电磁场与电磁波课后习题及答案六章习题解答

合集下载

电磁场与电磁波课后答案_郭辉萍版1-6章

电磁场与电磁波课后答案_郭辉萍版1-6章

第一章 习题解答1.2给定三个矢量A ,B ,C : A =x a +2y a -3z a B = -4y a +z aC =5x a -2za求:⑴矢量A 的单位矢量A a ; ⑵矢量A 和B 的夹角AB θ; ⑶A ·B 和A ⨯B⑷A ·(B ⨯C )和(A ⨯B )·C ;⑸A ⨯(B ⨯C )和(A ⨯B )⨯C解:⑴A a =A A=149A++=(x a +2y a -3z a )/14⑵cos AB θ=A ·B /A BAB θ=135.5o⑶A ·B =-11, A ⨯B =-10x a -y a -4z a ⑷A ·(B ⨯C )=-42(A ⨯B )·C =-42⑸A ⨯(B ⨯C )=55x a -44y a -11z a(A ⨯B )⨯C =2x a -40y a +5z a1.3有一个二维矢量场F(r)=x a (-y )+y a (x),求其矢量线方程,并定性画出该矢量场图形。

解:由dx/(-y)=dy/x,得2x +2y =c1.6求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。

解:等值面方程为ln (2x +2y +2z )=c 则c=ln(1+4+9)=ln14 那么2x +2y +2z =141.9求标量场ψ(x,y,z )=62x 3y +ze 在点P (2,-1,0)的梯度。

解:由ψ∇=x a x ψ∂∂+y a y ψ∂∂+z a zψ∂∂=12x 3y x a +182x 2y y a +ze z a 得ψ∇=-24x a +72y a +z a1.10 在圆柱体2x +2y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: ⑴求矢量场A 沿闭合曲面S 的通量,其中矢量场的表达式为A =x a 32x +y a (3y+z )+z a (3z -x)⑵验证散度定理。

电磁场与电磁波课后习题及答案六章习题解答

电磁场与电磁波课后习题及答案六章习题解答

第六章时变电磁场有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场之中,如题图所示。

滑片的位置由确定,轨道终端接有电阻,试求电流i.解穿过导体回路abcda的磁通为故感应电流为一根半径为a的长圆柱形介质棒放入均匀磁场中与z轴平行。

设棒以角速度绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。

解介质棒内距轴线距离为r处的感应电场为故介质棒内的极化强度为极化电荷体密度为极化电荷面密度为则介质体积内和表面上同单位长度的极化电荷分别为平行双线传输线与一矩形回路共面,如题图所示。

设、、,求回路中的感应电动势。

解由题给定的电流方向可知,双线中的电流产生的磁感应强度的方向,在回路中都是垂直于纸面向内的。

故回路中的感应电动势为式中故则有一个环形线圈,导线的长度为l,分别通过以直流电源供应电压U0和时变电源供应电压U(t)。

讨论这两种情况下导线内的电场强度E。

解设导线材料的电导率为,横截面积为S,则导线的电阻为而环形线圈的电感为L,故电压方程为当U=U0时,电流i也为直流,。

故此时导线内的切向电场为当U=U(t)时,,故即求解此微分方程就可得到。

一圆柱形电容器,内导体半径为a,外导体内半径为b,长为l。

设外加电压为,试计算电容器极板间的总位移电流,证明它等于电容器的传导电流。

解当外加电压的频率不是很高时,圆柱形电容器两极板间的电场分布与外加直流电压时的电场分布可视为相同(准静态电场),即故电容器两极板间的位移电流密度为则式中,是长为l的圆柱形电容器的电容。

流过电容器的传导电流为可见由麦克斯韦方程组出发,导出点电荷的电场强度公式和泊松方程。

解点电荷q产生的电场满足麦克斯韦方程和由得据散度定理,上式即为利用球对称性,得故得点电荷的电场表示式由于,可取,则得即得泊松方程试将麦克斯方程的微分形式写成八个标量方程:(1)在直角坐标中;(2)在圆柱坐标中;(3)在球坐标中。

