电磁场与电磁波课后答案_郭辉萍版1-6章

合集下载

电磁场与电磁波(第四版)课后答案 谢处方 第二章习题

电磁场与电磁波(第四版)课后答案 谢处方 第二章习题

2)
3)
, 处于外导体内部,
4)
2. 一半径为R的电介质球内计划强度为 求(1)极化电荷的体密度和面密度。
2 自由电荷密度。 3 球内、外的电场分布。
, 其中k为一常数。
(1)极化电荷的体密度。 极化电荷的面密度
(2)根据高斯定律自由电荷密度。
(3)根据高斯定律求电场分布。 球内电场分布
球Байду номын сангаас电场分布
,d=
lcm,横截面积s =10cm2。
求:
x=0和x=d 区域内的总电荷量;
x=d/2和x=d区域内的总电荷量。
• 解: (1)
• (2)
2.8 一个点电荷 位于 处,
另一个点电荷
位于 处,
空间有没有电场强度

解:
个点电荷的电场公式为
点 ?

, 即有
由此可得个分量为零的方程组:
2
解之: 当
有一平行的圆柱形空腔,其横截面如图所示。 的磁感应强度, 并证明空腔内的磁场是均匀的。
试计算各部分
解: 将题中问题看做两个对称电流的叠加: 一个是密度为 均匀分布在半径为 的圆柱内, 另一个是密度为 均匀 分布在半径为 的圆柱内。
由安培环路定律在 磁场分别为

中分布的
b
a d
空间各区域的磁场为 圆柱外 圆柱内的空腔外 空腔内
因此, 在z>0的区域有 在z<0的区域有
表示为矢量形式
为面电流的外法 向单位矢量
2.25平行双线与一矩形回路共面,设a=0.2m,b=c=d=0.1m, 求回路中的感应电动势。 解: 先求出平行双线在回路中的磁感应强度
回路中的感应电动势为

