电磁场与电磁波第三版课后答案

合集下载

电磁场与电磁波习题(第三版)习题解答第1-2章

电磁场与电磁波习题(第三版)习题解答第1-2章

ˆ y ˆ 2 yz z ˆ 的旋度。 1.33 计算矢量场 F xxy
解:
ˆ x F x Fx
ˆ y y Fy
ˆ ˆ z x z x Fz xy
ˆ y y 2 yz
ˆ z z 1
ˆ 2 y xz ˆ x
ˆ yx ˆ ,计算 A A 。 1.35 已知 A xy
2
电磁场与电磁波习题答案 chapter 1~2
Copyright @ ShengQian
dE x, y
S dx '
1/ 2
ˆ x x ' yy ˆ x
1/ 2
2 2 2 0 x x ' y 2 x x ' y 2 ˆ x x ' yy ˆ S x dx ' 2 2 2 0 x x ' y ˆ a 2 S x ˆ x x ' yy dx ' E x, y 2 a 2 2 2 0 x x ' y a 2 ˆ ˆ a2 S y x x x' y S dx ' dx ' 2 2 2 a 2 a 2 2 0 2 0 x x ' y x x ' y 2
D 0 E 0
当r a时
Sa D1n D2 n r a 0
当r b时
C 0C a a
Sb D1n D2 n r b 0
0C C b b
分析,本 题求解面电荷分布时, 法线方向和 D1 , D2 关系不要弄 混,这里公式

电磁场与电磁波(第三版)课后标准答案谢处方

电磁场与电磁波(第三版)课后标准答案谢处方

JS v ω r ez era
e a sin
e
Q 4 a
sin
将球面划分为无数个宽度为 dl a d 的细圆环,则球面上任一个宽度为 dl a d 细
.-
圆环的电流为
d
I
JS
dl
Q 4
sin
d
细圆环的半径为 b a sin ,圆环平面到球心的距离 d a cos ,利用电流圆环的轴线上
.-
第二章习题解答
2.1
一个平行板真空二极管内的电荷体密度为
4 9
0U0d 4
3 x 2
3
,式中阴极板位
于 x 0 ,阳极板位于 x d ,极间电压为 U0 。如果 U0 40 V 、 d 1cm 、横截面
S 10cm2 ,求:(1) x 0 和 x d 区域内的总电荷量 Q ;(2) x d 2 和 x d 区域内
解 电偶极子 p1 在矢径为 r 的点上产生的电场为
E1
1 4 0
[3(
p1 r)r r5
p1 r3
]
所以 p1 与 p 2 之间的相互作用能为
We
p2
E1
1 [3( p1 4 0
r)( p2 r5
r)
p1 r
p2
3
]
因为1 r, p1 ,2 r, p2 ,则
p1 r p1r cos1
处的电场强度 E 中,有一半是有平面上半径为 3z0 的圆内的电荷产生的。
解 半径为 r 、电荷线密度为 l d r 的带电细圆环在 z 轴上 z z0 处的电场强度为
d
E
ez
r z0 d r 20 (r 2 z02 )3
2
故整个导电带电面在 z 轴上 z z0 处的电场强度为

电磁场与电磁波(第三版)课后答案第6章

电磁场与电磁波(第三版)课后答案第6章

第六章时变电磁场6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场5cos mT z e t ω=B 之中,如题6.1图所示。

滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i.解 穿过导体回路abcda 的磁通为5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==⨯=⨯-=--=+⎰ B S e e故感应电流为110.35sin (12cos ) 1.75sin (12cos )mAin d i R R dt t t t t R ωωωωωωΦ==-=-+-+E6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。

设棒以角速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。

解 介质棒内距轴线距离为r 处的感应电场为 00z r r r B φωω=⨯=⨯=E v B e e B e故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X极化电荷体密度为2000011()()2()P rP r B r r r rB ρεεωεεω∂∂=-∇⋅=-=--∂∂=--P极化电荷面密度为00()()P r r r a e r a B σεεωεεω==⋅=-⋅=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=⨯⨯=--=⨯⨯=-6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。

