电磁场与电磁波第二章课后答案
电磁场与电磁波(第四版)课后答案 谢处方 第二章习题

2)
3)
, 处于外导体内部,
4)
2. 一半径为R的电介质球内计划强度为 求(1)极化电荷的体密度和面密度。
2 自由电荷密度。 3 球内、外的电场分布。
, 其中k为一常数。
(1)极化电荷的体密度。 极化电荷的面密度
(2)根据高斯定律自由电荷密度。
(3)根据高斯定律求电场分布。 球内电场分布
球Байду номын сангаас电场分布
,d=
lcm,横截面积s =10cm2。
求:
x=0和x=d 区域内的总电荷量;
x=d/2和x=d区域内的总电荷量。
• 解: (1)
• (2)
2.8 一个点电荷 位于 处,
另一个点电荷
位于 处,
空间有没有电场强度
的
解:
个点电荷的电场公式为
点 ?
令
, 即有
由此可得个分量为零的方程组:
2
解之: 当
有一平行的圆柱形空腔,其横截面如图所示。 的磁感应强度, 并证明空腔内的磁场是均匀的。
试计算各部分
解: 将题中问题看做两个对称电流的叠加: 一个是密度为 均匀分布在半径为 的圆柱内, 另一个是密度为 均匀 分布在半径为 的圆柱内。
由安培环路定律在 磁场分别为
和
中分布的
b
a d
空间各区域的磁场为 圆柱外 圆柱内的空腔外 空腔内
因此, 在z>0的区域有 在z<0的区域有
表示为矢量形式
为面电流的外法 向单位矢量
2.25平行双线与一矩形回路共面,设a=0.2m,b=c=d=0.1m, 求回路中的感应电动势。 解: 先求出平行双线在回路中的磁感应强度
回路中的感应电动势为
电磁场与电磁波 第2章习题解答

第二章习题解答【习题2.1】101929=.=101.6102.0810e qR R mq e Cp m Ce e 解:电偶极矩p 其中 1.3可得电偶极矩p 的大小其方向为从负电荷指向正电荷,即从氯离子指向氢离子。
---´== =醋【习题2.2】解1解:由例2.2得,电偶极子所产生的电场为533()1[]4e e P R RP E RRπε=-0()R R << ……………………①其中 0e P qR = ,0R方向从负电荷指向正电荷,R是从电偶极子指向电场中任一点的矢量,起点在正负电荷连线的中点。
(如图)本题 100 1.310R m -=⨯ 1010010R m -=⨯满足 0R R << .将①式整理:32013[()]4e e E P R R P RRπε=-令 ()e m k P R R P =-(23k R=)则 304m E Rπε=…………………………②欲求E的最大值,求出m最大值即可.222222[()]()2()()e e e e e e m k P R R P k P R R P k P R P R =-=+- 2222(2)()e e k R k P R P =-+2224296()()e e R P R P R R=-+ 2223()e e P R P R=+其中 00cos e P R qR R qR R θ== , (θ是0R 和R之间的夹角)易见,当cos 1θ=,即0θ=时,2m可取最大值22222m ax 234e e e m R P P P R=+=则 m=2e P 代入②式得 m a x33m ax042e P mERRπεπε==将习题2.1中的结论 e P=2.082910c m -⨯⋅ 代入得29112103max2.08102 3.148.910(10010)EV m ----⨯=⋅⨯⨯⨯⨯⨯513.710V m-≈⨯⋅距离自由电子处的电场 191712121020 1.6101.41044 3.148.910(10010)e E V mV mRπε-----⨯==⋅≈⨯⋅⨯⨯⨯⨯⨯故 距离电偶极子处的电场最大值为 513.710V m -⨯⋅ 距离自由电子处的电场为 711.410V m -⨯⋅【习题2.2】解2解:设矢量0R e的方向从电荷C L -指向电荷H +R n 是从由C L - H +构成的电偶极子指向电场中的任一点的矢量,起点在正负电荷连线的中点,且0R 〈〈R. ( e , n 为单位矢量,θ是e , n的夹角)(1)003303cos 1[]4qR qR E n e R R θπε=- (41P )由向量减法的三角形法则及余弦定理得:=03024qR R πε⎛⎫⎪⎝⎭E =由上题得290( 2.110)e p qR cm -==⨯因此,当0θ=或θπ=时E有最大值, 03024qR E R πε==50302 3.7104qR V M R πε=⨯ (2)7201() 1.4104q R VE M R R πε==⨯【习题2.3】证明: 电偶极距qRe p =其方向为从负电荷指向正电荷。
《电磁场与电磁波》(第四版)课后习题解答(全)

第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++ 【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c +=即只要满足3b+8c=1就可以使向量错误!未找到引用源。
和向量错误!未找到引用源。
垂直。
