《电磁场与电磁波》试题4与答案
电磁场与电磁波(第4版)第4章部分习题参考解答

GG G G G G − j(k x + k y + k z ) ∇ 2 E (r ) = E0∇ 2 e − jk ⋅r = E0∇ 2 e x y z
G ⎛ ∂2 ∂2 ∂ 2 ⎞ − j(k x + k y + k z ) = E0 ⎜ 2 + 2 + 2 ⎟ e x y z ⎝ ∂x ∂y ∂z ⎠ G − j(k x + k y + k z ) G G 2 = (− k x2 − k y − k z2 ) E0 e x y z = − k 2 E (r ) G G G G 代入方程 ∇ 2 E (r ) + ω 2 με E (r ) = 0 ,得 G G − k 2 E + ω 2 με E = 0
G G ω ∂2 ω G (3) ∇ 2 E = ey E0∇ 2 cos(ωt + z ) = ey E0 2 cos(ωt + z ) ∂z c c
ω G ω = −ey ( ) 2 E0 cos(ωt + z ) c c
G ∂2 E G ∂2 ω ω G = e E cos(ωt + z ) = −eyω 2 E0 cos(ωt + z ) y 0 2 2 ∂t ∂t c c G G 1 ∂2 E ω 1 ⎡ G ω ⎤ G ω 2 ∇ E − 2 2 = −ey ( ) 2 E0 cos(ωt + z ) − 2 ⎢ −e yω 2 E0 cos(ωt + z ) ⎥ = 0 c ∂t c c c ⎣ c ⎦
电磁场与电磁波课后习题及答案四章习题解答

如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为,求槽内的电位函数。
解根据题意,电位满足的边界条件为①②③根据条件①和②,电位的通解应取为题图由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布两平行无限大导体平面,距离为,其间有一极薄的导体片由到。
上板和薄片保持电位,下板保持零电位,求板间电位的解。
设在薄片平面上,从到,电位线性变化,。
题图解应用叠加原理,设板间的电位为其中,为不存在薄片的平行无限大导体平面间(电压为)的电位,即;是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:①②③根据条件①和②,可设的通解为由条件③有两边同乘以,并从0到对积分,得到故得到求在上题的解中,除开一项外,其他所有项对电场总储能的贡献。
并按定出边缘电容。
解在导体板()上,相应于的电荷面密度则导体板上(沿方向单位长)相应的总电荷相应的电场储能为其边缘电容为如题图所示的导体槽,底面保持电位,其余两面电位为零,求槽内的电位的解。
解根据题意,电位满足的边界条件为①题图②③根据条件①和②,电位的通解应取为由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布为一长、宽、高分别为、、的长方体表面保持零电位,体积内填充密度为的电荷。
求体积内的电位。
解在体积内,电位满足泊松方程(1)长方体表面上,电位满足边界条件。
由此设电位的通解为代入泊松方程(1),可得由此可得或(2)由式(2),可得故如题图所示的一对无限大接地平行导体板,板间有一与轴平行的线电荷,其位置为。
求板间的电位函数。
解由于在处有一与轴平行的线电荷,以为界将场空间分割为和两个区域,则这两个区域中的电位和都满足拉普拉斯方程。
而在的分界面上,可利用函数将线电荷表示成电荷面密度。
电位的边界条件为题图①②③由条件①和②,可设电位函数的通解为由条件③,有(1)(2)由式(1),可得(3)将式(2)两边同乘以,并从到对积分,有(4)由式(3)和(4)解得故如题图所示的矩形导体槽的电位为零,槽中有一与槽平行的线电荷。
电磁场与电磁波课后习题及答案--第四章习题解答

习题解答4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为U ,求槽内的电位函数。
