、2名女生)被安排到A ,B ,C 三所学校实习,每所学校2人,且2名女生不能到同一学校,也不能到C 学校,男生甲不能到A 学校,则不同的安排方法为( )A .24B .36C .16D .18【答案】D【解析】女生的安排方法有22A =2种.若男生甲到B 学校,则只需再选一名男生到A 学校,方法数是13C =3;若男生甲到C 学校,则剩余男生在三个学校进行全排列,方法数是33A =6.根据两个基本原理,总的安排方法数是2×(3+6)=18.21.某班班会准备从含甲、乙的7人中选取4人发言,要求甲、乙两人至少有一人参加,且若甲、乙同时参加,则他们发言时顺序不能相邻,那么不同的发言顺序有( ).A .720种B .520种C .600种D .360种【答案】C【解析】分两类:第一类,甲、乙两人只有一人参加,则不同的发言顺序有134254C C A 种;第二类:甲、乙同时参加,则不同的发言顺序有22222523C C A A 种.共有:134254C C A +22222523C C A A =600(种).二、填空题(题型注释)22.设ABCDEF 为正六边形,一只青蛙开始在顶点A 处,它每次可随意地跳到相邻两顶点之一。
教师排列组合典型例题
排列组合问题在实际应用中是非常广泛的,并且在实际中的解题方法也是比较复杂的,下面就通过一些实例来总结实际应用中的解题技巧。
1.排列的定义:从n个不同元素中,任取m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
2.组合的定义:从n个不同元素中,任取m个元素,并成一组,叫做从n个不同元素中取出m个元素的一个组合。
3.排列数公式:4.组合数公式:5.排列与组合的区别与联系:与顺序有关的为排列问题,与顺序无关的为组合问题。
例1 学校组织老师学生一起看电影,同一排电影票12张。
8个学生,4个老师,要求老师在学生中间,且老师互不相邻,共有多少种不同的坐法?分析此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待。
所涉及问题是排列问题。
解先排学生共有种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有种选法。
根据乘法原理,共有的不同坐法为种。
结论1 插入法:对于某两个元素或者几个元素要求不相邻的问题,可以用插入法。
即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素的空档之中即可。
例2 、5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?分析此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题。
解因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有种排法,其中女生内部也有种排法,根据乘法原理,共有种不同的排法。
结论2 捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题。
即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列。
例3 高二年级8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种?分析此题若直接去考虑的话,就会比较复杂。
(教师版)排列组合问题经典题型与通用方法
排列组合问题经典题型与通用方法(教师版)1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有()A、60种B、48种C、36种D、24种2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有()A、4441284C C C种 B、44412843C C C种 C、4431283C C A种 D、444128433C C CA种6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为()A、480种B、240种C、120种D、96种7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。
小学六年级数学第讲:排列组合(教师版)
第十九讲排列组合一、排列问题在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从n个不同的元素中取出m(m n≤)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.排列的基本问题是计算排列的总个数.从n个不同的元素中取出m(m n≤)个元素的所有排列的个数,叫做从n个不同的元素P.的排列中取出m个元素的排列数,我们把它记做mn根据排列的定义,做一个m元素的排列由m个步骤完成:步骤1:从n个不同的元素中任取一个元素排在第一位,有n种方法;步骤2:从剩下的(1n-)种方法;n-)个元素中任取一个元素排在第二位,有(1……步骤m :从剩下的[(1)]n m --个元素中任取一个元素排在第m 个位置,有11n m n m --=-+()(种)方法;由乘法原理,从n 个不同元素中取出m 个元素的排列数是121n n n n m ⋅-⋅-⋅⋅-+()()(),即121m n P n n n n m =---+()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘.二、排列数一般地,对于m n =的情况,排列数公式变为12321n n P n n n =⋅-⋅-⋅⋅⋅⋅()(). 表示从n 个不同元素中取n 个元素排成一列所构成排列的排列数.这种n 个排列全部取出的排列,叫做n 个不同元素的全排列.式子右边是从n 开始,后面每一个因数比前一个因数小1,一直乘到1的乘积,记为!n ,读做n 的阶乘,则n n P 还可以写为:!n n P n =,其中!12321n n n n =⋅-⋅-⋅⋅⋅⋅()() .在排列问题中,有时候会要求某些物体或元素必须相邻;求某些物体必须相邻的方法数量,可以将这些物体当作一个整体捆绑在一起进行计算.三、组合问题日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m n C .一般地,求从n 个不同元素中取出的m 个元素的排列数m n P 可分成以下两步:第一步:从n 个不同元素中取出m 个元素组成一组,共有m n C 种方法;第二步:将每一个组合中的m 个元素进行全排列,共有m m P 种排法.根据乘法原理,得到m m m n n m P C P =⨯.因此,组合数12)112321mm n n m m P n n n n m C m m m P ⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⨯⨯()(()()(). 这个公式就是组合数公式.四、组合数的重要性质一般地,组合数有下面的重要性质:m n m n n C C -=(m n ≤)这个公式的直观意义是:m n C 表示从n 个元素中取出m 个元素组成一组的所有分组方法.n m n C -表示从n 个元素中取出(n m -)个元素组成一组的所有分组方法.显然,从n 个元素中选出m 个元素的分组方法恰是从n 个元素中选m 个元素剩下的(n m -)个元素的分组方法.例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即3255C C =.规定1n nC =,01n C =. 五、插板法一般用来解决求分解一定数量的无差别物体的方法的总数,使用插板法一般有三个要求:①所要分解的物体一般是相同的:②所要分解的物体必须全部分完:③参与分物体的组至少都分到1个物体,不能有没分到物体的组出现.在有些题目中,已知条件与上面的三个要求并不一定完全相符,对此应当对已知条件进行适当的变形,使得它与一般的要求相符,再适用插板法.六、使用插板法一般有如下三种类型:⑴ m 个人分n 个东西,要求每个人至少有一个.这个时候我们只需要把所有的东西排成一排,在其中的(1)n -个空隙中放上(1)m -个插板,所以分法的数目为11m n C --.⑵ m 个人分n 个东西,要求每个人至少有a 个.这个时候,我们先发给每个人(1)a -个,还剩下[(1)]n m a -- 个东西,这个时候,我们把剩下的东西按照类型⑴来处理就可以了.所以分法的数目为1(1)1m n m a C ----.⑶ m 个人分n 个东西,允许有人没有分到.这个时候,我们不妨先借来m 个东西,每个人多发1个,这样就和类型⑴一样了,不过这时候物品总数变成了()n m +个,因此分法的数目为11m n m C -+-.1.使学生正确理解排列、组合的意义;正确区分排列、组合问题;2.了解排列、排列数和组合数的意义,能根据具体的问题,写出符合要求的排列或组合;3.掌握排列组合的计算公式以及组合数与排列数之间的关系;4.会、分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对排列组合的一些计数问题进行归纳总结,重点掌握排列与组合的联系和区别,并掌握一些排列组合技巧,如捆绑法、挡板法等。
2021届浙江高三2-3月卷排列组合小题汇编(教师版)
2021届浙江高三2-3月卷排列组合小题汇编(教师版)一、选择题1:(2021年2月杭二中高三开学考解析第6题)1:美国对华为实行了禁令,为了突围实现技术自主,华为某分公司抽调了含甲、乙的5个工程师到华为总部的4个不同的技术部门参与研发,要求每个工程师只能去一个部门,每个部门至少去一个工程师,且甲、乙两人不能去同一个部门,则不同的安排方式一共有( )中A .96B .120C .180D .216方法提供与解析:(浙江宁波虞哲骏)解析:由题:先选两个人一组:2213329C C C +=种,再分配到4个部门:44A .所以共有449216A =种,故选D .2:(2021年2月高三之江教育开学考解析第7题)2:5名同学排成一组照相,若甲、乙相邻且乙、丙不相邻,则不同的排法有 ( )A .24种B .36种C .48种D .60种方法提供与解析:(浙江嘉兴王帅峰) 解析1:(间接法)此题直接做需要分类讨论,适合用间接法:只考虑甲乙相邻时,共有424248A A ⨯=种,甲乙相邻且乙丙也相邻时,则甲乙丙三人的顺序只能是甲乙丙或者丙乙甲,此时共有33212A =种,所以甲、乙相邻且乙、丙不相邻的种类共有36种,故选B3:(2021年2月瑞安中学高三返校考解析第7题)3:从0,2,4,6,8和1,3,5,7,9两组数中各取两个数,组成无重复数字的四位偶数的个数是( )A.720B.1120C.1200D.1680 方法提供与解析:(杭州唐慧维) 解析:分两类:①有0:1121311214513122400C C C A A A A A②无0:22134523720C C A A综上,4007201120N ,故选B.4:(2021年3月宁波十校高三联考解析第8题)4:现有个9相同的球要放到3个不同的盒子里,每个盒子至少一个球,各盒子中球的个数互不相同,则不同方法的种数是( )A .28B .24C .18D .16方法提供与解析:(浙江宁波周西奥) 解析:(经典的方程解的问题)首先,由于各个盒子中球数互不相同,此时共有(3,3,3),(4,4,1),(2,2,5),(1,1,7),排列得1+3+3+3=10组解,这是我们要舍去的;其次,设三个盒子中的球数为123,,x x x ,原题即1239x x x ++=的解的个数,相当于9个球,8个空中插2块隔板,也就是2828C =种,故所有的种数为28-10=18种5:(2020年12月宁波市高中数学竞赛解析第7题)5:某次考试共有3道题,每题的得分均可能为0分、1分、2分、或3分,若共有15名学生参加考试,则存在两名学生甲、乙( )A .