电磁场与电磁波标准答案(1)

合集下载

电磁场与电磁波 答案

电磁场与电磁波  答案

23 谐振腔和波导管内的电磁场只能存在或者传播一定的频率的电磁波是由谐振腔和波
导管的边界决定的。
24 写出采用洛伦兹规范和在此规范下的电磁场方程: v v v 1 ∂2Α v 1 ∂ϕ 1 ∂ 2ϕ ρ 2 2 J , = − µ ∇⋅Α+ 2 = 0,∇ Α − 2 ∇ ϕ − =− 。 0 2 2 2 ε0 c ∂t c ∂t c ∂t 25 推迟势的本质是电磁作用具有一定的传播速度。
i 1 1 1v v 41 电磁场张量 Fµν按下列方式构成不变量。 Fµν Fµν = B 2 − 2 E 2 , ε µνλτ Fµν Fλτ = B ⋅ E c 2 8 c 42 静止µ子的寿命只有 2.197×10-6 秒,以接近光速运动时只能穿过 660 米。但实际上很
大部分µ子都能穿过大气层到达底部。在地面上的参考系把这种现象描述为运动µ子 寿命延长的效应。 但在固定于µ子上的参考系把这种现象描述为运动大气层厚度缩小 的效应。
二、填空题
1 电动力学的研究对象是电磁场的基本属性和运动规律,研究电磁场与带电粒子之间
的相互作用。
2 位移电流是由麦克斯韦首先引入的,其实质是电场的变化率。 3 麦克斯韦首先预言了电磁波的存在,并指出光波就是一种电磁波。 4 麦克斯韦方程和洛伦兹力公式正确描述了电磁场的运动规律以及它和带电物质的相
互作用规律。 v v v v 5 各向同性线性介质的极化强度 P 和外加电场 E 之间的关系是 P = χ e ε 0 E ,其中 χ e 是 介质的极化率, ε 0 是真空电容率。 v v ∂B 。 6 变化的磁场产生电场的微分方程为 ∇ × E = − ∂t
时空坐标相互变换。相应地,电磁场的三维矢势和一维标势构成一个统一体,不可 分割,当参考系改变时,矢势和标势相互变换。 (√) (×) 28 时间和空间是两个独立的物理量,不能统一为一个物理量。

电磁场与电磁波第四版课后答案

电磁场与电磁波第四版课后答案

答案:① aA =
1 14
(ax
+
2ay

3az
)
;②
A−B =
53 ;③ A • B = −11;

θ AB = 135.48 ; ⑤
A× C = −(4ax +13ay +10az ) ; ⑥
A •(B × C)=(A • B)× C = −42 ; ⑦
(A× B)× C = 2ax − 40ay + 5az 和
托克斯定理求解此线积分。
∫ ∫ 答案:① A •dl = π a4 ;② (∇ × A) dS = π a4 。
l
4
l
4
1-18 试在直角坐标系下证明: − 1 ∇2 (1 R)=δ(r − r′)。 4π
∫ 1-19 若矢量 A = a(R cos2 ϕ
R3 ),1 ≤ R ≤ 2 ,求
∇• AdV 。
⎡ 2 sinhξ cosη
⎢ ⎢
cosh 2ξ − cos 2η

答案:[M ] = ⎢−
2 coshξ sinη
⎢ cosh 2ξ − cos 2η


0
⎢⎢⎣
2 coshξ sinη cosh 2ξ − cos 2η
2 sinhξ cosη cosh 2ξ − cos 2η
0
⎤ 0⎥
⎥ ⎥ 0⎥ 。 ⎥ ⎥ 1⎥ ⎥⎥⎦
+ ay
y − 2x x2 + y2

1-22 已知 A = a a x + b a y + c a z ,写出圆柱坐标系和圆球坐标系下 A 的表达式。
答案: A = (a cosϕ + b sinϕ )ar + (b cosϕ − a sin ϕ )aϕ + caz ;

