中国古代数学
中国古代的数学知识

中国古代的数学知识
中国古代的数学知识非常丰富,以下是一些重要的成就和贡献:
《周髀算经》:这是中国最古老的天文学和数学著作,约成书于公元前1世纪。
它主要阐明当时的盖天说和四分历法,还包含一些数学知识,例如勾股定理的特例。
《九章算术》:这是中国古代第一部数学专著,是《算经十书》中最重要的一种,成于公元一世纪左右。
其作者已不可考,一般认为是由多人编撰而成的。
刘徽:魏晋时期的数学家,他提出了“割圆术”,即用“圆内接正多边形”去无限逼近“圆”,并首次用理论证明了“圆周率”的存在。
祖冲之:南北朝时期的数学家和天文学家,他首次将“圆周率”精算到小数第七位,是当时世界最精确的圆周率数值,这一成果直到16世纪才被打破。
此外,中国古代还有许多其他的数学成就,如张衡发明的地动仪、赵爽的《周髀算经注》、一行和尚的《大衍历》等等,都体现了中国古代在数学领域的卓越贡献和深厚底蕴。
中国古代数学发展史3篇

中国古代数学发展史第一篇:中国古代数学发展概述自古以来,我国对数学的研究就十分重视。
我国古代数学以算术、代数、几何和数论为主要研究对象,经历了从简单直观的初步认知到严谨的定理证明的发展历程。
本文将概述中国古代数学的发展历程。
中国古代数学的起源可以追溯到商代(公元前16世纪-公元前11世纪)的骨牌文字和甲骨文。
骨牌文字中有许多“上、下相加等于中”的运算式,说明当时我国已经有了基本的算术知识。
到了周代(公元前11世纪-公元前256年),一些有关算法和几何学的书籍也开始出现,如庄子《齐物论》中关于无穷大与无穷小的论述,和《九章算术》。
《九章算术》是一部古代数学的经典著作,其中涉及到了初等代数、方程、余数、幂指数、圆周率和勾股定理等重要概念和方法。
随着时间的推移,自然数的数位表示法和算学运算逐渐成熟。
汉代(公元前206年-公元220年)以后,中国古代数学出现了独特的代数学派别,在代数学发展过程中,最有代表性的是《海峤算经》、《算数书》和《高经》等九部著作。
其中,《海峤算经》是我国古代代数中最早的代数学著作,其中提出了“望高方”、“全量数”、“分配术”等代数运算概念。
这些运算概念对未来代数学发展起到了至关重要的作用。
在数学几何学方面,中国古代对于几何学的研究主要从事以量求形的实用几何学研究。
数学几何学的历史可追溯到元代(公元1271年-1368年)的宋元时期,宋算学家李冶在《数书九章》中提出了勾股定理。
此外,清朝时期的数学家祖冲之发现了圆周率的取值方法,并将圆周率的值计算到小数点后第六位,这在当时是令人惊叹的成果。
从上述发展历程我们可以看出,中国古代数学得以长足发展的主要原因是其注重实践应用,并赋予了这些实践意义以及更广阔的文化内涵。
此外,应该指出的是古代数学还蕴含了我国深厚的哲学、文化和历史内涵,这也是我们重视古代数学研究的一个重要原因。
第二篇:中国古代代数学中国古代代数学发展最为明显、最为独特的特点便是“天元术”和“方程式”的使用。
102中国古代数学