前两题的得分均相同B .三道题的得分之和相同C .三道题的得分之积相同D .对每道题,甲的得分均不低于乙的得分方法提供与解析:(浙江绍兴孔祥新)解析:A .前两题的得分的不同情况有44=16⨯种,所以A 不正确; B .三道题的得分之和可能的值有0,1,2,…,9,共10种,所以B 正确;C .三道题的得分之积可能的值有0,1,2,3,4,6,8,9,12,18,27,共11种,所以C 正确;D .先考虑两名学生前2题的得分情况,若前2题得分相同,则这2名学生即符合条件,故不妨设没有2名学生前2题得分相同,将其16种不同的得分情况分成三类.第一类(0,0),(1,0),(2,0),(3,0),(3,1),(3,2),(3,3)至多4名学生, 第二类(0,1),(1,1),(2,1),(2,2),(2,3)至多5名,第三类(0,2),(0,3),(1,2),(1,3)至多4人,至多13种,所以D 正确; 故选B,C ,D .6:(2021年2月数海漫游“迎辛丑年”线上测试卷解析第17题)6:将1,2,3,4,5五个数字排成一行,满足相邻两数差的绝对值不大于2的排列有种( ).A .4916-B .3-C .116-D .20方法提供与解析:(浙江新昌+赵洋) 解析1:(间接法、排除法)五个数字的全排列数为55120A =.相邻两数差的绝对值大于2的组合有1,4;1,5;2,5三种组合,仅有一个组合中的两数相邻时,其不同排法种数为424248A A ⋅=;当1,4与1,5同时相邻时,1必定在中间,4,5分居两侧,其不同排法种数为323212A A ⋅=;当1,5与2,5同时相邻时,5必定在中间,1,2分居两侧,其不同排法种数为323212A A ⋅=;当1,4与2,5同时相邻时,其不同排法种数为32232224A A A ⋅⋅=;当三个组合同时相邻时,有5在1,2中间,1在4,5,则有2,5,1,4,或者4,1,5,2,其不同排法种数为22224A A ⋅=;所以满足题意的不同排法种数为120483*********N =-⨯+++-=,故填20解析2:(直接法、树状图)当1的左右两侧都有数字时,必为2,3,其排法有两种,排好后将其作为一个整体;当4,5位于整体的两侧时,5只能在3的边上,4在2的边上,仅有一种排法;当4,5位于整体的同侧时,4,5同在3的边上有两种排法,4,5同在2的边上有一种排法,此时共有不同排法种数1248N =⨯=.当1在左侧时,有树图如下共有不同排法种数为26N =;当1在右侧时,同理可得36N =;,所以满足题意的不同排法种数为12320N N N N =++=,故填20二、填空题1:(2021年3月温州二模解析第15题)1:有2辆不同的红色车和2辆不同的黑色车要停放在如图所示的六个车位中的四个内,要求相同颜色的车不在同一行也不在同一列,则共有种不同的停放方法 .(用数字作答)A B C DEF方法提供与解析:解析:由题:先排第一行有:11222324C C A =种排法,则第2行用列举法可知有3种排法,所以总共有:72种.答案:722:(2021年2月新昌高三期末卷解析第16题)2:小张的公司年会有一个小游戏:箱子中有材质和大小完全相同的六个小球,其中三个球标有号码1,两个球标有号码2,一个球标有号码3,有放回的从箱子中取两次球,每次取一个,设第一个球的号码是x ,第二个球的号码是y ,记2x y ξ=+,则()7P ξ==;若公司规定9,8,7ξ=时,分别为一二三等奖,奖金分别为1000元,500元,200元,其余无奖.则小张玩游戏一次获得奖金的期望为 元. 方法提供与解析:(浙江温州+倪阿亮)解析:由题意可知7123322ξ==+⨯=+⨯,所以()311257666636P ξ==⨯+⨯=;()21286636P ξ==⨯=()11196636P ξ==⨯=,所以玩一次获得奖金的期望为25125050020010003636363⨯+⨯+⨯=3:(2021年2月浙江省水球高考命题研究组方向性测试解析第15题)3:从1,2,3,4,5,6中选出五个数字组成五位数,要求有且仅有两个奇数相邻,则所有满足条件的五位数的个数是 .(用数字作答)方法提供与解析:(浙江温州郑寿好)解析:若选出2奇3偶,则有13123342144=C A A A 种;若选出3奇2偶,则有1222232332216=C A C A A 种;;故填360.4:(2021年2月温州中学高三返校考解析第16题)4:“e 游小镇”某公司有E D C B A ,,,,五幢独立的大楼,每两幢大楼的顶楼之间没有连接的天桥,现在公司打算在这五幢楼的顶楼之间共建造3座天桥(每两幢楼的顶楼之间至多建造一座天桥),要使A 楼的人员能够通过天桥走到B 楼,则3座天桥的建造方法共有种 .