解(1)在直角坐标中(2)在圆柱坐标中(3)在球坐标系中已知在空气中,求和。

电磁场与电磁波课后习题及答案六章习题解答

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场5cos mT z e t ω=B 之中,如题 6.1图所示。

滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i.解 5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==⨯=⨯-=--=+⎰g g B S e e故感应电流为110.35sin (12cos ) 1.75sin (12cos )mAin d i R R dt t t t t R ωωωωωωΦ==-=-+-+E6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。

设棒以角速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。

解 介质棒内距轴线距离为r 处的感应电场为00z r r r B φωω=⨯=⨯=E v B e e B e故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X极化电荷体密度为2000011()()2()P rP r B r r r rB ρεεωεεω∂∂=-∇⋅=-=--∂∂=--P极化电荷面密度为00()(P r r r a e r σεεωε==⋅=-⋅=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=⨯⨯=--=⨯⨯=-6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。

设0.2a m=、0.1m b c d ===、71.0cos(210)A i t π=⨯,求回路中的感应电动势。

解 由题给定的电流方向可知,双线中的电流产生的磁感应强度的方向,在回路中都是垂直于纸面向内的。

电磁场与电磁波(第四版)课后答案-第六章习题

电磁场与电磁波(第四版)课后答案-第六章习题
E v 1 x ˆ E 1 x y ˆ E 1 y x ˆ j 2 0 0 s i n z e j 9 0 o y ˆ j 4 0 0 s i n z .
同样
H1x
HxHrx
1200ejz1200ejz
0
0
1400cosz 0
H1yHyHry10100ejz90o100ejz90o10200ej90ocos z
v
v
(4) E 2 z xˆEtme j2z
v

E e j2z im
2 2 1.12
v 1 2
E2 z xˆ1.12 2.4e j10.54 z
v
E2 z,t
xˆ 2.68 cos
5 10.8 t 10.54 z
(4)
解:(1)
11100 r1r13.33rad/m 200 r2r210.54rad/m
.
(2)
1
1 1
0
r1 r1
1 2
0
60
2
2 2
0
r2 75.9 r2
2 1 0.117 2 1
(3)电场方向为ex方向
v E1
z
v Ei
z
v Er
z
v xˆEim
e j1z e j1z
t z 90o
1
0
xˆ200cost
z
yˆ100sin
t
z
A/
m
(2)均匀平面波垂直入射到理想导体平面上会产生全反射, 反射波的电场为
Erx 100ej z90o
Ery 200ejz
.
即z<0区域内的反射波电场为
E v r x ˆ E r x y ˆ E r y x ˆ 1 0 0 e jz 9 0 o y ˆ 2 0 0 e jz

电磁场与电磁波第6章习题答案

电磁场与电磁波第6章习题答案

第6章习题答案6-1 在1=r μ、4=r ε、0=σ的媒质中,有一个均匀平面波,电场强度是)3sin(),(πω+-=kz t E t z E m若已知MHz 150=f ,波在任意点的平均功率流密度为2μw/m 265.0,试求:(1)该电磁波的波数?=k 相速?=p v 波长?=λ波阻抗?=η (2)0=t ,0=z 的电场?)0,0(=E(3)时间经过μs 1.0之后电场)0,0(E 值在什么地方?(4)时间在0=t 时刻之前μs 1.0,电场)0,0(E 值在什么地方? 解:(1))rad/m (22πεπμεω===r cfk )m/s (105.1/8⨯==r p c v ε)m (12==kπλ )Ω(60120πεμπη=rr=(2)∵ 6200210265.02121-⨯===m rm av E E S εεμη∴ (V/m)1000.12-⨯=m E)V/m (1066.83sin)0,0(3-⨯==πm E E(3) 往右移m 15=∆=∆t v z p(4) 在O 点左边m 15处6-8微波炉利用磁控管输出的2.45GHz 频率的微波加热食品,在该频率上,牛排的等效复介电常数)j 3.01(40~-=rε。

求: (1)微波传入牛排的穿透深度δ,在牛排内8mm 处的微波场强是表面处的百分之几?(2)微波炉中盛牛排的盘子是发泡聚苯乙烯制成的,其等效复介电常数=r ε~ )103.0j 1(03.14-⨯-。

