电磁场与电磁波课后习题答案第一章

合集下载

电磁场与电磁波课后习题及答案一章习题解答

电磁场与电磁波课后习题及答案一章习题解答

一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。

解 (1)23A x y z+-===+-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11(4)由 c o s AB θ=8==A B A B ,得 1c o s AB θ-=(135.5= (5)A 在B 上的分量 B A =A c o s AB θ==A B B (6)⨯=A C 123502x y z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。

(1)判断123PP P ∆是否为一直角三角形;(2)求三角形的面积。

电磁场与电磁波课后答案_郭辉萍版1-6章

电磁场与电磁波课后答案_郭辉萍版1-6章

第一章 习题解答1.2给定三个矢量A ,B ,C : A =x a +2y a -3z a B = -4y a +z aC =5x a -2za求:⑴矢量A 的单位矢量A a ; ⑵矢量A 和B 的夹角AB θ; ⑶A ·B 和A ⨯B⑷A ·(B ⨯C )和(A ⨯B )·C ;⑸A ⨯(B ⨯C )和(A ⨯B )⨯C解:⑴A a =A A=149A++=(x a +2y a -3z a )/14⑵cos AB θ=A ·B /A BAB θ=135.5o⑶A ·B =-11, A ⨯B =-10x a -y a -4z a ⑷A ·(B ⨯C )=-42(A ⨯B )·C =-42⑸A ⨯(B ⨯C )=55x a -44y a -11z a(A ⨯B )⨯C =2x a -40y a +5z a1.3有一个二维矢量场F(r)=x a (-y )+y a (x),求其矢量线方程,并定性画出该矢量场图形。

解:由dx/(-y)=dy/x,得2x +2y =c1.6求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。

解:等值面方程为ln (2x +2y +2z )=c 则c=ln(1+4+9)=ln14 那么2x +2y +2z =141.9求标量场ψ(x,y,z )=62x 3y +ze 在点P (2,-1,0)的梯度。

解:由ψ∇=x a x ψ∂∂+y a y ψ∂∂+z a zψ∂∂=12x 3y x a +182x 2y y a +ze z a 得ψ∇=-24x a +72y a +z a1.10 在圆柱体2x +2y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: ⑴求矢量场A 沿闭合曲面S 的通量,其中矢量场的表达式为A =x a 32x +y a (3y+z )+z a (3z -x)⑵验证散度定理。

电磁场与电磁波习题(第三版)习题解答第1-2章

电磁场与电磁波习题(第三版)习题解答第1-2章

ˆ y ˆ 2 yz z ˆ 的旋度。 1.33 计算矢量场 F xxy
解:
ˆ x F x Fx
ˆ y y Fy
ˆ ˆ z x z x Fz xy
ˆ y y 2 yz
ˆ z z 1
ˆ 2 y xz ˆ x
ˆ yx ˆ ,计算 A A 。 1.35 已知 A xy
2
电磁场与电磁波习题答案 chapter 1~2
Copyright @ ShengQian
dE x, y
S dx '
1/ 2
ˆ x x ' yy ˆ x
1/ 2
2 2 2 0 x x ' y 2 x x ' y 2 ˆ x x ' yy ˆ S x dx ' 2 2 2 0 x x ' y ˆ a 2 S x ˆ x x ' yy dx ' E x, y 2 a 2 2 2 0 x x ' y a 2 ˆ ˆ a2 S y x x x' y S dx ' dx ' 2 2 2 a 2 a 2 2 0 2 0 x x ' y x x ' y 2
D 0 E 0
当r a时
Sa D1n D2 n r a 0
当r b时
C 0C a a
Sb D1n D2 n r b 0
0C C b b
分析,本 题求解面电荷分布时, 法线方向和 D1 , D2 关系不要弄 混,这里公式

电磁场与电磁波第二版课后答案 (2)

电磁场与电磁波第二版课后答案 (2)

电磁场与电磁波第二版课后答案第一章:电荷和电场1.1 选择题1.电场可以向量形式来表示。

2.使得电体带有不同种类电荷的原子或分子是离子化。

3.在法拉弹规定空气是电介质。

4.电荷量的基本单位是库仑。

5.元电荷是正负电荷的最小电荷量。

6.在电场中电荷所受力的方向完全取决于电荷性质和场的性质和方向。

7.电势能是标量。

8.空间中一点产生的电场是该点电荷所受电场的矢量和。

9.电场E的国际单位是NC−1。

10.电场强度受逼迫电荷的正负种类影响,但与电荷的量无关。

1.2 填空题1.空间中一点产生的电场是该点电荷所受电场的矢量和。

2.计算质点电荷q在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{q}{r^2}\\vec{r}$。