设0.2a m =、0.1m b c d ===、71.0cos(210)A i t π=⨯,求回路中的感应电动势。

电磁场与电磁波(西安交大第三版)第2章课后答案

电磁场与电磁波(西安交大第三版)第2章课后答案

第2章习题2-1.已知真空中有四个点电荷q C11=,q C22=,q C34=,q C48=,分别位于(1,0,0),(0,1,0),(-1,0,0,),(0,-1,0)点,求(0,0,1)点的电场强度。

解:zyrzxrzyrzxrˆˆ;ˆˆ;ˆˆ;ˆˆ4321+=+=+-=+-=84ˆ15ˆ6ˆ3)ˆˆˆˆ(412444233322222111πεπεzyxrrqrrqrrqrrqE++=+++=2-2.已知线电荷密度为ρl的均匀线电荷围成如图所示的几种形状,求P点的电场强度。

题2-2图解:(a) 由对称性04321=+++=EEEEE(b) 由对称性0321=++=EEEE(c) 两条半无限长线电荷产生的电场为yayxyxaEEE llaˆ2)}ˆˆ()ˆˆ{(421περπερ-=+--=+=半径为a的半圆环线电荷产生的电场为yaE lbˆ2περ=总电场为0=+=baEEE2-3.真空中无限长的半径为a的半边圆筒上电荷密度为ρs,求轴线上的电场强度。

解:在无限长的半边圆筒上取宽度为ϕad的窄条,,电荷线密度为ϕρρadsl=,对ϕ积分,可得真空中无限长的半径为a的半边圆筒在轴线上的电场强度为ydxyad r aE sssˆ)ˆcosˆsin(22ˆ0000⎰⎰-=--==πππερϕϕϕπερπεϕρ题2-3图题2-4图2-4.真空中无限长的宽度为a的平板上电荷密度为ρs,求空间任一点上的电场强度。

解:在平板上'x处取宽度为'dx的无限长窄条,可看成无限长的线电荷,电荷线密度为'dxslρρ=,在点),(yx处产生的电场为ρρρπε'ˆ21),(dxyxEd s=其中22)'(y x x +-=ρ;22)'(ˆˆ)'(ˆyx x y y xx x +-+-=ρ对'x 积分可得无限长的宽度为a 的平板上的电荷在点),(y x 处产生的电场为 )}2/2/(2ˆ)2/()2/(ln ˆ{4),(22220y a x arctg y a x arctg y ya x y a x x y x E s --+++-++=περr 为场点到坐标原点的距离,a ,b 为常数。

电磁场与电磁波第三版课后答案

电磁场与电磁波第三版课后答案

电磁场与电磁波第三版课后答案本文是对《电磁场与电磁波》第三版的课后习题答案的整理与解答。

本书是电磁场与电磁波领域的经典教材,其中的习题对于巩固和加深对电磁场与电磁波知识的理解非常重要。

以下是本文对第三版的习题答案的详细解析。

第一章电磁场基本概念1.1 电磁场基本概念习题答案:1.电磁场的基本概念是指在空间中存在着电场和磁场,它们相互作用产生相互关联的现象;它们是由带电粒子的运动而产生的,是物理学的基本概念之一。