(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=-可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3))()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++ 2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a ) 所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223y z A x yze xy e =+而 A A A A rot⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y x e x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。
电磁场与电磁波第二版课后答案 (2)

电磁场与电磁波第二版课后答案第一章:电荷和电场1.1 选择题1.电场可以向量形式来表示。
2.使得电体带有不同种类电荷的原子或分子是离子化。
3.在法拉弹规定空气是电介质。
4.电荷量的基本单位是库仑。
5.元电荷是正负电荷的最小电荷量。
6.在电场中电荷所受力的方向完全取决于电荷性质和场的性质和方向。
7.电势能是标量。
8.空间中一点产生的电场是该点电荷所受电场的矢量和。
9.电场E的国际单位是NC−1。
10.电场强度受逼迫电荷的正负种类影响,但与电荷的量无关。
1.2 填空题1.空间中一点产生的电场是该点电荷所受电场的矢量和。
2.计算质点电荷q在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{q}{r^2}\\vec{r}$。
3.计算正半球壳在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{Q}{r^2}\\vec{r}$。
4.位置在球心,能量源是正半球壳带点,正半球在转轴一侧电势能是0。
5.半径为R的均匀带点球壳,带电量为Q,求通过球心的电束强度的公式是$\\frac{Q}{4\\pi\\epsilon_0R^2}$。
1.3 计算题1.两个带电量分别为q1和q2的点电荷之间的相互干扰力公式是$\\vec{F}=\\frac{q_1q_2}{4\\pi\\epsilon_0r^2}\\vec{r}$。
2.一个电荷为q的质点,和一个均匀带有电量Q的半球壳之间的相互干扰力公式是$\\vec{F}=\\frac{1}{4\\pi\\epsilon_0}\\frac{qQ}{r^2}\\vec{r}$。
第二章:电磁感应和电磁波2.1 选择题1.电磁感应是由磁通变化产生的。
2.电磁感应一定要在导电体内才能产生电流是错误的。
√3.在电磁感应现象中,即使磁通量不变时导体电流也会产生改变。
4.电磁感应现象是反过来实现的。
电磁场与电磁波[第四版]课后答案谢处方第二章习题
![电磁场与电磁波[第四版]课后答案谢处方第二章习题](https://img.taocdn.com/s3/m/af16e016f11dc281e53a580216fc700aba685247.png)
描述电场中某点电荷所具有的势 能,其值等于单位正电荷从该点 移动到参考点时所做的功。
电介质与电位移矢量
电介质
指能够被电场极化的物质,其内部存 在大量的束缚电荷。
电位移矢量
描述电场中某点的电场强度和电介质 极化效应的矢量,其值等于电场强度 和极化强度矢量的矢量和。
高斯定理与泊松方程
高斯定理
在静电场中,穿过任意闭合曲面的电 场强度通量等于该闭合曲面内所包围 的电荷量。
填空题答案及解析
答案
麦克斯韦方程组
解析
麦克斯韦方程组是描述电磁场的基本方程,其中包括了 变化的磁场产生电场和变化的电场产生磁场两个重要的 结论。因此,填空题2的答案是麦克斯韦方程组。
计算题答案及解析
答案:见解析
解析:根据电磁场理论,电场和磁场是相互依存的,变化的电场产生磁场,变化的磁场产生电场。在 计算题1中,需要利用法拉第电磁感应定律和麦克斯韦方程组进行计算和分析。具体计算过程和结果 见解析部分。
泊松方程
描述静电场中某点的电位与电荷分布 的关系,其解为该点的电位分布。
03
恒定磁场
磁场强度与磁感应强度
磁场强度
描述磁场强弱的物理量,与电流、导线的环绕方向相关。
磁感应强度
描述磁场对放入其中的导体的作用力的物理量,与磁场强度和导体在磁场中的放置方式 相关。
Hale Waihona Puke 安培环路定律与磁通连续性原理
安培环路定律
偏振是指电磁波的振动方向与传播方向之间的关系,可以分为横波和纵波两种类 型。在时变电磁场中,电磁波通常是横波,其电场矢量和磁场矢量都与传播方向 垂直。
05
习题答案及解析
选择题答案及解析
选择题1答案及解析
电磁场与电磁波》(第四版 )答案二章习题解答

电磁场与电磁波》(第四版 )答案二章习题解答2.1 一个平行板真空二极管内的电荷体密度为$\rho=-\frac{4\epsilon U}{d}-4\times 10^{-3}x-2\times 10^{-3}$,式中阴极板位于$x=9$,阳极板位于$x=d$,极间电压为$U$。
如果$U=40V$,$d=1cm$,横截面$S=10cm^2$,求:(1)$x$和$x=d$区域内的总电荷量$Q$;(2)$x=d/2$和$x=d$区域内的总电荷量$Q'$。