电磁场与电磁波课后答案

电磁场与电磁波课后答案

第一章矢量分析重点和难点关于矢量的定义、运算规则等内容可让读者自学。

应着重讲解梯度、散度、旋度的物理概念和数学表示,以及格林定理和亥姆霍兹定理。

至于正交曲面坐标系一节可以略去。

考虑到高年级同学已学过物理学,讲解梯度、散度和旋度时,应结合电学中的电位、积分形式的高斯定律以及积分形式的安培环路定律等内容,阐述梯度、散度和旋度的物理概念。

详细的数学推演可以从简,仅给出直角坐标系中的表达式即可。

讲解无散场和无旋场时,也应以电学中介绍的静电场和恒定磁场的基本特性为例。

至于格林定理,证明可免,仅给出公式即可,但应介绍格林定理的用途。

前已指出,该教材的特色之一是以亥姆霍兹定理为依据逐一介绍电磁场,因此该定理应着重介绍。

但是由于证明过程较繁,还要涉及? 函数,如果学时有限可以略去。

由于亥姆霍兹定理严格地定量描述了自由空间中矢量场与其散度和旋度之间的关系,因此应该着重说明散度和旋度是产生矢量场的源,而且也是惟一的两个源。

所以,散度和旋度是研究矢量场的首要问题。

此外,还应强调自由空间可以存在无散场或无旋场,但是不可能存在既无散又无旋的矢量场。

这种既无散又无旋的矢量场只能存在于局部的无源区中。

重要公式 直角坐标系中的矢量表示:z z y y x x A A A e e e A ++= 矢量的标积:代数定义:z z y y x x B A B A B A ++=⋅B A几何定义:θcos ||||B A B A =⋅矢量的矢积:代数定义:zyxz y xz y xB B B A A A e e e B A =⨯几何定义:θsin ||B ||A e B A z =⨯标量场的梯度:zy x z y ∂∂+∂∂+∂∂=∇ΦΦΦΦe e e x矢量场的散度:zA y A x A z y x ∂∂+∂∂+∂∂=⋅∇A 高斯定理:⎰⎰⋅=⋅∇SVV d d S A A矢量场的旋度:zy xz y A A A z y x ∂∂∂∂∂∂=⨯∇e e e A x ; 斯托克斯定理:⎰⎰⋅=⋅⨯∇lSd d )(l A S A无散场:0)(=⨯∇⋅∇A ; 无旋场:0)(=∇⨯∇Φ格林定理:第一和第二标量格林定理:⎰⎰⋅∇=∇+∇⋅∇SVV 2d )(d )(S ΦψΦψΦψ()⎰⎰⋅∇-∇=∇-∇SVV 22d d )(S ψΦΦψψΦΦψ第一和第二矢量格林定理:()⎰⎰⋅⨯∇⨯=⨯∇⨯∇⋅-⨯∇⋅⨯∇SVV d d ])()[(S Q P Q P Q P⎰⎰⋅⨯∇⨯-⨯∇⨯=⨯∇⨯∇⋅-⨯∇⨯∇⋅SVV d ][ d ]()([S P Q Q P Q P P Q亥姆霍兹定理: )()()(r A r r F ⨯∇+-∇=Φ,式中⎰'''-'⋅∇'=V V d )(41)(r r r F r πΦ V V ''-'⨯∇'=⎰'d )(41)(r r r F r A π三种坐标系中矢量表示式之间的转换关系:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡z y x z r A A A A A A 100cos sin 0sin cos φφφφφ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡z y x r A A A A A A 0cos sin sin sin cos cos cos cos sin sin cos sin φφθφθφθθφθφθφθ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡z r r A A A A A A φφθθθθθ 010sin 0cos cos 0sin题 解第一章 题 解1-1 已知三个矢量分别为z y e e e A x 32-+=;z y e e e B x 23++=;z e e C x -=2。

电磁场与电磁波课后习题及答案六章习题解答

电磁场与电磁波课后习题及答案六章习题解答

第六章时变电磁场有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场之中,如题图所示。

滑片的位置由确定,轨道终端接有电阻,试求电流i.解穿过导体回路abcda的磁通为故感应电流为一根半径为a的长圆柱形介质棒放入均匀磁场中与z轴平行。

设棒以角速度绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。

解介质棒内距轴线距离为r处的感应电场为故介质棒内的极化强度为极化电荷体密度为极化电荷面密度为则介质体积内和表面上同单位长度的极化电荷分别为平行双线传输线与一矩形回路共面,如题图所示。

设、、,求回路中的感应电动势。

解由题给定的电流方向可知,双线中的电流产生的磁感应强度的方向,在回路中都是垂直于纸面向内的。

故回路中的感应电动势为式中故则有一个环形线圈,导线的长度为l,分别通过以直流电源供应电压U0和时变电源供应电压U(t)。

讨论这两种情况下导线内的电场强度E。

解设导线材料的电导率为,横截面积为S,则导线的电阻为而环形线圈的电感为L,故电压方程为当U=U0时,电流i也为直流,。

故此时导线内的切向电场为当U=U(t)时,,故即求解此微分方程就可得到。

一圆柱形电容器,内导体半径为a,外导体内半径为b,长为l。

设外加电压为,试计算电容器极板间的总位移电流,证明它等于电容器的传导电流。

解当外加电压的频率不是很高时,圆柱形电容器两极板间的电场分布与外加直流电压时的电场分布可视为相同(准静态电场),即故电容器两极板间的位移电流密度为则式中,是长为l的圆柱形电容器的电容。

流过电容器的传导电流为可见由麦克斯韦方程组出发,导出点电荷的电场强度公式和泊松方程。

解点电荷q产生的电场满足麦克斯韦方程和由得据散度定理,上式即为利用球对称性,得故得点电荷的电场表示式由于,可取,则得即得泊松方程试将麦克斯方程的微分形式写成八个标量方程:(1)在直角坐标中;(2)在圆柱坐标中;(3)在球坐标中。

解(1)在直角坐标中(2)在圆柱坐标中(3)在球坐标系中已知在空气中,求和。

电磁场与电磁波课后习题及答案六章习题解答

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场5cos mT z e t ω=B 之中,如题6.1图所示。

滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i.解 穿过导体回路abcda 的磁通为5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==⨯=⨯-=--=+⎰B S e e故感应电流为110.35sin (12cos ) 1.75sin (12cos )mAin d i R R dt t t t t R ωωωωωωΦ==-=-+-+E6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。

设棒以角速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。

解 介质棒内距轴线距离为r 处的感应电场为 00z r r r B φωω=⨯=⨯=E v B e e B e故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X极化电荷体密度为2000011()()2()P rP r B r r r rB ρεεωεεω∂∂=-∇⋅=-=--∂∂=--P极化电荷面密度为0000()()P r r r a e r a B σεεωεεω==⋅=-⋅=-P n B e则介质体积内和表面上同单位长度的极化电荷分别为220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=⨯⨯=--=⨯⨯=-6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。

设0.2a m =、0.1m b c d ===、71.0cos(210)A i t π=⨯,求回路中的感应电动势。

电磁场与电磁波课后答案第1章

电磁场与电磁波课后答案第1章

第一章习题解答给定三个矢量、和如下:求:(1);(2);(3);(4);(5)在上的分量;(6);(7)和;(8)和。

解(1)(2)(3)-11(4)由,得(5)在上的分量(6)(7)由于所以(8)三角形的三个顶点为、和。

(1)判断是否为一直角三角形;(2)求三角形的面积。

解(1)三个顶点、和的位置矢量分别为,,则,,由此可见故为一直角三角形。

(2)三角形的面积求点到点的距离矢量及的方向。

解,,则且与、、轴的夹角分别为给定两矢量和,求它们之间的夹角和在上的分量。

解与之间的夹角为在上的分量为给定两矢量和,求在上的分量。

解所以在上的分量为证明:如果和,则;解由,则有,即由于,于是得到故如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。

设为一已知矢量,而,和已知,试求。

解由,有故得在圆柱坐标中,一点的位置由定出,求该点在:(1)直角坐标中的坐标;(2)球坐标中的坐标。

解(1)在直角坐标系中、、故该点的直角坐标为。

(2)在球坐标系中、、故该点的球坐标为用球坐标表示的场,(1)求在直角坐标中点处的和;(2)求在直角坐标中点处与矢量构成的夹角。

解(1)在直角坐标中点处,,故(2)在直角坐标中点处,,所以故与构成的夹角为球坐标中两个点和定出两个位置矢量和。

证明和间夹角的余弦为解由得到一球面的半径为,球心在原点上,计算:的值。

解在由、和围成的圆柱形区域,对矢量验证散度定理。

解在圆柱坐标系中所以又故有求(1)矢量的散度;(2)求对中心在原点的一个单位立方体的积分;(3)求对此立方体表面的积分,验证散度定理。

解(1)(2)对中心在原点的一个单位立方体的积分为(3)对此立方体表面的积分故有计算矢量对一个球心在原点、半径为的球表面的积分,并求对球体积的积分。

解又在球坐标系中,,所以求矢量沿平面上的一个边长为的正方形回路的线积分,此正方形的两边分别与轴和轴相重合。

再求对此回路所包围的曲面积分,验证斯托克斯定理。

电磁场与电磁波课后习题及答案六章习题解答

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场5cos mT z e t ω=B 之中,如题 6.1图所示。

滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i.解 5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==⨯=⨯-=--=+⎰g g B S e e故感应电流为110.35sin (12cos ) 1.75sin (12cos )mAin d i R R dt t t t t R ωωωωωωΦ==-=-+-+E6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。

设棒以角速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。

解 介质棒内距轴线距离为r 处的感应电场为00z r r r B φωω=⨯=⨯=E v B e e B e故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X极化电荷体密度为2000011()()2()P rP r B r r r rB ρεεωεεω∂∂=-∇⋅=-=--∂∂=--P极化电荷面密度为00()(P r r r a e r σεεωε==⋅=-⋅=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=⨯⨯=--=⨯⨯=-6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。