说明为何用微波加热时,牛排被烧熟而盘子并没有被毁。

解:(1)20.8mm m 0208.011211212==⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+==-ωεσμεωαδ%688.20/8/0===--e e E E z δ(2)发泡聚苯乙烯的穿透深度(m)1028.103.1103.01045.22103212213498⨯=⨯⨯⨯⨯⨯⨯⨯=⎪⎭⎫ ⎝⎛===-πμεωεσωμεσαδ可见其穿透深度很大,意味着微波在其中传播的热损耗极小,所以不会被烧毁。

电磁场与电磁波课后标准答案-郭辉萍版1-6章

电磁场与电磁波课后标准答案-郭辉萍版1-6章

第一章习题解答1.2给定三个矢量A ,B ,C :A =x a +2y a -3z aB = -4y a +z aC =5x a -2za 求:⑴矢量A 的单位矢量A a ;⑵矢量A 和B 的夹角AB;⑶A ·B 和A B⑷A ·(B C )和(A B )·C ;⑸A (BC )和(AB )C解:⑴A a =A A=149A =(x a +2y a -3z a )/14⑵cosAB=A ·B /A BAB=135.5o⑶A ·B =11, A B =10x a y a 4za ⑷A ·(BC )=42 (A B )·C =42 ⑸A(B C )=55x a 44ya 11za (AB )C =2xa 40y a +5za 1.3有一个二维矢量场F(r)=x a (y )+y a (x),求其矢量线方程,并定性画出该矢量场图形。

解:由dx/(y)=dy/x,得2x +2y =c 1.6求数量场=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。

解:等值面方程为ln (2x +2y +2z )=c则c=ln(1+4+9)=ln14 那么2x +2y +2z =141.9求标量场(x,y,z )=62x 3y +ze 在点P (2,-1,0)的梯度。

解:由=xa x+ya y+za z=12x 3yx a +182x 2y y a +ze z a 得=24x a +72y a +za 1.10 在圆柱体2x +2y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S:⑴求矢量场A 沿闭合曲面S 的通量,其中矢量场的表达式为A =x a 32x +y a (3y+z )+z a (3z x)⑵验证散度定理。

解:⑴?s d A =A dS ?曲+A d S ?xoz+A dS ?yoz +A dS ?上+A dS?下A d S ?曲=232(3cos3sin sin )z d d 曲=156.4A dS ?xoz=(3)yz dxdz xoz= 6A dS ?yoz=23x dydz yoz=0A dS ?上+A dS ?下=(6cos )d d 上+cos d d 下=272?s d A =193⑵dV A V?=(66)Vx dV =6(cos1)Vd d dz =193即:ss d A =dVA V?1.13 求矢量A =x a x+y a x 2y 沿圆周2x +2y =2a 的线积分,再求A 对此圆周所包围的表面积分,验证斯托克斯定理。

谢处方《电磁场与电磁波》(第4版)课后习题-第6章 均匀平面波的反射与透射【圣才出品】

谢处方《电磁场与电磁波》(第4版)课后习题-第6章 均匀平面波的反射与透射【圣才出品】

第6章 均匀平面波的反射与透射(一)思考题6.1 试述反射系数和透射系数的定义,它们之间存在什么关系?答:(1)反射波电场振幅E rm与入射波电场振幅E im的比值为分界上的反射系数;透射波电场振幅E tm与入射波电场振幅E im的比值为分界面上的透射系数。

(2)反射系数Γ和透射系数τ之间的关系为:6.2 什么是驻波?它与行波有何区别?答:频率和振幅均相同,振动方向一致,传播方向相反的两列波叠加后形成的波叫驻波。

行波在介质中传播时,其波等相面随时间前移,而驻波的波形不向前推进。

6.3 均匀平面波垂直入射到两种理想媒质分界面时,在什么情况下,反射系数大于0?在什么情况下,反射系数小于0?答:均匀平面波垂直入射到两种理想媒质分界时,当时,反射系数Γ>0;当时,反射系数Γ<0。

6.4 均匀平面波向理想导体表面垂直入射时,理想导体外面的合成波具有什么特点?答:均匀平面波向理想导体表面入射时,理想导体外面的合成波具有特点如下:合成波电场和磁场的驻波在时间上有的相移,在空间上也错开了且在导体边界上,电场为零。