电磁场与电磁波 课后答案(冯恩信 著)

电磁场与电磁波 课后答案(冯恩信 著)

第一章 矢量场 1.1 z y x C z y x B z y x A ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+= 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B C ⨯ ; (e) () A B C ⨯⨯ (f) () A B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+== ( c) 7=⋅B A ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ (e) z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ (f) 19)(-=⋅⨯C B A 1.2 A z =++2 ρπϕ; B z =-+- ρϕ32 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) B A + 解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπ (e) z B A ˆˆ)3(ˆ-++=+ϕπρ 1.3 A r =+-22 πθπϕ; B r =- πθ 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) A B + 解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ;(d) ϕπθππˆ3ˆ2ˆ22++=⨯r A B ; (e) ϕπˆ2ˆ3-=+r B A 1.4 A x y z =+- 2; B x y z =+-α 3 当 A B ⊥时,求α。

解:当 A B ⊥时, A B ⋅=0, 由此得 5-=α 1.5 将直角坐标系中的矢量场 F x y z x F x y z y 12(,,) ,(,,) ==分别用圆柱和圆球坐标系中的坐标分量表示。

电磁场与电磁波(版)课后答案谢处方

电磁场与电磁波(版)课后答案谢处方

第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C和()⨯A BC ;(8)()⨯⨯A BC 和()⨯⨯A B C 。

解 (1)23A x y z+-===-e e e A a e ee A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由cos AB θ=14-==⨯A B A B ,得1cos ABθ-=(135.5= (5)A 在B 上的分量 B A =A cos AB θ=1117=-A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。

(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》习题参考答案

况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。

《电磁场与电磁波》课后习题解答第一章

《电磁场与电磁波》课后习题解答第一章

n(x2
y2
z2)
(x2 y2 z2)2 (x2 y2 z2)
(n 3)rn
【习题 1.20 解】
1
已知 r (x2 y2 z2 )2
r xex yey zez
所以
(1)
r
(ex
x
ey
y
ez
z
)
(
xex
yey
zez )
ex ey ez
xyz
Bx ex By ey Bz ez
取一线元: dl exdx eydy ezdz
则有
B dl
ex ey ez Bx By Bz 0 dx dy dz
则矢量线所满足的微分方程为
dx dy dz Bx By Bz
或写成
dx dy dz =k(常数) a2 z a3 y a3x a1z a1 y a2x
对(3)(4)分别求和
(4)
d (a1x) d (a2 y) d (a3 z) 0 xdx ydy zdz 0
d (a1x a2 y a3 z) 0 d(x2 y2 z2) 0
所以矢量线方程为
a1x a2 y a3 z k1
x2 y2 z2 k2
【习题 1.6 解】
ex ey ez A B (ex 9ey ez ) (2ex 4ey 3ez ) 1 9 1
2 4 3
31ex 5ey 14ez
【习题 1.3 解】
已知 A ex bey cez , B ex 3ey 8ez ,
(1)要使 A B ,则须散度 A B 0
所以从 A B 1 3b 8c 0 可得: 3b 8c 1
即 12ex 9ey ez • aex bey 12a 9b 0 ⑴

电磁场与电磁波答案

电磁场与电磁波答案

=
1 r2
∂ ∂r
(r2 sinθ cosφ) +
1 r sinθ
∂ ∂θ
(sin θ
cosθ
cosφ) +
1 r sinθ
∂ ∂φ
(− sinφ) =
2 sinθ cosφ + cosφ − 2sinθ cosφ − cosφ = 0
r
r sinθ
r
r sinθ
er reθ r sinθ eφ
∇× A= 1 ∂ ∂ r2 sinθ ∂r ∂θ
等于零。