3.计算正半球壳在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{Q}{r^2}\\vec{r}$。

4.位置在球心,能量源是正半球壳带点,正半球在转轴一侧电势能是0。

5.半径为R的均匀带点球壳,带电量为Q,求通过球心的电束强度的公式是$\\frac{Q}{4\\pi\\epsilon_0R^2}$。

1.3 计算题1.两个带电量分别为q1和q2的点电荷之间的相互干扰力公式是$\\vec{F}=\\frac{q_1q_2}{4\\pi\\epsilon_0r^2}\\vec{r}$。

2.一个电荷为q的质点,和一个均匀带有电量Q的半球壳之间的相互干扰力公式是$\\vec{F}=\\frac{1}{4\\pi\\epsilon_0}\\frac{qQ}{r^2}\\vec{r}$。

第二章:电磁感应和电磁波2.1 选择题1.电磁感应是由磁通变化产生的。

2.电磁感应一定要在导电体内才能产生电流是错误的。

√3.在电磁感应现象中,即使磁通量不变时导体电流也会产生改变。

4.电磁感应现象是反过来实现的。

1电磁场与电磁波第一章习题答案

1电磁场与电磁波第一章习题答案

1电磁场与电磁波第⼀章习题答案第⼀章习题解答1.2给定三个⽮量A ,B ,C :A =x a +2y a -3z aB = -4y a +z aC =5x a -2z a求:⑴⽮量A 的单位⽮量A a ;⑵⽮量A 和B 的夹⾓AB θ;⑶A ·B 和A ?B ⑷A ·(B ?C )和(A ?B )·C ;⑸A ?(B ?C )和(A ?B )?C解:⑴A a =A A(x a +2y a -3z a )⑵cos AB θ =A ·B /A BAB θ=135.5o⑶A ·B =-11, A ?B =-10x a -y a -4z a⑷A ·(B ?C )=-42(A ?B )·C =-42⑸A ?(B ?C )=55x a -44y a -11z a (A ?B )?C =2x a -40y a +5z a1.3有⼀个⼆维⽮量场F(r) =x a (-y )+y a (x),求其⽮量线⽅程,并定性画出该⽮量场图形。

解:由dx/(-y)=dy/x,得2x +2y =c1.6求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值⾯⽅程。

解:等值⾯⽅程为ln (2x +2y +2z )=c则c=ln(1+4+9)=ln14那么2x +2y +2z =141.9求标量场ψ(x,y,z )=62x 3y +z e 在点P (2,-1,0)的梯度。

解:由ψ?=x a x ψ??+y a y ψ??+z a z ψ??=12x 3y x a +182x 2y y a +z e z a 得ψ?=-24x a +72y a +z a1.10 在圆柱体2x +2y =9和平⾯x=0,y=0,z=0及z=2所包围的区域,设此区域的表⾯为S:⑴求⽮量场A 沿闭合曲⾯S 的通量,其中⽮量场的表达式为A =x a 32x +y a (3y+z )+z a (3z -x) ⑵验证散度定理。

电磁场与电磁波第四版课后答案

电磁场与电磁波第四版课后答案

答案:① aA =
1 14
(ax
+
2ay

3az
)
;②
A−B =
53 ;③ A • B = −11;

θ AB = 135.48 ; ⑤
A× C = −(4ax +13ay +10az ) ; ⑥
A •(B × C)=(A • B)× C = −42 ; ⑦
(A× B)× C = 2ax − 40ay + 5az 和
托克斯定理求解此线积分。
∫ ∫ 答案:① A •dl = π a4 ;② (∇ × A) dS = π a4 。
l
4
l
4
1-18 试在直角坐标系下证明: − 1 ∇2 (1 R)=δ(r − r′)。 4π
∫ 1-19 若矢量 A = a(R cos2 ϕ
R3 ),1 ≤ R ≤ 2 ,求
∇• AdV 。
⎡ 2 sinhξ cosη
⎢ ⎢
cosh 2ξ − cos 2η

答案:[M ] = ⎢−
2 coshξ sinη
⎢ cosh 2ξ − cos 2η


0
⎢⎢⎣
2 coshξ sinη cosh 2ξ − cos 2η
2 sinhξ cosη cosh 2ξ − cos 2η
0
⎤ 0⎥
⎥ ⎥ 0⎥ 。 ⎥ ⎥ 1⎥ ⎥⎥⎦
+ ay
y − 2x x2 + y2