驻波的坡印廷矢量的平均值为零,不发生电磁能量的传输过程,仅在两个波节之间进行电场能量和磁场能量的交换。

6.5 均匀平面波垂直入射到两种理想媒质分界面时,在什么情况下,分界面上的合成波电场为最大值?在什么情况下,分界面上的合成波电场为最小值?答:当均匀平面波垂直入射到两种理想媒质分界面时,的位置时,分界面上的合成波电场为最大值。

的位置时,分界面上的合成波电场为最小值。

6.6 一个右旋圆极化波垂直入射到两种媒质分界面上,其反射波是什么极化波?答:右旋圆极化。

6.7 试述驻波比的定义,它与反射系数之间有什么关系?答:驻波比的定义是合成波的电场强度的最大值与最小值之比,即6.8 什么是波阻抗?在什么情况下波阻抗等于媒质的本征阻抗?答:在空间任意点,均匀平面波的电场与磁场强度的模值之比称为自由空间的波阻抗,在均匀无耗各向同性的无界媒质中,均匀平面波的电场与磁场的模值之比称为媒质中的阻波抗。

电磁场与电磁波课后答案_郭辉萍版1-6章

电磁场与电磁波课后答案_郭辉萍版1-6章

A A
=
A
=
1 49
( ax +2 ay -3 az )/
14
错误!未找到引用源。 cos = A · B / A B AB AB =135.5o
错误!未找到引用源。 A · B = 11, A B = 10 ax ay 4 az 错误!未找到引用源。 A ·( B C )= 42
( A B )· C = 42
=
27 2
A • ds =193
错误!未找到引用源。 •AdV = (6 6x)dV =6 ( cos 1)d d dz =193 V
V
V
即:
A • ds =
•AdV
s
V
1.13 求矢量 A = ax x+ ay x y2 沿圆周 x2 + y2 = a2 的线积分,再求 A 对此圆周所包围的表
(z z’)]
R = R3
即: ( 1 ) R
=
R R3
第二章 习题解答
2.5 试求半径为 a,带电量为 Q 的均匀带电球体的电场。 解:以带电球体的球心为球心,以 r 为半径,作一高斯面,
由高斯定理 D • dS =Q,及 D E 得, S
错误!未找到引用源。 r a 时,
由 D • dS = Q 4 r2 ,得


A• d S = (3y z)dxdz = 6
xoz
xoz
A• d S = 3x2dydz =0
yoz
yoz

A

d
S
+

A

d
S
=

(6
cos
)d
d
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 时变电磁场6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场5cos mTz e t ω=B 之中,如题6.1图所示。

滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i.解 穿过导体回路abcda 的磁通为5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==⨯=⨯-=--=+⎰B S e e故感应电流为110.35sin (12cos ) 1.75sin (12cos )mAin d i R R dt t t t t R ωωωωωωΦ==-=-+-+E6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B=B e 中与z 轴平行。

设棒以角速度ω绕轴作等速旋转,求介质的极化强度、体积和表面上单位长度的极化电荷。

解 介质棒距轴线距离为r 处的感应电场为00z r r r B φωω=⨯=⨯=E v B e e B e故介质棒的极化强度为00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X极化电荷体密度为2000011()()2()P rP r B r r r rB ρεεωεεω∂∂=-∇⋅=-=--∂∂=--P极化电荷面密度为0000()()P r r r a e r a B σεεωεεω==⋅=-⋅=-P n B e则介质体积和表面上同单位长度的极化电荷分别为220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=⨯⨯=--=⨯⨯=-6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。