方法提供与解析:(杭州沙志广) 解析1(分类):(1)A 直接连接B ,还剩两座大桥未连接,有362)2)(1(2525=--C C 种(2)A 通过一幢楼作为中介连接至B ,可选E D C ,,其一维中介,故共有21)232(3=++⨯种建造方法 (3)A 通过两座楼为中介再连至B ,可选DE CE CD ,,三种情况,若选CD ,有B D C A ---,B C D A ---两种,故共有623=⨯种 综上所述,共有6362136=++种5:(2021年2月高三名校协作体联考解析第15题)5:有8个座位连成一排,甲、乙、丙、丁4人就坐,要求有且仅有两个空位相邻且甲、乙两人都在丙的同侧,则共有种不同的坐法 .方法提供与解析:(浙江杭州罗彪) 解析:捆绑法+插空法第一步,考虑甲乙丙的位置关系,丙只能在最前或后,甲乙顺序随意,有1222C A 4=种情况;第二步,考虑将丁放入甲乙丙产生的4个空位中,有14C 4=种情况;第三步,4个空位插入甲乙丙丁产生的5个空位中,4个空位由题意是2个1空位,1个2连空位,先选一个位置放2连空位有15C 种情况,再选2个空位放1空位有24C 种情况,故有1254C C 30=种情况;因此,总计有4430480⨯⨯=种情况,故答案为480.6:(2021年3月高三“超级全能生”联考解析第16题)6:某次灯谜大会共设置6个不同的谜题,分别藏在如图所示的6只灯笼里, 每只灯笼里仅放一个谜题,并规定一名参与者每次只能取其中一串最下面的一只 灯笼并解答里面的谜题,直到答完全部6个谜题,则一名参与者一共有 种 不同的答题顺序方法提供与解析:(杭州沙志广)解法1:参与者一共需要6次完成答题任务,其中1次答第一串灯笼中的题共有16C 种不同的顺序,另有2次答第二串灯笼中的题共有25C 种不同顺序,剩余三次答第三串灯笼中的题有33C 种不同顺序,所以一共有60332516=C C C (种) 解法2:该题目也可以理解成将“A ,21,B B ,321,,C C C 一共6个姊妹排成一排,21,B B 按既定顺序排列,321,,C C C 也按既定顺序排列的方法数”,所以一共有60332516=C C C (种)或者60332266=A A A 种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二十种排列组合问题的解法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理. 教学目标1.进一步理解和应用分步计数原理和分类计数原理.2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题.提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法. 2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⨯⨯⨯种不同的方法. 3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事. 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类. 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位,从1,3,5三个数中任选一个共有13C 排法;然后排首位,从2,4和剩余的两个奇数中任选一个共有14C 种排法; 最后排中间三个数,从剩余四个数中任选3个的排列数共有34A 种排法;∴由分步计数原理得113434288C C A =443练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?解:先种两种不同的葵花在不受限限制的四个花盒中共有24A 不同种法,再其它葵花有55A 不同种法,所以共有不同种法2545121201440A A =⨯=种不同的种法. 二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排.由分步计数原理可得共有522522480A A A =种不同的排法.练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 解:命中的三枪捆绑成一枪,与命中的另一枪插入未命中的四枪的空位,共有2520A =种不的情形. 三.不相邻问题插空策略例3.一晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7733A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法.(七个空位坐了四人,剩下3个空位按一定顺序坐下甲,乙,丙)思考:可以先让甲乙丙就坐吗?(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有3474C A 方法.(先选三个座位坐下甲,乙,丙共有37C 种选法,余下四个空位排其它四人共有44A 种排法,所以共有3474C A 种方法.)练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?510C 五.重排问题求幂策略例5.把6名实习生分配到7个车间实习,共有多少种不同的分法解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有67种不同的排法 练习题:1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 422. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法87六.