(1) ∇u
= ex
∂u ∂x
+ ey
∂u ∂y
+ ez
∂u ∂z
= ex (2x + 3) + ey (4 y − 2) + ez (6z − 6) ;
(2)由 ∇u = ex (2x + 3) + ey (4 y − 2) + ez (6z − 6) = 0 ,得
x = −3 2, y =1 2,z =1
量 ex
3 50
+
ey
4 50
+
ez
5 定出;求 (2, 3,1) 点的方向导数值。 50

∇Ψ
= ex
∂ ∂x
(
x
2
yz)
+
e
y
∂ ∂y
(
x
2
yz
)
+
ez
∂ (x2 yz) = ∂z
ex 2xyz + ey x2 z + ez x2 y
故沿方向 el = ex
3 50

电磁场与电磁波第5版王家礼答案

电磁场与电磁波第5版王家礼答案

电磁场与电磁波第5版王家礼答案电磁场与电磁波第5版王家礼答案第一章电磁场和电磁波的基本概念1.1 什么是电磁场?电磁场是描述电荷运动影响的物理场。

它可以被看作是一种对空间的划分,并且在各个空间区域内具有不同的物理状态。

1.2 电磁场的基本方程式是哪些?电磁场的基本方程式包括:麦克斯韦方程组、库仑定律、法拉第电磁感应定律、安培环路定律等。

1.3 什么是电磁波?电磁波是由振动的电荷和振动的磁场所产生的波动现象。

它具有电场和磁场的相互作用,且在真空和各种介质中都能传播。

第二章静电场和静磁场2.1 什么是静电场?静电场是指当电荷分布不随时间变化、不产生磁场时,所产生的电场。

2.2 静电场的基本定律有哪些?静电场的基本定律包括库仑定律、电场线、电势能和电势。

2.3 什么是静磁场?静磁场是指当电荷分布不随时间变化,但产生了磁场时,所产生的磁场。

2.4 静磁场的基本定律有哪些?静磁场的基本定律包括安培环路定律、比奥萨伐尔定律和洛伦兹力定律。

第三章时变电磁场和电磁波的基本概念3.1 什么是时变电磁场?时变电磁场是指电荷分布随时间变化,且产生了磁场时,所产生的电磁场。

3.2 时变电磁场的基本方程式是哪些?时变电磁场的基本方程式是麦克斯韦方程组,包括麦克斯韦-安培定律、麦克斯韦-法拉第定律、法拉第感应定律和电场定律等。

3.3 什么是电磁波?电磁波是由振动的电荷和振动的磁场所产生的波动现象,它具有电场和磁场的相互作用,可以在真空和各种介质中传播。

3.4 电磁波的基本特征有哪些?电磁波的基本特征包括电场和磁场垂直于传播方向、具有可见光、红外线、紫外线、X射线和γ射线等不同频率和能量等。

第四章电磁波在真空和介质中的传播4.1 电磁波如何在真空中传播?电磁波在真空中传播速度等于光速,即299792458m/s。

4.2 介质是如何影响电磁波传播的?介质对电磁波的传播速度、方向和振动方向都有影响,介质内的电磁波速度取决于介质的介电常数和磁导率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电磁场与电磁波》答案(1)一、判断题(每题2分,共20分)说明:请在题右侧的括号中作出标记,正确打√,错误打×1. 均匀平面波是一种在空间各点处电场强度相等的电磁波。

2. 电磁波的电场强度矢量必与波的传播方向垂直。

3. 在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。

4. 静电场是有源无旋场,恒定磁场是有旋无源场。

5. 对于静电场问题,仅满足给定的泊松方程和边界条件,而形式上不同的两个解是不等价的。

6. 电介质在静电场中发生极化后,在介质的表面必定会出现束缚电荷。

7. 用镜像法求解静电场问题的本质,是用场域外的镜像电荷等效的取代原物理边界上的感应电荷或束缚电荷对域内电场的贡献,从而将有界空间问题转化为无界空间问题求解。

8. 在恒定磁场问题中,当矢量位在圆柱面坐标系中可表为()zA A r e =时,磁感应强度矢量必可表为()B B r e φ=。

9. 位移电流是一种假设,因此它不能象真实电流一样产生磁效应。

10.均匀平面波在理想媒质中的传播时不存在色散效应,在损耗媒质中传播时存在色散效应。

二、选择题(每题2分,共20分) (请将你选择的标号填入题后的括号中)1. 有一圆形气球,电荷均匀分布在其表面上,在此气球被缓缓吹大的过程中,始终处在球外的点其电场强度( C )。