解 根据题意,电位(,)x y ϕ满足的边界条件为 ① (0,)(,)0y a y ϕϕ== ② (,0)0x ϕ= ③0(,)x b U ϕ=根据条件①和②,电位(,)x y ϕ的通解应取为1(,)sinh()sin()n n n y n xx y A a a ππϕ∞==∑由条件③,有01sinh()sin()n n n b n x U A a a ππ∞==∑两边同乘以sin()n x a π,并从0到a 对x 积分,得到002sin()d sinh()an U n xA x a n b a a ππ==⎰02(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ⎧=⎪⎨⎪=⎩L L ,故得到槽内的电位分布1,3,5,41(,)sinh()sin()sinh()n U n y n xx y n n b a a a ππϕππ==∑L4.2 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。
上板和薄片保持电位U ,下板保持零电位,求板间电位的解。
设在薄片平面上,从0=y 到d y =,电位线性变化,0(0,)y U y d ϕ=。
a题4.1图解 应用叠加原理,设板间的电位为(,)x y ϕ=12(,)(,)x y x y ϕϕ+其中,1(,)x y ϕ为不存在薄片的平行无限大导体平面间(电压为U )的电位,即10(,)x y U y b ϕ=;2(,)x y ϕ是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为: ①22(,0)(,)0x x b ϕϕ==②2(,)0()x y x ϕ=→∞③002100(0)(0,)(0,)(0,)()U U y y d by y y U U y y d y b d b ϕϕϕ⎧-≤≤⎪⎪=-=⎨⎪-≤≤⎪⎩根据条件①和②,可设2(,)x y ϕ的通解为 21(,)sin()en x bn n n y x y A b ππϕ∞-==∑由条件③有00100(0)sin()()n n U U y y d n y b A U U b y yd y b d b π∞=⎧-≤≤⎪⎪=⎨⎪-≤≤⎪⎩∑两边同乘以sin()n yb π,并从0到b 对y 积分,得到0002211(1)sin()d ()sin()d dbn d U U y n y n y A y y y b b b b d b b ππ=-+-=⎰⎰022sin()()U b n d n d b ππ故得到 (,)x y ϕ=0022121sin()sin()e n x bn U bU n d n y y b d n b b ππππ∞-=+∑4.3 求在上题的解中,除开0U y 一项外,其他所有项对电场总储能的贡献。
电磁场与电磁波试题及参考答案

2010-2011-2学期《电磁场与电磁波》课程考试试卷参考答案及评分标准命题教师:李学军 审题教师:米燕一、判断题(10分)(每题1分)1.旋度就是任意方向的环量密度 ( × )2. 某一方向的的方向导数是描述标量场沿该方向的变化情况 ( √ )3. 点电荷仅仅指直径非常小的带电体 ( × )4. 静电场中介质的相对介电常数总是大于 1 ( √ )5. 静电场的电场力只能通过库仑定律进行计算 ( × )6.理想介质和导电媒质都是色散媒质 ( × )7. 均匀平面电磁波在无耗媒质里电场强度和磁场强度保持同相位 ( √ )8. 复坡印廷矢量的模值是通过单位面积上的电磁功率 ( × )9. 在真空中电磁波的群速与相速的大小总是相同的 ( √ ) 10 趋肤深度是电磁波进入导体后能量衰减为零所能够达到的深度 ( × ) 二、选择填空(10分)1. 已知标量场u 的梯度为G ,则u 沿l 方向的方向导数为( B )。
A. G l ⋅B. 0G l ⋅ C. G l ⨯2. 半径为a 导体球,带电量为Q ,球外套有外半径为b ,介电常数为ε的同心介质球壳,壳外是空气,则介质球壳内的电场强度E 等于( C )。
A.24Q r π B. 204Q r πε C. 24Qr πε3. 一个半径为a 的均匀带电圆柱(无限长)的电荷密度是ρ,则圆柱体内的电场强度E 为( C )。
A.22aE r ρε=B. 202r E a ρε= C. 02r E ρε= 4. 半径为a 的无限长直导线,载有电流I ,则导体内的磁感应强度B 为( C )。
A.02I r μπB. 02Ir a μπC. 022Ir aμπ 5. 已知复数场矢量0x e E =E ,则其瞬时值表述式为( B )。
A.()0cos y x e E t ωϕ+ B. ()0cos x x e E t ωϕ+ C. ()0sin x x e E t ωϕ+6. 已知无界理想媒质(ε=9ε0, μ=μ0,σ=0)中正弦均匀平面电磁波的频率f=108 Hz ,则电磁波的波长为( C )。