多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法 解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.先排前4个位置,2个特殊元素有24A 种排法,再排后4个位置上的特殊元素丙有14A 种,其余的5人在5个位置上任意排列有55A 种,则共有215445A A A 种排法.(排好后,按前4个为前排,后4人为后排分成两排即可)练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 346解:由于甲乙二人不能相邻,所以前排第1,4,8,11四个位置和后排第1,12位置是排甲乙中的一个时,与它相邻的位置只能排除一个,而其它位置要排除3个,所以共有排列11116181417108238346C C C C +=+=七.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.解:第一步从5个球中选出2个组成复合元共有25C 种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有44A 种方法,根据分步计数原理装球的方法共有2454C A练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 192 种八.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数在1,5在两个奇数之间,这样的五位数有多少个?(注:两个偶数2,4在两个奇数1,5之间,这是题意,说这个结构不能被打破,故3只能排这个结构的外围,也就是说要把这个结构看成一个整体与3进行排列). 解:把1,5,2,4当作一个小集团与3排队共有22A 种排法,再排小集团内部共有2222A A 种排法,由分步计数原理共有222222A A A 种排法.练习题:1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为254254A A A2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有255255A A A 种九.元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? 解:因为10个名额没有差别,把它们排成一排.相邻名额之间形成9个空隙.在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C 种分法. 注:这和投信问题是不同的,投信问题的关键是信不同,邮筒也不同,而这里的问题是邮筒不同,但信是相同的.即班级不同,但名额都是一样的.练习题:10个相同的球装5个盒中,每盒至少一有多少装法? 49C一班二班三班四班七班2.100x y z w +++=求这个方程组的自然数解的组数 3103C十.正难则反总体淘汰策略例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种?解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法.这十个数字中有5个偶数5个奇数,所取的三个数含有3个偶数的取法有35C ,只含有1个偶数的取法有1255C C ,和为偶数的取法共有123555C C C +.再淘汰和小于10的偶数共9种,符合条件的取法共有1235559C C C +- 练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的 抽法有多少种?十一.平均分组问题除法策略例12. 6本不同的书平均分成3堆,每堆2本共有多少分法?解: 分三步取书得222642C C C 种方法,但这里出现重复计数的现象,不妨记6本书为ABCDEF ,若第一步取AB,第二步取CD,第三步取EF 该分法记为(AB,CD,EF),则222642C C C 中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有33A 种取法 ,而这些分法仅是(AB,CD,EF)一种分法,故共有22264233C C C A 种分法.练习题:1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?(544138422C C C A ) 2.10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的 分组方法 (1540)3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以n n A (n 为均分的组数)避免重复计数。
排2名,则不同的安排方案种数为______(2224262290C C A A =) 十二. 合理分类与分步策略例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法解:10演员中有5人只会唱歌,2人只会跳舞3人为全能演员.选上唱歌人员为标准进行研究只会唱的5人中没有人选上唱歌人员共有2233C C 种,只会唱的5人中只有1人选上唱歌人员112534C C C 种,只会唱的5人中只有2人选上唱歌人员有2255C C 种,由分类计数原理共有22112223353455C C C C C C C ++种.解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确。