2.宏观电荷位移是指电荷在物体内部的移动;它的存在使得物体表面或其周围的电场产生变化,从而产生an内部电磁场。

3.电磁场的基本方程是麦克斯韦方程组,由四个方程组成:高斯定律、法拉第电磁感应定律、法拉第电磁感应定律的积分形式和安培环路定律。

1.2 矢量分析习题答案:1.根据题目所给的向量,求两个向量的点乘积:$\\vec{A}\\cdot\\vec{B}=A_{x}B_{x}+A_{y}B_{y}+A_{z}B_{ z}$2.根据题目所给的向量,求两个向量的叉乘积:$\\vec{A}\\times\\vec{B}=(A_{y}B_{z}-A_{z}B_{y})\\hat{i}+(A_{z}B_{x}-A_{x}B_{z})\\hat{j}+(A_{x}B_{y}-A_{y}B_{x})\\hat{k}$3.定义标量和矢量场,然后利用高斯定理得出结论。

1.3 电场与静电场习题答案:1.静电场是指电场的源是静止电荷,不会随时间变化,不产生磁场。

2.在静电场中,高斯定律表示为:$\ abla \\cdot\\vec{E} = \\frac{1}{\\varepsilon_0}\\rho$,其中$\ abla\\cdot \\vec{E}$表示电场的散度,$\\varepsilon_0$表示真空介电常数,$\\rho$表示电荷密度。

3.电场的位移矢量$\\vec{D}$定义为$\\vec{D} =\\varepsilon_0 \\vec{E} + \\vec{P}$,其中$\\varepsilon_0$表示真空介电常数,$\\vec{E}$表示电场强度,$\\vec{P}$表示极化强度。

电磁场与电磁波(第三版)课后答案第5章

电磁场与电磁波(第三版)课后答案第5章

第五章习题解答5.1真空中直线长电流I 的磁场中有一等边三角形回路,如题 5.1图所示,求三角形回路内的磁通。

解根据安培环路定理,得到长直导线的电流I 产生的磁场2IrB e穿过三角形回路面积的磁通为d SB S32322[d ]d d 2db db zd dI I z z xxxx由题 5.1图可知,()tan63x d zx d ,故得到32d 3db dIx dxx3[ln(1)]223Ib d b d5.2通过电流密度为J 的均匀电流的长圆柱导体中有一平行的圆柱形空腔,如题 5.2图所示。

计算各部分的磁感应强度B ,并证明腔内的磁场是均匀的。

解将空腔中视为同时存在J 和J 的两种电流密度,这样可将原来的电流分布分解为两个均匀的电流分布:一个电流密度为J 、均匀分布在半径为b 的圆柱内,另一个电流密度为J 、均匀分布在半径为a 的圆柱内。

由安培环路定律,分别求出两个均匀分布电流的磁场,然后进行叠加即可得到圆柱内外的磁场。

由安培环路定律d CI B l,可得到电流密度为J 、均匀分布在半径为b 的圆柱内的电流产生的磁场为2222b b bbbbr bbr br J r B J r 电流密度为J 、均匀分布在半径为a 的圆柱内的电流产生的磁场为2222a a aaaar aar ar J r B J r 这里a r 和br 分别是点a o 和b o 到场点P 的位置矢量。

将aB 和bB 叠加,可得到空间各区域的磁场为圆柱外:22222babab a r rBJr r ()br b 圆柱内的空腔外:2022ba aar BJr r (,)b ar b r a 空腔内:22b aBJr r J d()ar a 式中d 是点和b o 到点a o 的位置矢量。

由此可见,空腔内的磁场是均匀的。

5.3下面的矢量函数中哪些可能是磁场?如果是,求其源变量J 。

dbIzx题 5.1 图Sbr ar Jboao ab题5.2图d(1) 0,r ar H e B H(圆柱坐标)(2) 0(),x y ay ax H e e BH(3) 0,x y axay H e e BH(4) 0,ar He BH (球坐标系)解根据恒定磁场的基本性质,满足0B 的矢量函数才可能是磁场的场矢量,否则,不是磁场的场矢量。