电磁场与电磁波试题与答案

电磁场与微波技术基础试题一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。
每小题2分,共20分)1.设一个矢量场 =x x+2y y+3z z,则散度为( )A. 0B. 2C. 3D. 62.人们规定电流的方向是( )运动方向。
A.电子B.离子C.正电荷D.负电荷3.在物质中没有自由电子,称这种物质为( )A.导体B.半导体C.绝缘体D.等离子体4.静电场能量的来源是( )A.损耗B.感应C.极化D.做功5.对于各向同性介质,若介电常数为ε,则能量密度we为( )A. •B. E2C. εE2D. εE26.电容器的大小( )A.与导体的形状有关B.与导体的形状无关C.与导体所带的电荷有关D.与导体所带的电荷无关7.电矩为的电偶极子在均匀电场中所受的作用力和库仑力矩为( )A. =0,Tq= •B. =0, = ×C. = • ,= ×D. = • , =08.在 =0的磁介质区域中的磁场满足下列方程( )A. × =0, • =0B. × ≠0, • ≠0C. × ≠0, • =0D. × =0, • ≠09.洛伦兹条件人为地规定的( )A.散度B.旋度C.源D.均不是10.传输线的工作状态与负载有关,当负载短路时,传输线工作在何种状态?( )A.行波B.驻波C.混合波D.都不是二、填空题(每空2分,共20分)1.两个矢量的乘法有______和______两种。
2.面电荷密度ρs( )的定义是______,用它来描述电荷在______的分布。
3.由库仑定律可知,电荷间作用力与电荷的大小成线性关系,因此电荷间的作用力可以用______原理来求。
4.矢量场的性质由它的______决定。
5.在静电场中,电位相同的点集合形成的面称为______。
6.永久磁铁所产生的磁场,称之为______。
7.在电场中电介质在外电场的作用下会产生______,使电场发生变化。
电磁场与电磁波习题及答案

电磁场与电磁波习题及答案电磁场与电磁波习题及答案电磁场和电磁波是物理学中非常重要的概念,它们广泛应用于电子工程、通信技术等领域。
在学习电磁场和电磁波的过程中,习题是非常重要的一环。
通过解答习题,我们可以更好地理解和掌握相关知识。
本文将为大家提供一些电磁场和电磁波的习题及答案,希望对大家的学习有所帮助。
1. 电磁场的基本概念(1) 什么是电磁场?答案:电磁场是由电荷和电流所产生的一种物质性质,它可以通过电磁场力作用于其他电荷或电流。
电场和磁场是电磁场的两个基本成分。
(2) 电场和磁场有何区别?答案:电场是由电荷产生的,它的作用是使电荷受力;磁场是由电流产生的,它的作用是使电流受力。
电场和磁场都是电磁场的一部分,它们之间通过麦克斯韦方程组相互联系。
2. 电磁波的基本特性(1) 什么是电磁波?答案:电磁波是一种由变化的电场和磁场相互耦合而产生的波动现象。
它具有电磁场的传播特性,可以在真空中传播。
(2) 电磁波有哪些基本特性?答案:电磁波具有波长、频率、速度和能量等基本特性。
波长是指电磁波的一个完整周期所对应的距离,通常用λ表示;频率是指单位时间内电磁波的周期数,通常用ν表示;速度是指电磁波在介质中传播的速度,通常用c表示;能量是指电磁波传播时携带的能量。
3. 电磁场和电磁波的应用(1) 电磁场和电磁波在通信技术中的应用有哪些?答案:电磁场和电磁波在通信技术中起到至关重要的作用。
无线通信技术利用电磁波在空间中传播的特性,实现了远距离的信息传输。
例如,无线电、手机、卫星通信等都是基于电磁波传播原理的。
(2) 电磁场和电磁波在医学中的应用有哪些?答案:电磁场和电磁波在医学中有广泛的应用。
例如,核磁共振成像(MRI)利用强大的磁场和无线电波来获取人体内部的影像;电磁波在治疗癌症中也有应用,如放射疗法利用高能电磁波杀死癌细胞。
4. 电磁场和电磁波的数学描述(1) 请简述麦克斯韦方程组的含义。
答案:麦克斯韦方程组是描述电磁场和电磁波的基本方程。
电磁场与电磁波(第四版)课后答案 第四章习题

1
及
∂A ρ ∇ • E = ∇ • −∇Φ − = ∂t ε
ห้องสมุดไป่ตู้
∇ 2Φ +
∂ ρ ∇• A = − ∂t ε
2
令
∇• A = 0
∂2 A ∂Φ 2 ∇ A − µε 2 = − µ J + µε∇ ∂t ∂t