1-22 已知 A = a a x + b a y + c a z ,写出圆柱坐标系和圆球坐标系下 A 的表达式。
答案: A = (a cosϕ + b sinϕ )ar + (b cosϕ − a sin ϕ )aϕ + caz ;

电磁场与电磁波课后答案第1章

电磁场与电磁波课后答案第1章

第一章习题解答给定三个矢量、和如下:求:(1);(2);(3);(4);(5)在上的分量;(6);(7)和;(8)和。

解(1)(2)(3)-11(4)由,得(5)在上的分量(6)(7)由于所以(8)三角形的三个顶点为、和。

(1)判断是否为一直角三角形;(2)求三角形的面积。

解(1)三个顶点、和的位置矢量分别为,,则,,由此可见故为一直角三角形。

(2)三角形的面积求点到点的距离矢量及的方向。

解,,则且与、、轴的夹角分别为给定两矢量和,求它们之间的夹角和在上的分量。

解与之间的夹角为在上的分量为给定两矢量和,求在上的分量。

解所以在上的分量为证明:如果和,则;解由,则有,即由于,于是得到故如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。

设为一已知矢量,而,和已知,试求。

解由,有故得在圆柱坐标中,一点的位置由定出,求该点在:(1)直角坐标中的坐标;(2)球坐标中的坐标。

解(1)在直角坐标系中、、故该点的直角坐标为。

(2)在球坐标系中、、故该点的球坐标为用球坐标表示的场,(1)求在直角坐标中点处的和;(2)求在直角坐标中点处与矢量构成的夹角。

解(1)在直角坐标中点处,,故(2)在直角坐标中点处,,所以故与构成的夹角为球坐标中两个点和定出两个位置矢量和。

证明和间夹角的余弦为解由得到一球面的半径为,球心在原点上,计算:的值。

解在由、和围成的圆柱形区域,对矢量验证散度定理。

解在圆柱坐标系中所以又故有求(1)矢量的散度;(2)求对中心在原点的一个单位立方体的积分;(3)求对此立方体表面的积分,验证散度定理。

解(1)(2)对中心在原点的一个单位立方体的积分为(3)对此立方体表面的积分故有计算矢量对一个球心在原点、半径为的球表面的积分,并求对球体积的积分。

解又在球坐标系中,,所以求矢量沿平面上的一个边长为的正方形回路的线积分,此正方形的两边分别与轴和轴相重合。

再求对此回路所包围的曲面积分,验证斯托克斯定理。

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。

2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。

3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。

4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。

( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。

( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。

( √ )7、梯度的方向是等值面的切线方向。

(× )8、标量场梯度的旋度恒等于0。

( √ ) 9、习题1.12, 1.16。

第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。

2、在国际单位制中,电场强度的单位是V/m(伏特/米)。

3、静电系统在真空中的基本方程的积分形式是:V V sD d S d V Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。

4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。

5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。

6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。

7、在介电常数为e 的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。

8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章
给定三个矢量A u r ,B u r ,C u r :
A u r =x a u u r +2y a u u r -3z a u u r
B u r = -4y a u u r +z a u u r
C u r =5x a u u r -2z a u u r
求:⑴矢量A u r 的单位矢量A a u u r ;
⑵矢量A u r 和B u r 的夹角AB θ;
⑶A u r ·B u r 和A u r ⨯B u r ⑷A u r ·(B u r ⨯C u r )和(A u r ⨯B u r )·C u r ;
⑸A u r ⨯(B u r ⨯C u r )和(A u r ⨯B u r )⨯C u r
解:⑴A a u u r =A A
u r u r
=u r (x a u u r +2y a u u r -3z a u u r )
⑵cos AB θu r u r =A u r ·B u r /A u r B u r
AB θ=135.5o
⑶A u r ·B u r =-11, A u r ⨯B u r =-10x a u u r -y a u u r -4z a u u r
⑷A u r ·(B u r ⨯C u r )=-42
(A u r ⨯B u r )·C u r =-42
⑸A u r ⨯(B u r ⨯C u r )=55x a u u r -44y a u u r -11z a u u r (A u r ⨯B u r )⨯C u r =2x a u u r -40y a u u r +5z a u u r
有一个二维矢量场F(r)r =x a u u r (-y )+y a u u r (x),求其矢量线方程,并定性画出该矢量场图形。

解:由dx/(-y)=dy/x,得2x +2y =c
求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。

解:等值面方程为ln (2x +2y +2
z )=c
则c=ln(1+4+9)=ln14
那么2
x +2
y +2z =14 求标量场ψ(x,y,z )=62x 3y +z e 在点P (2,-1,0)的梯度。