设0.2a m =、0.1m b c d ===、71.0cos(210)A i t π=⨯,求回路中的感应电动势。

解 由题给定的电流方向可知,双线中的电流产生的磁感应强度的方向,在回路中都是垂直于纸面向的。

故回路中的感应电动势为d d d d d d in dS B S B S t t⎡⎤=-⋅=-+⎣⎦⎰⎰⎰左右B E 式中00,22()i iB B r b c d r μμππ==++-左右故0000d d ln()22d d ln()2()2b cb sc d d s i ai b cB S a r r b i ai b cB S a r b c d r b μμππμμππ+++==+==++-⎰⎰⎰⎰左右则0707777d 2ln()d 2d ln()[1.0cos(210d 4100.2ln 2sin(210)2103.484sin(210)in ai b c t b a b c t b t t Vt Vμπμπππππππ-+⎡⎤=-⎢⎥⎣⎦+=-⨯⨯⨯=⨯⨯⨯=⨯E6.4 有一个环形线圈,导线的长度为l ,分别通过以直流电源供应电压U 0和时变电源供应电压U (t )。

讨论这两种情况下导线的电场强度E 。

解 设导线材料的电导率为γ,横截面积为S ,则导线的电阻为l R S γ=而环形线圈的电感为L ,故电压方程为d d i U Ri Lt =+当U=U 0时,电流i 也为直流,d 0d i t =。

故0l lU Ri JS J lES γγ====此时导线的切向电场为0U E l =当U=U (t )时,d ()d i t t ≠,故d ()d()()()(())d d d ()()d i t U t Ri t L R E t S L E t S t tl E t E t S L S S t γγγγγ=+=+=+即d ()()()d E t lE t U t t L S L S γγ+=求解此微分方程就可得到()t E 。

6.5 一圆柱形电容器,导体半径为a ,外导体半径为b ,长为l 。

设外加电压为0sin U tω,试计算电容器极板间的总位移电流,证明它等于电容器的传导电流。

解 当外加电压的频率不是很高时,圆柱形电容器两极板间的电场分布与外加直流电压时的电场分布可视为相同(准静态电场),即0sin ln ()rU tr b a ω=E e故电容器两极板间的位移电流密度为0cos ln ()d r U t t r b a ωεω∂==∂DJ e则200cos d d d ln ()l d d r r sU ti r zr b a πεωωφ=⋅=⋅⎰⎰⎰J S e e002cos cos ln ()lU t C U tb a πεωωωω==式中,2ln ()lC b a πε=是长为l 的圆柱形电容器的电容。

流过电容器的传导电流为0d cos d c Ui CC U t t ωω==可见d c i i =6.6 由麦克斯韦方程组出发,导出点电荷的电场强度公式和泊松方程。

解 点电荷q 产生的电场满足麦克斯韦方程0∇⨯=E 和ρ∇⋅=D由ρ∇⋅=D 得d d τττρτ∇⋅=⎰⎰D据散度定理,上式即为d sq⋅=⎰D S利用球对称性,得24rqr π=D e 故得点电荷的电场表示式24rqr πε=E e由于0∇⨯=E ,可取ϕ=-∇E ,则得2εεϕεϕρ∇⨯=∇⋅=-∇⋅∇=-∇=D E即得泊松方程2ρϕε∇=-6.7 试将麦克斯方程的微分形式写成八个标量方程:(1)在直角坐标中;(2)在圆柱坐标中;(3)在球坐标中。

解 (1)在直角坐标中yx z x y x z y y x z z H D H J y z t D H H J z x t H H D J x y t ∂⎫∂∂-=+⎪∂∂∂⎪⎪∂∂∂⎪-=+⎬∂∂∂⎪∂⎪∂∂-=+⎪∂∂∂⎪⎭yx z y x z y x z E H E y z t H E E z x t E E H x y t μμμ∂⎫∂∂-=-⎪∂∂∂⎪⎪∂∂∂⎪-=-⎬∂∂∂⎪∂⎪∂∂-=-⎪∂∂∂⎪⎭ 0y x zy x zB B B x y z D D D x y z ρ∂∂∂++=∂∂∂∂∂∂++=∂∂∂(2)在圆柱坐标中111()z r r r z rz z H H D J r z t D H H J z r t H D rH J r r r t φφφφφφ∂⎫∂∂-=+⎪∂∂∂⎪⎪∂∂∂⎪-=+⎬∂∂∂⎪∂∂∂⎪-=+⎪∂∂∂⎪⎭ 111()z r r z rz E E H r z t H E E z r t E H rE r r r t φφφμφμμφ∂⎫∂∂-=-⎪∂∂∂⎪⎪∂∂∂⎪-=-⎬∂∂∂⎪∂∂∂⎪-=-⎪∂∂∂⎪⎭ 11()011()zr zr B B rB r r r z D D rD r r r z φφφρφ∂∂∂++=∂∂∂∂∂∂++=∂∂∂(3)在球坐标系中1[(sin )]sin 11[()]sin 1[()]r r r r H D H J r tD H rH J r r t D H rH J r r t θφθφθφθφθθθφθφθ∂∂∂⎫-=+⎪∂∂∂⎪∂∂∂⎪-=+⎬∂∂∂⎪⎪∂∂∂-=+⎪∂∂∂⎭1[(sin )]sin 11[()]sin 1[()]r r r E H E r t H E rE r r t H E rE r r t θφθφφθθμθθφμθφμθ∂∂∂⎫-=-⎪∂∂∂⎪∂∂∂⎪-=-⎬∂∂∂⎪⎪∂∂∂-=-⎪∂∂∂⎭ 2222111()(sin )0sin sin 111()(sin )sin sin r r B r B B r r r r D r D D r r r r φθφθθθθθφθρθθθφ∂∂∂++=∂∂∂∂∂∂++=∂∂∂6.8 已知在空气中90.1sin10cos(610)y x t z ππβ=⨯-E e ,求H 和β。