[ ×]1 [ ×]2 [ √]3 [ √]4 [ ×]5[ √]6 [ √]7 [ √]8[ ×]9 [ √]10A .变大B .变小C .不变2. 用镜像法求解电场边值问题时,判断镜像电荷的选取是否正确的根据是( D )。

A .镜像电荷是否对称 B .场域内的电荷分布是否未改变 C .边界条件是否保持不变 D .同时选择B 和C3. 一个导体回路的自感( D )。

A .与回路的电流以及回路的形状、大小、匝数和介质的磁导率有关B .仅由回路的形状和大小决定C .仅由回路的匝数和介质的磁导率决定D .由回路的形状、大小、匝数和介质的磁导率决定 4. 判断下列矢量哪一个可能是恒定磁场( C )。

A .369x y zB xe ye ze =++ B .369x y z B ye ze ze =++C .369x y z B ze xe ye =++D .369x y z B xye yze zxe =++5. 静电场强度为3(32)()x y z E ye x z e cy z e =+-++, 试确定常数c 的值( C )。

A .0 B .2 C .-2 D .任意6. 一根足够长的铜管竖直放置,一条形磁铁沿其轴线从静止开始下落,不计空气阻力,磁铁的运动速率将( D )。

A .越来越大B .越来越小C .先增加然后减少D .先增加然后不变7. 无限长直同轴圆柱电容器,内外导体单位长度带电荷量分别为l ρ和l ρ-,内外导体之间充满两种均匀电介质,内层为1ε,外层为2ε。

分界面是以1R 为半径的柱面。

则在介质分界面上有( C )。

A .E 1=E 2, D 1=D 2B .E 1≠E 2, D 1≠D 2C .E 1≠E 2,D 1=D 2 D .E 1=E 2, D 1≠D 28. 在恒定电场中,媒质1是空气,媒质2是水,在分界面上的衔接条件为( A )。

A .E 1t =E 2t , J 1n =J 2n =0 B .E 1n =E 2n , J 1n =J 2n C .E 1t =E 2t , J 1t =J 2t D .E 1n =E 2n , J 1t =J 2t =09. 一半径为 a 的圆柱形导体在均匀外磁场中磁化后,导体内的磁化强度为0z M M e =, 则导体表面的磁化电流密度为( C )。

A .0ms z J M e = B .0ms r J M e = C .0ms J M e φ= 10. 良导体的条件为( A )。

A .γωε>>B .γωε<<C .γωε=三、填空题(每空2分,共10分)1. Maxwell 位移电流假说的物理本质是: 随时间变化的电场将产生磁场 。

2. 若在某真空区域中,恒定电场的矢量位为35x A x e =,则电流分布:J =0(30/)x x e μ-。

3. 在恒定磁场的无源(0J =)区,引入矢量位函数A 的依据是B ∇⋅=。

4. 在时变场中的理想导体表面,电场强度的方向总是与导体表面 垂直 。

5. 在恒定磁场中,矢量位本身没有确定的物理意义,但其环量具有明确的物理意义,即矢量位沿着任意闭合路径的环量,就等于 以此闭合路径为边界的曲面上 磁感应强度的通量 。

四、简答题(每题5分,共10分)1. 写出坡印亭定理的数学表达式,并说明各项的物理意义。

答:坡印亭定理的数学表达式为22211()()22Sd E H ds E H d E d dt ττεμτγτ-⨯⋅=++⎰⎰⎰各项的物理意义如下: 等式右边第一项2211()22d E H d dt τεμτ+⎰,表示单位时间内体积τ内电磁能的增加。