代入1和2式,得
ρ ∇ Φ=− ε
2
4.9在自由空间中的电磁场为
∂A E = −∇Φ − ∂t
代入
∂D ∇× H = J + ∂t ∇•D = ρ
∂E ∂ ∂A ∇× H = ∇×∇× A = J +ε = J + ε −∇Φ − ∂t ∂t ∂t µ 1
得
∂Φ ∂2 A ∇ ( ∇ • A ) − ∇ 2 A = µ J − µε − µε 2 ∂t ∂t
s
= 2650 × 0.25 cos 2 (ωt ) − cos 2 (ωt − 0.42 ) = −270.2sin ( 2ωt − 0.42 )W
4.10已知某电磁场的复矢量为
r r ε0 H ( z ) = ey E0 cos ( k0 z )
r r E ( z ) = ex jE0 sin ( k0 z ) V / m
r r E ( z , t ) = ex1000cos (ωt − kz ) V / m r r H ( z , t ) = ey 2.65cos (ωt − kz ) A / m
式中
k = ω µ0ε 0 = 0.42 rad / m
试求(1)瞬时坡印廷矢量 (2)平均坡印廷矢量 (3)任一时刻流入长为1m横截面积为0.25平方米的 平行六面体中的净功率。 解:(1)瞬时坡印廷矢量 r r r r S = E × H = ez 2650 cos 2 (ωt − kz ) W / m 2 (2)平均坡印廷矢量
04《电磁场与电磁波》练习及答案

电磁学试题库试题4一、填空题(每小题2分,共20分)1、一均匀带电球面,电量为Q,半径为R,在球内离球心R/2处放一电量为q 的点电荷,假定点电荷的引入并不破坏球面上电荷的均匀分布,整个带电系统在球外P点产生的电场强度( )。
2、一无限长均匀带电直线(线电荷密度为λ)与另一长为L ,线电荷密度为η的均匀带电直线AB 共面,且互相垂直,设A 端到无限长均匀带电线的距离为a ,带电线AB 所受的静电力为( )。
3、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势(4、平行板电容器充电后两极板的面电荷密度分别为+σ与-σ,极板上单位面积的受力( )5、一电路如图所示,已知V 121=ε V 92=ε V 83=ε Ω===1321r r rΩ====25431R R R R Ω=32R 则Uab =( )6、两条无限长的平行直导线相距a ,当通以相等同向电流时,则距直导线距离都为a 的一点P 的磁感应强度的大小是( )7、通过回路所圈围的面积的磁通量发生变化时,回路中就产生感应电动势,引起磁通量变化的物理量是( )R R 33r ε54I a Pa a I8、0C C r ε=成立的条件是( )。
9、铁介质的主要特征是( )。
10、麦克斯韦在总结前人电磁学全部成就的基础上,提出了两条假设。
一、选择题(每小题2分,共20分)1、在用试探电荷检测电场时,电场强度的定义为:0q FE =则( )(A )E 与q o 成反比(B )如果没有把试探电荷q o 放在这一点上,则E=0(C )试探电荷的电量q o 应尽可能小,甚至可以小于电子的电量 (D )试探电荷的体积应尽可能小,以致可以检测一点的场强 2、一点电荷q 位于边长为d 的立方体的顶角上,通过与q 相连的三个平面的电通量是( )(A )04εq (B )08εq(C )010εq (D )03、两个平行放置的带电大金属板A 和B ,四个表面电荷面密度为4321σσσσ、、、如图所示,则有( ) (A )3241σ-=σσ=σ,(B )3241σ=σσ=σ, (C )3241σ-=σσ-=σ, (D )3241σ=σσ-=σ,4、如图所示,图中各电阻值均为R ,AB R 为( ) (A )Ω=4AB R (B )Ω=2AB R(C ) R R AB 43=(D ) R R AB 23=5、一圆线圈的半径为R ,载有电流I ,放在均匀外磁场中,如图所示,线圈导线上的张力是:( ) (A )T=2RIB (B )T=IRB (C )T=0(D )T=RIB π26、一个分布在圆柱形体积内的均匀磁场,磁感应强度为B ,方向沿圆柱的轴线,圆柱Q Q 1234A B的半径为R ,B 的量值以κ=dt dB 的恒定速率减小,在磁场中放置一等腰形金属框ABCD (如图所示)已知AB=R ,CD=R/2,线框中总电动势为:( )(A )K R 21633 顺时针方向(B )KR 21633 