设0.2a m=、0.1m b c d ===、71.0cos(210)A i t π=⨯,求回路中的感应电动势。

解 由题给定的电流方向可知,双线中的电流产生的磁感应强度的方向,在回路中都是垂直于纸面向内的。

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。

2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。

3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。

4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。

( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。

( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。

( √ )7、梯度的方向是等值面的切线方向。

(× )8、标量场梯度的旋度恒等于0。

( √ ) 9、习题1.12, 1.16。

第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。

2、在国际单位制中,电场强度的单位是V/m(伏特/米)。

3、静电系统在真空中的基本方程的积分形式是:V V sD d S d V Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。

4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。

5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。

6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。

7、在介电常数为e 的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。

8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。

电磁场与电磁波课后答案

电磁场与电磁波课后答案

第一章 矢量场1.1 z y x C z y x B z y xA ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+=ρρρ 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB C ⨯ ; (e) ()ρρρA B C ⨯⨯ (f)()ρρρA B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+==ρρ( c) 7=⋅B A ρρ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ρρ (e)z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ρρρ (f)19)(-=⋅⨯C B A ρρρ 1.2 ρA z =++2∃∃∃ρπϕ; ρB z =-+-∃∃∃ρϕ32 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB A ⨯ ; (e) B A ρρ+解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A ρρ (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπρρ (e) z B A ˆˆ)3(ˆ-++=+ϕπρρρ 1.3 ρA r=+-22∃∃∃πθπϕ; ρB r =-∃∃πθ 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB A ⨯ ; (e) ρρA B +解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ρρ ; (d) ϕπθππˆ3ˆ2ˆ22++=⨯rA B ρρ ; (e) ϕπˆ2ˆ3-=+r B A ρρ 1.4 ρA x y z =+-∃∃∃2; ρB x y z =+-α∃∃∃3 当ρρA B ⊥时,求α。

解:当ρρA B ⊥时,ρρA B ⋅=0, 由此得 5-=α1.5 将直角坐标系中的矢量场ρρF x y z xF x y z y 12(,,)∃,(,,)∃==分别用圆柱和圆球坐标系中的坐标分量表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 习题解答1.2给定三个矢量A ,B ,C : A =x a +2y a -3z a B = -4y a +z aC =5x a -2za求:错误!未找到引用源。

矢量A 的单位矢量A a ; 错误!未找到引用源。

矢量A 和B 的夹角AB θ; 错误!未找到引用源。

A ·B 和A ⨯B错误!未找到引用源。

A ·(B ⨯C )和(A ⨯B )·C ;错误!未找到引用源。

A ⨯(B ⨯C )和(A ⨯B )⨯C解:错误!未找到引用源。

A a =A A=(x a +2y a -3z a ) 错误!未找到引用源。

cos AB θ=A ·B /A BAB θ=135.5o错误!未找到引用源。

A ·B =-11, A ⨯B =-10x a -y a -4z a 错误!未找到引用源。

A ·(B ⨯C )=-42(A ⨯B )·C =-42错误!未找到引用源。

A ⨯(B ⨯C )=55x a -44y a -11z a(A ⨯B )⨯C =2x a -40y a +5z a1.3有一个二维矢量场F(r)=x a (-y )+y a (x),求其矢量线方程,并定性画出该矢量场图形。

解:由dx/(-y)=dy/x,得2x +2y =c1.6求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。

解:等值面方程为ln (2x +2y +2z )=c 则c=ln(1+4+9)=ln14 那么2x +2y +2z =141.9求标量场ψ(x,y,z )=62x 3y +ze 在点P (2,-1,0)的梯度。

解:由ψ∇=x a x ψ∂∂+y a y ψ∂∂+z a zψ∂∂=12x 3y x a +182x 2y y a +ze z a 得ψ∇=-24x a +72y a +z a1.10 在圆柱体2x +2y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: 错误!未找到引用源。