解(1)$Q=\int\limits_{0}^{9}\rhoSdx+\int\limits_{d}^{9}\rho Sdx=-4.72\times 10^{-11}C(3d)$2)$Q'=\int\limits_{d/2}^{d}\rho Sdx=-0.97\times 10^{-11}C$2.2 一个体密度为$\rho=2.32\times 10^{-7}Cm^3$的质子束,通过$1000V$的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为$2mm$,束外没有电荷分布,试求电流密度和电流。
解:质子的质量$m=1.7\times 10^{-27}kg$,电量$q=1.6\times 10^{-19}C$。
由$1/2mv^2=qU$得$v=2mqU=1.37\times 10^6ms^{-1}$,故$J=\rho v=0.318Am^2$,$I=J\pi (d/2)^2=10^{-6}A$2.3 一个半径为$a$的球体内均匀分布总电荷量为$Q$的电荷,球体以匀角速度$\omega$绕一个直径旋转,求球内的电流密度。
解:以球心为坐标原点,转轴(一直径)为$z$轴。
设球内任一点$P$的位置矢量为$r$,且$r$与$z$轴的夹角为$\theta$,则$P$点的线速度为$v=\omega\times r=e_\phi \omegar\sin\theta$。
电磁场与电磁波理论第二版徐立勤,曹伟第2章习题解答

电磁场与电磁波理论第二版徐立勤,曹伟第2章习题解答第2章习题解答2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0Va ρρρρ=,()0a ρ≤≤。
试求总电量Q 。
解:2π200002d d d d π3laV VQ V z la aρρρρρ?ρ===?2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。
当球以角速度ω绕某一直径(z 轴)旋转时,试求其表面上的面电流密度。
解:面电荷密度为 204πS QR ρ=面电流密度为 00200sin sin sin 4π4πS S S Q Q J v R R R R ωθρρωθωθ=?=== 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ?=。
已知导线的直径为d ,导线中的电流为0I ,试求0S J 。
解:每根导线的体电流密度为 00224π(/2)πI I J d d== 由于导线是均匀密绕,则根据定义面电流密度为04πS IJ Jd d ==因此,等效面电流密度为04πS IJ e d=2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。
为使中间的点电荷处于平衡状态,试求其位置。
当中间的点电荷带电量为-0q 时,结果又如何?解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。
由库仑定律,实验电荷受02q 的排斥力为实验电荷受0q 的排斥力为要使实验电荷保持平衡,即21F F =,那么由00222114π4π()q q x d x εε=-,可以解得如果实验电荷为0q -,那么平衡位置仍然为d d x 585.0122=+=。
只是这时实验电荷与0q 和02q 不是排斥力,而是吸引力。
2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。
解:设点电荷的位置分别为()00,0,0q ,()0,0,0q a 和()00,,0q a ,由库仑定律可得点(),,0P a a 处的电场为2.9半径为0R 的半球面上均匀分布着面电荷,电荷密度为0S ρ,试求球心处的电场强度;若同样的电荷均匀分布在半径为0R 的半球内,再求球心处的电场强度。
电磁场与电磁波第二章课后答案

电磁场与电磁波第二章课后答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。
利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。
通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。
至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。
讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。
介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。
关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。
介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。
至于电容和部分电容一节可以从简。
重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。
利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。
通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。