等式右边第二项2E d τγτ⎰,表示单位时间内体积τ内转化为焦耳热的电磁能量。

等式左边()SE H ds -⨯⋅⎰,则表示单位时间内,穿过闭合面S 进入体积τ的电磁能。

2. 写出时变电磁场中,在任意两种介质1和2分界面上,磁场强度、电场强度、磁感应强度、电位移矢量所满足的条件,并作出示意图进行说明。

答:磁场强度的边界条件为: 12()s n H H J ⨯-=电场强度的边界条件为: 12()0n E E ⨯-= 磁感应强度的边界条件为: 12()0n B B ⋅-= 电位移矢量的边界条件为: 12()n D D σ⋅-=五、推导和计算题(40分)1.(10分)由Maxwell 方程出发,导出电流连续性方程。

解: 由Maxwell 方程 DH J t∂∇⨯=+∂ 和 D ρ∇⋅= (3分) ∵ 0H ∇⋅∇⨯=∴ 0DJ t ∂∇⋅+∇⋅=∂ (3分) 而 ()D D t t ∂∂∇⋅=∇⋅∂∂ ∴ 0J D J t t ρ∂∂∇⋅+∇⋅=∇⋅+=∂∂ (3分)即 0J tρ∂∇⋅+=∂ (1分)2.(10分)将一无穷大导体平板折成90°角并接地,两点电荷Q 1=Q 2=5C 位于角平分线上距离顶点1m 和2m 处,现欲运用镜像法求两点电荷所在区域内的场。

(1)请在图中标出所有镜像电荷的位置(4分);2θ2H H n1θ2θ2B B n 2θ2E E n1θ2θ2D D n(2)请写出各镜像电荷的电量(3分); (3)请写出各镜像电荷的坐标(3分)。

解:镜像电荷Q 3 、Q 4 、Q 5 、Q 6 、Q 7 、Q 8 的电量分别为:Q 3=Q 4=Q 5=Q 6=-5C, Q 7=Q 8=5C 各镜像电荷的坐标分别为:Q 3: (2,2-), Q 4,)Q 5: (2-,2), Q 6: () Q 7: (2-,2-), Q 8: (,)3.(10分)在相对介电常数为4r ε=,相对磁导率为1r μ=的理想介质中,一正弦均匀平面波沿+z 传播,已知电场沿x 方向,频率8110f Hz =⨯,振幅4510/m E V m -=⨯,设0t =时,在32z m =处电场等于其振幅值。

(1)求电场强度的瞬时值。

(6分) (2)求磁场强度的瞬时值。

(4分)解:依题意电场强度的瞬时值可表为:cos()x m E e E t kz ωψ=-+ 其中,82210f Hz ωππ==⨯,4(/)3k rad m π===30,2t z m ==时,m E E = 43cos()132πψ∴-⋅+=,0ψ= 故:84cos(210)3x m E e E t z ππ=⨯-112060()2μηππε===⨯=Ωr∴48841104cos(210)cos(210)(/)3123my y E H e t z e t z A m ππππηπ-⨯=⨯-=⨯-4.(10分)两个相距L 的同轴单匝线圈C 1、C 2,半径分别为r 1和r 2,其中C 1的半径很小,满足条件r 1<<L 。

计算两线圈的互感。

解:设C 1载有电流I 1。

因为 r 1<<L ,C 1的场在C 2上的矢量位可用微小电流环在远场区的矢量位表示,即:201112sin 4I r A e rφμθ=∵ r =2sin r r θ==∴ 201121223/224()I r r A e r L φμ=+222011212112223/2222()C I r r A dl A r r L πμφπ=⋅=⋅=+⎰∴ 2201212223/2122()r r M I r L πμφ==+2。

相关文档
最新文档