解:由ψ∇=x a u u r x ψ∂∂+y a u u r y ψ∂∂+z a u u r z
ψ∂∂=12x 3y x a u u r +182x 2y y a u u r +z e z a u u r 得 ψ∇=-24x a u u r +72y a u u r +z a u u r
在圆柱体2x +2y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S:
⑴求矢量场A u r 沿闭合曲面S 的通量,其中矢量场的表达式为
A u r =x a u u r 32x +y a u u r (3y+z )+z a u u r (3z -x) ⑵验证散度定理。

解:⑴⎰•s d A ϖϖ=
A d S •⎰u r u r 曲+A d S •⎰u r u r xoz +A d S •⎰u r u r yoz +A d S •⎰u r u r 上+A d S •⎰u r u r 下
A d S •⎰u r u r 曲=232(3cos 3sin sin )z d d ρθρθθρθ++⎰曲
=
A d S •⎰u r u r xoz =(3)y z dxdz +⎰xoz =-6 A d S •⎰u r u r yoz =-2
3x dydz ⎰yoz =0 A d S •⎰u r u r 上+A d S •⎰u r u r 下=(6cos )d d ρθρθρ-⎰上+cos d d ρθρθ⎰下=272π
⎰•s d A ϖϖ=193
⑵dV A V ρ⎰•∇=(66)V x dV +⎰=6(cos 1)V
d d dz ρθρθ+⎰=193 即:⎰•s s d A ϖϖ=dV A V ρ⎰•∇ 求矢量A u r =x a u u r x+y a u u r x 2y 沿圆周2x +2y =2a 的线积分,再求A ∇⨯u r 对此圆周所包围的表面积
分,验证斯托克斯定理。

解:⎰•l l d A ρρ=2L
xdx xy dy +⎰Ñ=44a π
A ∇⨯u r =z a u u r 2y ⎰•⨯∇S s d A ρρ=2S y dS ⎰Ñ=22sin S
d d θρρρθ⎰Ñ=44a π
即:⎰•l l d A ρρ=⎰•⨯∇S
s d A ρρ,得证。

求下列标量场的梯度:
⑴u=xyz+2x u ∇=x a u u r u x ∂∂+y a u u r u y ∂∂+z a u u r u z
∂∂=x a u u r (yz+zx)+y a u u r xz+z a u u r xy ⑵u=42x y+2y z -4xz
u ∇=x a u u r u x
∂∂+y a u u r u y ∂∂+z a u u r u z ∂∂=x a u u r (8xy-4z)+y a u u r (42x +2yz)+z a u u r (2y -4x) ⑶u ∇=x a u u r u x ∂∂+y a u u r u y ∂∂+z a u u r u z
∂∂=x a u u r 3x+y a u u r 5z+z a u u r 5y 求下列矢量场在给定点的散度
⑴A ρ•∇=x A x ∂∂+y A y ∂∂+z A z
∂∂=32x +32y +3(1,0,1)|-=6 ⑵A ρ•∇=2xy+z+6z (1,1,0)|=2
求下列矢量场的旋度。

⑴A ∇⨯u r =0r
⑵A ∇⨯u r =x a u u r (x -x )+y a u u r (y -y )+z a u u r (z -z )=0r
已知直角坐标系中的点P(x,y,z)和点Q(x ’,y ’,z ’),求:
⑴P 的位置矢量r r 和Q 点的位置矢量'r u r ;
⑵从Q 点到P 点的距离矢量R u r ;
⑶r ∇⨯r 和r ρ•∇; ⑷1
()R ∇。

解:⑴r r =x a u u r x+y a u u r y+z a u u r z;
'r u r =x a u u r x ’+y a u u r y ’+z a u u r z ’ ⑵R u r =r r -'r u r =x a u u r (x -x ’)+y a u u r (y -y ’)+z a u u r (z -z ’) ⑶r ∇⨯r =0r , r ρ•∇=3
⑷1R = 1()R ∇=(x a u u r x
∂∂+y a u u r y ∂∂+z a u u r z ∂∂)1R
=-x a u u r 212(')2x x R R --y a u u r 212(')2y y R R --z a u u r 212(')2z z R R -
=-x a u u r 3'x x R --y a u u r 3'y y R --z a u u r 3'z z R - =-
31R [x a u u r (x -x ’)+y a u u r (y -y ’)+z a u u r (z -z ’)]
=-3R R u r 即:1()R ∇=-3R R u r。

相关文档
最新文档