逆时针方向 (C )KR 243 顺时针方向 (D )KR 243 逆时针方向7、一个介质球其内半径为R ,外半径为R+a ,在球心有一电量为0q 的点电荷,对于R <r <R+a 电场强度为:( )(A )2004r q r επε (B)2004r q πε (C)204r q π (D)2041r q r r πε-ε)(8、在与磁感应强度为B 的均匀恒定磁场垂直的平面内,有一长为L 的直导线ab ,导线绕a 点以匀角速度ω转动,转轴与B 平行,则ab 上的动生电动势为:( )(A )221BL ω=ε(B )2BL ω(C )241BL ω=ε(D )ε=09、放在平滑桌面上的铁钉被一磁铁吸引而运动,其产生的动能是因为消耗了( ) (A )磁场能量; (B )磁场强度; (C )磁场力; (D )磁力线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电磁场与电磁波》试题(4)一、填空题(每小题 1 分,共 10 分)1.矢量的大小为 。
2.由相对于观察者静止的,且其电量不随时间变化的电荷所产生的电场称为 。
3.若电磁波的电场强度矢量的方向随时间变化所描绘的轨迹是直线,则波称为 。
4.从矢量场的整体而言,无散场的 不能处处为零。
5.在无源区域中,变化的电场产生磁场,变化的磁场产生电场,使电磁场以 的形式传播出去,即电磁波。
6.随时间变化的电磁场称为 场。
7.从场角度来讲,电流是电流密度矢量场的 。
8.一个微小电流环,设其半径为、电流为,则磁偶极矩矢量的大小为 。
9.电介质中的束缚电荷在外加 作用下,完全脱离分子的内部束缚力时,我们把这种现象称为击穿。
10.法拉第电磁感应定律的微分形式为 。
二、简述题 (每小题 5分,共 20 分)11.简述恒定磁场的性质,并写出其两个基本方程。
12.试写出在理想导体表面电位所满足的边界条件。
13.试简述静电平衡状态下带电导体的性质。
14.什么是色散?色散将对信号产生什么影响?三、计算题 (每小题10 分,共30分)15.标量场,在点处 (1)求出其梯度的大小 (2)求梯度的方向 16.矢量,,求(1)(2)17.矢量场的表达式为(1)求矢量场的散度。
(2)在点处计算矢量场的大小。
z y x e e eA ˆˆˆ++=ϖa I ()ze y x z y x +=32,,ψ()0,1,1-P y x e eA ˆ2ˆ+=ϖz x e eB ˆ3ˆ-=ϖB A ϖϖ⨯B A ϖϖ+A ϖ2ˆ4ˆy e x eA y x -=ϖA ϖ()1,1A ϖ四、应用题 (每小题 10分,共30分)18.一个点电荷位于处,另一个点电荷位于处,其中。
(1) 求出空间任一点处电位的表达式;(2) 求出电场强度为零的点。
19.真空中均匀带电球体,其电荷密度为,半径为,试求(1) 球内任一点的电位移矢量 (2) 球外任一点的电场强度20. 无限长直线电流垂直于磁导率分别为的两种磁介质的交界面,如图1所示。
(1) 写出两磁介质的交界面上磁感应强度满足的方程 (2) 求两种媒质中的磁感应强度。
五、综合题 (10分)21. 设沿方向传播的均匀平面电磁波垂直入射到理想导体,如图2所示,入射波电场的表达式为(1)试画出入射波磁场的方向 (2)求出反射波电场表达式。
《电磁场与电磁波》试题(4)参考答案二、简述题 (每小题 5分,共 20 分)q +()0,0,a -q 2-()0,0,a 0>a ()z y x ,,ρa I 21μμ和21B B 和z +z j y e E eE β-=0ˆϖ图2图11B ϖ2B ϖ1μ2μ11.答:恒定磁场是连续的场或无散场,即磁感应强度沿任一闭合曲面的积分等于零。
产生恒定磁场的源是矢量源。
(3分)两个基本方程:⎰=⋅SS d B 0ϖϖ (1分)I l d H C=⋅⎰ϖϖ (1分)(写出微分形式也对)12.答:设理想导体内部电位为2φ,空气媒质中电位为1φ。
由于理想导体表面电场的切向分量等于零,或者说电场垂直于理想导体表面,因此有SS 21φφ= (3分)σφε-=∂∂Sn10(2分)13.答:静电平衡状态下,带电导体是等位体,导体表面为等位面;(2分)导体内部电场强度等于零,在导体表面只有电场的法向分量。
(3分)14.答:在导电媒质中,电磁波的传播速度随频率变化的现象称为色散。
(3分)色散将使信号产生失真,从而影响通信质量。