求矢量场A 沿闭合曲面S 的通量,其中矢量场的表达式为A =x a 32x +y a (3y+z )+z a (3z -x)错误!未找到引用源。

验证散度定理。

解:错误!未找到引用源。

⎰•s d A=A d S •⎰曲+A d S •⎰xoz+A d S •⎰yoz+A d S •⎰上+A d S •⎰下A d S •⎰曲=232(3cos 3sin sin )z d d ρθρθθρθ++⎰曲=156.4A d S •⎰xoz=(3)y z dxdz +⎰xoz=-6A d S •⎰yoz=-23x dydz ⎰yoz=0A d S •⎰上+A d S •⎰下=(6cos )d d ρθρθρ-⎰上+cos d d ρθρθ⎰下=272π ⎰•s d A=193错误!未找到引用源。

dV A V⎰•∇=(66)V x dV +⎰=6(cos 1)Vd d dz ρθρθ+⎰=193即:⎰•ss d A=dV A V⎰•∇1.13 求矢量A =x a x+y a x 2y 沿圆周2x +2y =2a 的线积分,再求A ∇⨯对此圆周所包围的表面积分,验证斯托克斯定理。

解:⎰•l l d A =2Lxdx xy dy +⎰=44a πA ∇⨯=z a 2y⎰•⨯∇S s d A =2S y dS ⎰=22sin Sd d θρρρθ⎰=44a π 即:⎰•ll d A =⎰•⨯∇Ss d A,得证。

1.15求下列标量场的梯度: 错误!未找到引用源。

u=xyz+2xu ∇=xa u x ∂∂+y a u y ∂∂+z a u z∂∂=x a (yz+zx)+y a xz+z a xy错误!未找到引用源。

u=42x y+2y z -4xzu ∇=xa u x ∂∂+y a u y ∂∂+z a u z∂∂=x a (8xy-4z)+y a (42x +2yz)+z a (2y -4x)错误!未找到引用源。

u ∇=xa u x ∂∂+y a u y ∂∂+z a uz∂∂=x a 3x+y a 5z+z a 5y1.16 求下列矢量场在给定点的散度错误!未找到引用源。

A •∇=x A x ∂∂+y A y ∂∂+z A z ∂∂=32x +32y +3(1,0,1)|-=6错误!未找到引用源。

A•∇=2xy+z+6z (1,1,0)|=21.17求下列矢量场的旋度。

错误!未找到引用源。

A ∇⨯=0错误!未找到引用源。

A ∇⨯=x a (x -x )+y a (y -y )+z a (z -z )=0 1.19 已知直角坐标系中的点P(x,y,z)和点Q(x ’,y ’,z ’),求: 错误!未找到引用源。

P 的位置矢量r 和Q 点的位置矢量'r ; 错误!未找到引用源。

从Q 点到P 点的距离矢量R ; 错误!未找到引用源。

r ∇⨯和r•∇; 错误!未找到引用源。

1()R∇。

解:错误!未找到引用源。

r =x a x+y a y+z a z;'r =x a x ’+y a y ’+z a z ’错误!未找到引用源。

R =r -'r =x a (x -x ’)+y a (y -y ’)+z a (z -z ’)错误!未找到引用源。

r ∇⨯=0, r•∇=3错误!未找到引用源。

1R =1()R ∇=(xa x ∂∂+y a y ∂∂+z a z ∂∂)1R=-x a 212(')2x x R R --y a 212(')2y y R R --z a 212(')2z z R R - =-x a 3'x x R--y a 3'y y R --z a 3'z z R -=-31R[x a (x -x ’)+y a (y -y ’)+z a (z -z ’)]=-3R R 即:1()R∇=-3R R第二章 习题解答2.5试求半径为a ,带电量为Q 的均匀带电球体的电场。

解:以带电球体的球心为球心,以r 为半径,作一高斯面, 由高斯定理SD dS •⎰=Q ,及D E ε=得,错误!未找到引用源。

r ≤a 时,由SD dS •⎰=224433Qr a ππ⨯,得34QrD aπ=304QrE aπε=错误!未找到引用源。

r>a 时,由SD dS •⎰=Q ,得34QrD r π=304QrE r πε=2.5 两无限长的同轴圆柱体,半径分别为a 和b (a<b ),内外导体间为空气。