整理。
•《九章算术注》对数学方法的贡献 1、开始了其独特的推理论证的尝试。 “析理以辞, 解体用图。”“开辟了我国古代数学理论化的道路” 。 2、创立了“出入相补”的方法,提出了“割圆术”, 首次将极限概念用于近似计算;引入十进制小数的记法 和负整数的知识;他试图建立球体积公式,虽然没有成 功,但为后人提供了科学的方法;3、他对勾股测量问 题进行了深入研究,在几何研究中,从少数几个原理出 发,运用逻辑手段推导出结果的方法 。提出“审辨名 分”,不但对自己提出的每一个新概念都给出界定《九 章算术注》丰富了《九章算术》的数学成果,主要表现 在算术、代数和几何诸方面。 诸如,割圆术与徽率“割 之弥细,所失弥少,割之又割,以至于不可割,则与圆 合体而无所失矣。”
七为少阳,八为少阴。揲蓍的目的,就是为了取到这四个数中的一个。
让阳数对应阴卦,阴数对应阴卦,于是数字变成了爻象。
历从 史中 渊国 算筹 中国古人称数学为算学 源古 代 的 占 筮 工 具 和 方 法 中 , 不 难 发 “数学”一词相当于我国古代的“算术” 现 中 数学一词,在中国最早出现在12世纪宋代数学家秦九韶的著作中。他国 传 指出“物生有象,象生有数,乘除推阐,务究造化之源者,是数学”。 统 数 学
§3、中国初等数学理论体系的发展 时期(东汉初年到魏晋南北朝)
从东汉初年到魏晋南北朝,随着社会生 产力的逐步提高,我国初等数学理论体系日 益完善。这一时期,涌现出一批处于世界第 一流的数学家及其专著,使初等数学理论体 系日益成熟。其中刘徽及其《九章算术注》 尤为突出。
对中国传统数学理论的研究
公元1世纪至8世纪初,改变了先前只追求算法、不研 究算理的学风,开始给出概念的定义,进行推理论证,取 得了许多世界领先的成果,同时涌现出一批杰出数学家
古代数学的雅称

古代数学的雅称一、《九章算术》——中国古代数学的瑰宝《九章算术》被誉为中国古代数学的瑰宝,它是中国古代最重要的数学著作之一,被广泛应用于农业、商业和日常生活中。
这本书以九个章节的形式,系统地总结了古代中国的数学知识,内容包括算术、代数、几何、概率等多个领域。
《九章算术》的问世对中国古代数学的发展起到了重要的推动作用,也为后世的数学研究奠定了基础。
二、黄金分割——古希腊数学的华丽之美黄金分割是古希腊数学中的一个重要概念,它是指一条线段分割成两部分,其中整条线段与较长部分之比等于较长部分与较短部分之比。
黄金分割不仅在几何学中有广泛的应用,也在建筑、艺术和音乐等领域中发挥了重要的作用。
黄金分割的美学价值被古希腊人视为至高无上的,他们将之称为“黄金比例”,并将其应用于建筑、雕塑等艺术创作中,使作品更加美观和和谐。
三、印度数学——古代数学的明珠印度数学是古代数学中的一支重要学派,其发展历史悠久,贡献巨大。
古代印度人在数学领域做出了许多重要的发现,如零的概念和十进制数制等。
他们将数学视为一门哲学,通过研究数学问题来探索人类存在的意义。
印度数学的研究成果对后世的数学研究产生了深远的影响,也为现代科学的发展打下了坚实的基础。
四、阿拉伯数字——古代数学的智慧之光阿拉伯数字是古代数学中的一项伟大发明,它是现代数字系统的基础。
阿拉伯数字是一种使用十个数字字符的数制系统,它的特点是简单易用、计算方便。
阿拉伯数字的发明极大地促进了数学的发展和商业的繁荣,也使得数学成为一门实用的学科。
至今,阿拉伯数字仍然是全球通用的数字表示方法,显示出古代数学的智慧之光。
五、欧几里得几何——古代数学的完美之作欧几里得几何是古希腊数学家欧几里得创立的一门几何学体系,被誉为古代数学的完美之作。
欧几里得几何以公理为基础,通过严密的推理和证明建立了几何学的基本定理和原理。
欧几里得几何的发展对古代数学和现代科学都产生了重要影响,成为后世数学研究的重要范式。
中国古代数学的辉煌与成就