电磁场与电磁波(第三版)课后答案第4章

电磁场与电磁波(第三版)课后答案第4章

第四章习题解答4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为0U ,求槽内的电位函数。

解 根据题意,电位(,)x y ϕ满足的边界条件为① (0,)(,)0y a y ϕϕ== ② (,0)0x ϕ=③ 0(,)x b U ϕ=根据条件①和②,电位(,)x y ϕ的通解应取为1(,)sinh()sin()n n n y n xx y A a aππϕ∞==∑ 由条件③,有01sinh()sin()n n n b n x U A a aππ∞==∑ 两边同乘以sin()n xaπ,并从0到a 对x 积分,得到 002sin()d sinh()an U n xA x a n b a a ππ==⎰2(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ⎧=⎪⎨⎪=⎩L L , 故得到槽内的电位分布 01,3,5,41(,)sinh()sin()sinh()n U n y n xx y n n b a a aππϕππ==∑L 4.2 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。

上板和薄片保持电位0U ,下板保持零电位,求板间电位的解。

设在薄片平面上,从0=y 到d y =,电位线性变化,0(0,)y U y d ϕ=。

解 应用叠加原理,设板间的电位为(,)x y ϕ=12(,)(,)x y x y ϕϕ+其中,1(,)x y ϕ为不存在薄片的平行无限大导体平面间(电压为0U )的电位,即10(,)x y U y b ϕ=;2(,)x y ϕ是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:① 22(,0)(,)0x x b ϕϕ==②2(,)0()x y x ϕ=→∞a题4.1图题 4.2图③ 002100(0)(0,)(0,)(0,)()U U y y d by y y U U y y d y b db ϕϕϕ⎧-≤≤⎪⎪=-=⎨⎪-≤≤⎪⎩根据条件①和②,可设2(,)x y ϕ的通解为 21(,)sin()e n x bn n n y x y A b ππϕ∞-==∑ 由条件③有 00100(0)sin()()n n U U y y d n y bA U U b y y d y b db π∞=⎧-≤≤⎪⎪=⎨⎪-≤≤⎪⎩∑ 两边同乘以sin()n yb π,并从0到b 对y 积分,得到 0002211(1)sin()d ()sin()d d bn dU U y n y n y A y y y b b b b d b b ππ=-+-=⎰⎰022sin()()U b n d n d b ππ 故得到 (,)x y ϕ=0022121sin()sin()e n x bn U bU n d n y y b d n b b ππππ∞-=+∑ 4.3 求在上题的解中,除开0U y b 一项外,其他所有项对电场总储能的贡献。

电磁场与电磁波第三版课后答案 谢处方

电磁场与电磁波第三版课后答案  谢处方

第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A BC 和()⨯A BC ;(8)()⨯⨯A BC 和()⨯⨯A B C 。

解 (1)23A x y z+-===e e e A a ee e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由cos AB θ=14-==⨯A B A B ,得1cos ABθ-=(135.5= (5)A 在B 上的分量 B A =A cos AB θ=1117=-A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e⨯=A B 123041x y z-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。

(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章习题解答2.1 一个平行板真空二极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。

如果040V U =、1cm d =、横截面210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。

解 (1) 43230004d ()d 9dQ U d x S x τρτε--==-=⎰⎰110044.7210C 3U S dε--=-⨯ (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=⎰⎰11004(10.9710C 3U S d ε--=-⨯ 2.2 一个体密度为732.3210C m ρ-=⨯的质子束,通过1000V 的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。

解 质子的质量271.710kg m -=⨯、电量191.610C q -=⨯。

由21mv qU = 得 61.3710v ==⨯ m 故 0.318J v ρ== 2A m26(2)10I J d π-== A2.3 一个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀角速度ω绕一个直径旋转,求球内的电流密度。

解 以球心为坐标原点,转轴(一直径)为z 轴。

设球内任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin r φωθ=⨯=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a aφφωρωθθππ===J v e e 2.4 一个半径为a 的导体球带总电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求球表面的面电流密度。

解 以球心为坐标原点,转轴(一直径)为z 轴。

设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin a φωθ=⨯=v r e ω球面的上电荷面密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 2.5 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。