至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。
讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。
介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。
关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。
介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。
至于电容和部分电容一节可以从简。
重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅llE 0d微分形式: 0ερ=⋅∇E 0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V V 0d )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d SD⎰=⋅llE 0d微分形式: ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅llE 0d微分形式: ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。
对于两种各向同性的线性介质,则2211εεttD D =2,s n n D D ρ=-12。
在两种介质形成的边界上,则n n D D 21=对于两种各向同性的线性介质,则n n E E 2211εε=3,介质与导体的边界条件:0=⨯E e n ; S n D e ρ=⋅若导体周围是各向同性的线性介质,则ερS n E =;ερϕS n-=∂∂静电场的能量:孤立带电体的能量:Q C Q W e 21212Φ==离散带电体的能量:∑==ni i i e Q W 121Φ分布电荷的能量:l S V W llSS Ve d 21d 21d 21ρϕρϕρϕ⎰⎰⎰===静电场的能量密度:E D ⋅=21e w对于各向同性的线性介质,则221E w e ε=电场力:库仑定律:r rq q e F 24πε'=常电荷系统:常数=-=q e lW F d d常电位系统:常数==ϕlW F e d d题 解2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,系统处于平衡状态,试求q '的大小及位置。
解 要使系统处于平衡状态,点电荷q '受到点电荷q 1及q 2的力应该大小相等,方向相反,即q q q q F F ''=21。
那么,由1222022101244r r r q q r q q =⇒'='πεπε,同时考虑到d r r =+21,求得 d r d r 32 ,3121==可见点电荷q '可以任意,但应位于点电荷q 1和q 2的连线上,且与点电荷1q 相距d 31。
2-2 已知真空中有三个点电荷,其电量及位置分别为:)0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。
解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。
利用点电荷的场强公式r e E 204rq πε=,其中r e 为点电荷q 指向场点P 的单位矢量。
那么,1q 在P点的场强大小为021011814πεπε==r q E ,方向为()z yr e ee +-=211。
2q 在P点的场强大小为0220221214πεπε==r q E ,方向为()z y xr e e ee ++-=312。
3q 在P 点的场强大小为023033414πεπε==r q E ,方向为y r e e -=3则P 点的合成电场强度为⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛+++-=++=z e e e E E E E y x 312128141312128131211 0321πε2-3 直接利用式(2-2-14)计算电偶极子的电场强度。
解 令点电荷q -位于坐标原点,r 为点电荷q -至场点P 的距离。
再令点电荷q +位于+z 坐标轴上,1r 为点电荷q +至场点P 的距离。
两个点电荷相距为l ,场点P 的坐标为(r,θ,φ)。
根据叠加原理,电偶极子在场点P 产生的电场为⎪⎪⎭⎫⎝⎛-=31134r r q r r E πε考虑到r >> l ,1r e = e r ,θcos 1l r r -=,那么上式变为r r r r r r r r qr r r r q e e E ⎪⎪⎭⎫⎝⎛+-=⎪⎪⎭⎫⎝⎛-=2121102122210))((44πεπε式中()2122212211cos 211cos 2---⎪⎪⎭⎫ ⎝⎛-+=-+=θθr lr l r rl l r r以r l为变量,并将2122cos 21-⎪⎪⎭⎫ ⎝⎛-+θr lr l 在零点作泰勒展开。