提示:将E 代入直角坐标中的波方程,可求得β。

解 电场E 应满足波动方程220020t με∂∇-=∂EE将已知的y yE =E e 代入方程,得22200222y y y E E E xztμε∂∂∂+-=∂∂∂式中229222922929000020.1(10)sin10cos(610)0.1sin10[cos(610)]0.1sin10[(610)cos(610)]y y y E x t z x E x t z zE x t z tπππβπβπβμεμεπππβ∂=-⨯-∂∂=-⨯-∂∂=-⨯⨯-∂故得229200(10)(610)0πβμεπ--+⨯=则54.41rad/m β==由t μ∂∇⨯=-∂H E得0090911[]1[0.1sin10sin(610)0.110cos10cos(610)]y y x z x z E E t z xx t z x t z μμβππβμπππβ∂∂∂=-∇⨯=--+∂∂∂=--⨯-+⨯⨯-H E e e e e将上式对时间t 积分,得990949491[0.1sin10cos(610]610cos10sin(610)2.310sin10cos(61054.41)1.3310cos10sin(61054.41)A/m x z x z x t z x t z x t z x t z βππβμππππβππππ--=-⨯-⨯⨯+⨯-=-⨯⨯--⨯⨯-Ηe e e e6.9 已知自由空间中球面波的电场为sin cos()E t kr r θθω=-Εe求H 和k 。

解 可以和前题一样将E 代入波动方程来确定k ,也可以直接由麦克斯韦方程求与E 相伴的磁场H 。

而此磁场又要产生与之相伴的电场,同样据麦克斯韦方程求得。

将两个电场比较,即可确定k 的值。

两种方法本质上是一样的。

由t μ∂∇⨯=-∂HE得00000011()1[sin cos()]sin sin()rE t r r E t kr rrkE t kr rφθφφμμθωμθωμ∂∂=-∇⨯=-⋅∂∂∂=--∂=-e H E e e将上式对时间t 积分,得00sin cos()kE t kr rφθωωμ=-H e (1)将式(1)代入t ε∂∇⨯=∂E H得201111[(sin )(sin )]sin sin r t r H r H r r r φθφεθθεθθθ∂=∇⨯∂∂∂=-∂∂E H e e2020002sin 1cos()sin()r kE k E t kr t kr r r θθωωεωμωμ⎡⎤=---⎢⎥⎣⎦e e将上式对时间t 积分,得20022200021sin()sin cos()r kE k E t kr t kr r r θωθωεωμωμ⎡⎤=-+-⎢⎥⎣⎦E e e (2)将已知的sin cos()E t kr r θθω=-E e与式(2)比较,可得含21r 项的E r 分量应略去,且200k ωμε=,即k =将k =1),得00sin cos()cos()t kr t kr φθωθω=-=-H e e A6.10 试推导在线性、无损耗、各向同性的非均匀媒质中用E 和B 表示麦克斯韦方程。

相关文档
最新文档