解 电荷1q 在(4,0,0)处产生的电场为1113014q πε'-=='-r r E r r电荷2q 在(4,0,0)处产生的电场为222302444q πε-'-=='-e e r r E r r 故(4,0,0)处的电场为122+-=+=e e e E E E2.6 一个半圆环上均匀分布线电荷l ρ,求垂直于圆平面的轴线上z a =处的电场强度(0,0,)a E ,设半圆环的半径也为a ,如题2.6 图所示。

解 半圆环上的电荷元d d l l l a ρρφ''=在轴线上z a =处的电场强度为d φ'==E(cos sin )φφφ''-+'e e e在半圆环上对上式积分,得到轴线上z a =处的电场强度为 (0,0,)d a ==⎰E E22[(cos sin )]d z x y ππφφφ'''-+=⎰e ee 2.7 三根长度均为L ,均匀带电荷密度分别为1l ρ、2l ρ和3l ρ地线电荷构成等边三角形。

设1l ρ=22l ρ=32l ρ,计算三角形中心处的电场强度。

解 建立题2.7图所示的坐标系。

三角形中心到各边的距离为 3tan 3026L d == 则111003(cos30cos150)42ll yyd Lρρπεπε=-=E e e 2120033(cos30sin 30)()28l l x y y L L ρρπεπε=-+=-E e e e e 3130033(cos30sin 30)()28l l xy y L Lρρπεπε=-=E e e e e 故等边三角形中心处的电场强度为123=++=E E E E111000333()()288l l l yy y L L L ρρρπεπεπε-+=e e e e e 1034l yLρπεe 2.8 -点电荷q +位于(,0,0)a -处,另-点电荷2q -位于(,0,0)a 处,空间有没有电场强度0=E 的点?解电荷q +在(,,)x y z 处产生的电场为题题2.71222320()4[()]x y z x a y zqx a y z πε+++=+++e e e E电荷2q -在(,,)x y z 处产生的电场为2222320()24[()]x y z x a y z q x a y z πε-++=--++e e e E(,,)x y z 处的电场则为12=+E E E 。

令0=E ,则有22232()[()]x y z x a y z x a y z +++=+++e e e 222322[()][()]x y z x a y z x a y z -++-++e e e 由上式两端对应分量相等,可得到222322232()[()]2()[()]x a x a y z x a x a y z +-++=-+++ ① 2223222232[()]2[()]y x a y z y x a y z -++=+++ ②22232223[()]2[()]z x a y z z x a y z -++=+++ ③当0y ≠或0z ≠时,将式②或式③代入式①,得0a =。

所以,当0y ≠或0z ≠时无解;当0y =且0z =时,由式①,有33()()2()()x a x a x a x a +-=-+解得(3x a =-±但3x a =-+不合题意,故仅在(3,0,0)a --处电场强度0=E 。

2.9 一个很薄的无限大导电带电面,电荷面密度为σ。

证明:垂直于平面的z 轴上0z z =处的电场强度E 中,有一半是有平面上半径为03z 的圆内的电荷产生的。

解 半径为r 、电荷线密度为d l r ρσ=的带电细圆环在z 轴上0z z =处的电场强度为0223200d d 2()zr z rr z σε=+E e 故整个导电带电面在z 轴上0z z =处的电场强度为002232221200000d 12()2()2z z zr z r z r z r z σσσεεε∞∞==-=++⎰E e e e 而半径为03z 的圆内的电荷产生在z 轴上0z z =处的电场强度为022320000d 12()42zz zr z r r z σσεε'==-==+⎰E e e e E 2.10 一个半径为a 的导体球带电荷量为Q ,当球体以均匀角速度ω绕一个直径旋转,如题2.10图所示。