由于r l <<,略去高阶项后,得θθcos 1cos 11211r l rr l r r +=⎪⎭⎫ ⎝⎛+=- 利用球坐标系中的散度计算公式,求出电场强度为θr e e E 3030204sin 2cos 1cos 14r ql r ql r r l r q πεθπεθθπε+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∇-⎪⎭⎫ ⎝⎛+∇-=2-4 已知真空中两个点电荷的电量均为6102-⨯C ,相距为2cm , 如习题图2-4所示。
试求:①P 点的电位;②将电量为6102-⨯C 的点电荷由无限远处缓慢地移至P 点时,外力必须作的功。
原理,P 点的解 根据叠加合成电位为()V 105.24260⨯=⨯=rq πεϕ因此,将电量为C 1026-⨯的点电荷由无限远处缓慢地移到P 点,外力习题图2-4必须做的功为()J 5==q W ϕ2-5 通过电位计算有限长线电荷 的电场强度。
解 建立圆柱坐标系。
令先电 荷沿z 轴放置,由于结构以z 轴对称,场强与φ无关。
为了简单起见,令场点位于yz 平面。
设线电荷的长度为L ,密度为l ρ,线电荷的中点位于坐标原点,场点P 的坐标为⎪⎭⎫⎝⎛z r ,2,π。
利用电位叠加原理,求得场点P 的电位为⎰-=224LL lr περϕ式中()220rl z r +-=。
故()2222222202222ln 4 ln 4rL z L z rL z L z r l z l z lLL l+⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+++=⎥⎦⎤⎢⎣⎡+-+--=-περπερϕ因ϕ-∇=E ,可知电场强度的z 分量为22222222ln 4rL z L z rL z L z zzE lz +⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+++∂∂-=∂∂-=περϕyy⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛+-=222221214rL z rL z l περ ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛++-=2202112114r L z r L z r l περ ()()⎪⎪⎭⎫⎝⎛-+-++-=22220224L z rr L z rr r lπερ ()120sin sin 4θθπερ-=rl电场强度的r 分量为22222222ln 4rL z L z rL z L z rrE lr +⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+++∂∂-=∂∂-=περϕ()() ⎝⎛-⎪⎭⎫ ⎝⎛++++++-=22222224r L z L z r L z rl περ()()⎪⎪⎪⎪⎭⎫⎪⎭⎫ ⎝⎛+-+-+-2222222r L z L z r L z r-⎝⎛⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛++-=2202122114r L z r L z r L z r l περ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-++-⎪⎭⎫ ⎝⎛-+22212211r L z r L z r L z⎝⎛-⎪⎪⎭⎫⎝⎛+++-=121120tan 11tan 1tan 1114θθθπερr l⎪⎪⎪⎪⎪⎪⎭⎫⎪⎪⎭⎫ ⎝⎛+++22222tan 11tan 1tan 111θθθ ()()()210cos 1cos 14θθπερ----=rl()210cos cos 4θθπερ-=rl式中2t a na r c ,2t a na r c 21L z r L z r-=+=θθ,那么,合成电强为()()[]r z lre e E 12120cos cos sin sin 4θθθθπερ---=当L →∞时,πθθ→→ ,021,则合成电场强度为r lre E 02περ=可见,这些结果与教材2-2节例4完全相同。
2-6 已知分布在半径为a的半圆周上的电荷线密度πφφρρ≤≤=0 ,sin 0l ,试求圆心处的电场强度。
解 建立直角坐标,令线电荷位于xy 平面,且以y 轴为对称,如习题点电荷ll d ρ图2-6所示。
那么,在圆心处产生的电场强度具有两个分量E x 和E y 。
由于电荷分布以y 轴为对称,因此,仅需考虑电场强度的y E 分量,即φπερsin 4d d d 20al E E l y ==考虑到φρρφsin ,d d 0==l a l ,代入上式求得合成电场强度为y y aae e E 0002008d sin 4ερφφπερπ==⎰2-7 已知真空中半径为a 的圆环上均匀地分布的线电荷密度为l ρ,试求通过圆心的轴线上任一点的电位及电场强度。
解 建立直角坐标,令圆环位于坐标原点,如习题图点电荷ll d ρ2-7所示。
那么,在z 轴上P 点产生的电位为rl l 04d περϕ=根据叠加原理,圆环线电荷在P 点产生的合成电位为()2220202d 4d 41za a l rl rz l al al +===⎰⎰ερπερρπεϕππ习题图2-6习题图2-7y因电场强度ϕ-∇=E ,则圆环线电荷在P 点产生的电场强度为()()232202za az zz l zz+=∂∂-=ερϕe e E2-8 设宽度为W ,面密度为S ρ的带状电荷位于真空中, 试求空间任一点的电场强度。