设同轴圆柱导体内、外导体上的电荷均匀分布,其电荷密度分别为1S ρ和2S ρ,求: 错误!未找到引用源。

空间各处的电场强度;错误!未找到引用源。

两导体间的电压;错误!未找到引用源。

要使ρ>b 区域内的电场强度等于零,则1S ρ和2S ρ应满足什么关系?解:错误!未找到引用源。

以圆柱的轴为轴做一个半径为r 的圆柱高斯面,由高斯定理SD dS •⎰=q及D E ε=得,当0<r<b 时,由SD dS •⎰=q=0,得D =0,E =0当a ≤r ≤b 时,由SD dS •⎰=q,得D r l π⨯2⨯=1S ρa l π⨯2⨯D =1Sr e rρ,10S r aE e rρε=当b<r 时,由SD dS •⎰=q,得D r l π⨯2⨯=1S ρa l π⨯2⨯+2S ρb l π⨯2⨯D =12s s r a be rρρ+,E =120s s r a be rρρε+错误!未找到引用源。

11ab 00ln bbs s aaa a aE dr dr r bρρεε∅===⎰⎰错误!未找到引用源。

要使ρ>0的区域外电场强度为0,即:E =120s s r a b e rρρε+=0,得1S ρ=2s ba ρ-2.9 一个半径为a 的薄导体球壳,在其内表面覆盖了一层薄的绝缘膜,球内充满总电量为Q 的电荷,球壳上又另充了电量为Q 的电荷,已知内部的电场为4()r r E a a=,计算: 错误!未找到引用源。

球内电荷分布;错误!未找到引用源。

球的外表面的电荷分布; 错误!未找到引用源。

球壳的电位; 错误!未找到引用源。

球心的电位。

解:错误!未找到引用源。

由0vE ρε∇=,得304r aερ6= 错误!未找到引用源。

r E e E =00s r r e D e E ρεε=•=•=错误!未找到引用源。

由高斯定理SD dS •⎰=24r D π=q当r ≥a 时,q=2Q ,Q=204a πε222r Qa r ϕπε==错误!未找到引用源。

02aa Edl a ϕ==-⎰r a ϕϕϕ=+=2-2a2.17一个有两层介质(1ε,2ε)的平行板电容器,两种介质的电导率分别为1σ和2σ,电容器极板的面积为S 。

当外加压力为U 时,求: 错误!未找到引用源。

电容器的电场强度;错误!未找到引用源。

两种介质分界面上表面的自由电荷密度; 错误!未找到引用源。

电容器的漏电导;错误!未找到引用源。

当满足参数是1221σεσε=,问G/C=?(C 为电容器电容) 解:错误!未找到引用源。

由11221n 2n E D E D ,J J U +==,得212112U E d d σσσ=+,122112UE d d σσσ=+错误!未找到引用源。

两介质分界面的法线由1指向2由2211s E E εερ-=,得s ρ=212112U d d εσσσ+122112Ud d εσσσ-+错误!未找到引用源。

由11IJ E Sσ==,知1I S σ=22112Ud d σσσ+G=I U =122112S d d σσσσ+错误!未找到引用源。

1D S Q C U U ===122112S d d εσσσ+ G/C=11σε 3.1设一点电荷q 与无限大接地导体平面的距离为d ,如图3.1所示。

求: (1)空间的电位分布和电场强度; (2)导体平面上感应电荷密度; (3)点电荷q 所受的力。

12012333333021212112220(1)(,,)(,,)11()44[()()()]4(2)z=0,2(x y z r x y z d r x y z d q r r q E q x x y y z d z d a a a r r r r r r r r qdE x y d φπεπεφπεπε=-=+=-=-=-∇+-=--+-+-===-++在导体平面上有则32203222222200).2()(3)()4(2)16zs z za qda E x y d q q q F a d dρεππεπε==-++-==-由库仑定律得3.6两无限大接地平行板电极,距离为d ,电位分别为0和0U ,板间充满电荷密度为0xd ρ的电荷,如题3.6图所示。

相关文档
最新文档