(2分)三、计算题 (每小题10分,共30分)15.标量场()ze y x z y x +=32,,ψ,在点()0,1,1-P 处(1)求出其梯度的大小 (2)求梯度的方向解:(1)ze y e x ez y x ∂∂+∂∂+∂∂=∇ψψψψˆˆˆ (2分)z y x Pe e eˆ3ˆ2ˆ++-=∇ψ(2分)梯度的大小: 14=∇Pψ (1分)(2)梯度的方向z z y x e e y x e xy eˆ3ˆ2ˆ223++=∇ψψψ∇∇=nˆ (3分) 14ˆ3ˆ2ˆˆz y x e e en++-= (2分)16.矢量y x e e A ˆ2ˆ+=ϖ,z x e e B ˆ3ˆ-=ϖ,求 (1)B A ϖϖ⨯ (2)B A ϖϖ+解:(1)根据zyxz y xz y x B B B A A A eeeB A ˆˆˆ=⨯ϖϖ (3分) 所以2ˆ3ˆ6ˆ31021ˆˆˆz y x z y xe e e ee eB A -+-=-=⨯ϖϖ (2分) (2)z x y x e e e eB A ˆ3ˆˆ2ˆ-++=+ϖϖ (2分) z y x e e e B A ˆ3ˆ2ˆ2-+=+ϖϖ (3分) 17.矢量场A ϖ的表达式为2ˆ4ˆy e x eA y x -=ϖ(1)求矢量场A ϖ的散度。
(2)在点()1,1处计算矢量场A ϖ的大小。
解:(1)分)(分)(2243yz A y A x A A zy x -=∂∂+∂∂+∂∂=⋅∇ϖ(2)在点()1,1处 矢量 y x e eA ˆ4ˆ-=ϖ(2分)所以矢量场Aϖ在点()1,1处的大小为()171422=-+=A(3分)四、应用题(每小题 10分,共30分)18.一个点电荷q+位于()0,0,a-处,另一个点电荷q2-位于()0,0,a处,其中0>a。
求(3)求出空间任一点()z yx,,处电位的表达式;(4)求出电场强度为零的点。
解:(1)建立如图18-1所示坐标空间任一点的电位⎪⎪⎭⎫⎝⎛-=12214rrqπεφ(3分)其中,()2221zyaxr++-=(1分)()2222zyaxr+++=(1分)(2)根据分析可知,电场等于零的位置只能位于两电荷的连线上的q+的左侧,(2分)设位于x处,则在此处电场强度的大小为()()⎪⎪⎭⎫⎝⎛+--=22214axaxqEπε(2分)令上式等于零得()()2221axax+=-求得()ax223+-=(1分)图18-119.真空中均匀带电球体,其电荷密度为ρ,半径为a ,试求 (3) 球内任一点的电位移矢量 (4) 球外任一点的电场强度解:(1)作半径为r 的高斯球面,在高斯球面上电位移矢量的大小不变, (2分)根据高斯定理,有ρππ32344r r D =(2分)r D ϖϖ3ρ= a r < (1分)(2)当a r >时,作半径为r 的高斯球面,根据高斯定理,有 ρππ32344a r D =(2分) r ra D ϖϖ333ρ= (2分)电场强度为r ra E ϖϖ3033ερ= (1分) 20. 无限长直线电流I 垂直于磁导率分别为21μμ和的两 种磁介质的交界面,如图1所示。
试(3) 写出两磁介质的交界面上磁感应强度满足的方程 (4) 求两种媒质中的磁感应强度21B B 和。
解:(1)磁感应强度的法向分量连续n n B B 21= (2分)根据磁场强度的切向分量连续,即t t H H 21= (1分)因而,有2211μμttB B =(2分)图11B ϖ2B ϖ1μ 2μ(2)由电流在区域1和区域2中所产生的磁场均为ϕeˆ,也即是分界面的切向分量,再根据磁场强度的切向分量连续,可知区域1和区域2中的磁场强度相等。
(2分) 由安培定律I l d H C=⋅⎰ϖϖ得 rI H π2=(1分)因而区域1和区域2中的磁感应强度分别为rIeB πμϕ2ˆ11=ϖ(1分) r IeB πμϕ2ˆ22=ϖ (1分) 五、综合题 (10分)21. 设沿z +方向传播的均匀平面电磁波垂直入射到理想导体,如图2所示,入射波电场的表达式为 z j y e E eE β-=0ˆϖ(1)试画出入射波磁场的方向 (2)求出反射波电场表达式。
解:(1)入射波磁场的方向如图21-1所示。
(2)设反射波电场z j r y r e E eE βˆ=ϖ区域1中的总电场为)(ˆ0z j r zj y r e E e E eE E ββ+=+-ϖϖ (2分)根据0=z 导体表面电场的切向分量等于零的边界条件得图2图21-1Hϖ0E E r -= (2分)因此,设反射波电场为z j y r e E eE β0ˆ-=ϖ(1分)。