求球心处的磁感应强度B 。

解 球面上的电荷面密度为24Q a σπ=当球体以均匀角速度ω绕一个直径旋转时,球面上位置矢量r a =r e 点处的电流面密度为S z r a σσσω==⨯=⨯=J v ωr e esin sin 4Qa aφφωωσθθπ=e e将球面划分为无数个宽度为d d l a θ=的细圆环,则球面上任一个宽度为d d l a θ=细题圆环的电流为 d d sin d 4S QI J l ωθθπ==细圆环的半径为sin b a θ=,圆环平面到球心的距离cos d a θ=,利用电流圆环的轴线上的磁场公式,则该细圆环电流在球心处产生的磁场为202232d d 2()z b Ib d μ==+B e 230222232sin d 8(sin cos )z Qa a a μωθθπθθ=+e 30sin d 8zQ aμωθθπe故整个球面电流在球心处产生的磁场为 3000sin d 86z zQ Q a aπμωθμωθππ==⎰B e e 2.11 两个半径为b 、同轴的相同线圈,各有N 匝,相互隔开距离为d ,如题2.11图所示。

电流I 以相同的方向流过这两个线圈。

(1)求这两个线圈中心点处的磁感应强度x x B =B e ; (2)证明:在中点处d d x B x 等于零;(3)求出b 与d 之间的关系,使中点处22d d x B x 也等于零。

解 (1)由细圆环电流在其轴线上的磁感应强度 2022322()zIa a z μ=+B e得到两个线圈中心点处的磁感应强度为 202232(4)xNIb b d μ=+B e(2)两线圈的电流在其轴线上x )0(d x <<处的磁感应强度为2200223222322()2[()]x NIb NIb b x b d x μμ⎧⎫=+⎨⎬++-⎩⎭B e 所以 220022522252d 33()d 2()2[()]x B NIb x NIb d x x b x b d x μμ-=-+++- 故在中点2d x =处,有220022522252d 32320d 2[4]2[4]x B NIb d NIb d x b d b d μμ=-+=++ (3) 222200222722252d 153d 2()2()x B NIb x NIb x b x b x μμ=-+++ 222002272225215()32[()]2[()]NIb d x NIb b d x b d x μμ--+-+- 令0d d 222==d x xx B ,有 0]4[1]4[45252227222=+-+d b d b d 即 45222d b d += 故解得 b d =2.12 一条扁平的直导体带,宽为a 2,中心线与z 轴重合,通过的电流为I 。

证明在第一象限内的磁感应强度为 021ln 4y I r B a r μπ= 式中α、1r 和2r 如题04x IB a μαπ=-,2.12图所示。

解 将导体带划分为无数个宽度为x 'd 的细条带,每一细题题题条带的电流x aII '=d 2d 。

由安培环路定理,可得位于x '处的细条带的电流I d 在点),(y x P 处的磁场为00d d d 24I I x B R aRμμππ'===02212d 4[()]I x a x x y μπ''-+ 则 022d d d sin 4[()]x Iy x B B a x x y μθπ'=-=-'-+ 022()d d d cos 4[()]y I x x x B B a x x y μθπ''-=='-+ 所以022d 4[()]ax aIy x B a x x y μπ-'=-='-+⎰0arctan 4a aI x x ay μπ-'⎛⎫--= ⎪⎝⎭0arctan arctan 4I a x a x a y y μπ⎡⎤⎛⎫⎛⎫-----=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦0arctan arctan 4I x a x a a y y μπ⎡⎤⎛⎫⎛⎫+---=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦021()4I a μααπ--=04I aμαπ- 022()d 4[()]ay aI x x x B a x x y μπ-''-=='-+⎰220ln[()]8aaIx x y aμπ-'--+=22022()ln 8()I x a y a x a yμπ++=-+021ln 4I r a r μπ2.13 如题2.13图所示,有一个电矩为1p 的电偶极子,位于坐标原点上,另一个电矩为2p 的电偶极子,位于矢径为r 的某一点上。

相关文档
最新文档