(11)中国剩余定理。实际上就是解联立 一次同余式的方法。这个方法最早见于 《孙子算经》,1801年德国数学家高斯 (公元1777~1855)在《算术探究》中 提出这一解法,西方人以为这个方法是 世界第一,称之为“高斯定理”,但后 来发现,它比中国晚1500多年,因此为 其正名为“中国剩余定理”。
❖ 他第一次给出了区分正负数的方法:"正算赤, 负算黑。否则以邪正为异。"意思是,用红色的小棍 摆出的数表示是正数,用黑色小棍摆出的数表示是 负数。也可以用斜摆的小棍表示负数,用正摆的小 棍表示正数。
5)盈不足术。又名双假位法。最早 见于《九章算术》中的第七章。在 世界上,直到13世纪,才在欧洲出 现了同样的方法,比中国晚了1200 多年。
(2)幻方。我国最早记载幻方法的是春秋时代 的《论语》和《书经》,而在国外,幻方的出 现在公元2世纪,我国早于国外600多年。
❖ 幻方(magic square)又称为魔方、方阵, 它最早起源于我国。宋代数学家杨辉称之为 纵横图。
❖ 所谓纵横图,它是由1到n2,这n2个自 然数按照一定的规律排列成N行、N列的一个 方阵。它具有一种奇妙的性质,在各种几何 形状的表上排列适当的数字,如果对这些数 字进行简单的逻辑运算时,不论采取哪一条 路线,最后得到的和或积都是完全相同的。
❖ (6)方程术。最早出现于《九章算术》 中,其中解联立一次方程组方法,早于 印度600多年,早于欧洲1500多年。在 用矩阵排列法解线性方程组方面,我国 要比世界其他国家早1800多年。
❖ (7)最精确的圆周率“祖率”。早 于世界其他国家1000多年。
❖ (8)等积原理。又名“祖暅”原 理。保持世界纪录1100多年。
❖ (3)分数运算法则和小数。中国完整的 分数运算法则出现在《九章算术》中, 它的传本至迟在公元1世纪已出现。印度 在公元7世纪才出现了同样的法则,并被 认为是此法的“鼻祖”。我国早于印度 500多年。
中国古代数学成就

中国古代数学成就中国古代数学成就数学作为一门科学,已有悠久的历史,在中国古代,数学学派十分繁荣发展,涵盖了算术、代数、几何、数论等多个方面,有着诸多的学术成就。
下面将对中国古代数学成就进行一些探讨。
算术学算术学是中国古代最早开始发展的数学学科之一,主要涉及到整数的加减乘除及其运算规律,以及解一些实际问题的方法。
中国古代算术学随着时代的变迁,不断发展出了一系列的算法,例如公约数、倍数、分解因数、约分等等,这些算法已经成为了数学中的经典算法,并深深地影响了现代数学。
在中国古代,算盘是古代数学中最为重要的计算工具之一。
算盘在中国的历史已经有2400多年的历史,从汉代开始逐渐普及,到唐代达到了顶峰。
算盘的设计十分独特,它通过珠片上下移动以表示不同位数上的数字,大大提高了计算速度。
算盘在中国的历史上曾经是计算机的前身,将计算技术推向更高的水平。
代数学代数学在中国古代的发展历史较短,但也有不少的研究成果。
代数学主要与代数式和方程式有关,通过代数式的运算和方程的解法等技巧,来解决实际生活中的问题。
中国古代数学家代表王冰、李冶、秦九韶等建立了代数学的数学体系。
而“天元术”被称为中国古代代数学的经典之作,为后来的数学家提供了很多启示。
天元术主要是关于多元方程的分解和化简,它成功地应用在了许多生产生活中的实际问题中,例如赤道经纬、水门坎门等等。
几何学几何学也是古代中国数学的非常重要的研究领域。
中国的几何学起源于商周时期的土木之学,性质拓张的唐朝时期,几何学又有了大规模的发展。
中国古代几何学成果,包括勾股定理、《九章算术》中的测量体积问题的求解、仪器等所涉及的广告,其研究方法和实践成果在世界范围内都享有重要地位。
勾股定理,是中国数学史上的一个伟大杰作,它简单而深刻,蕴含了深奥的数学机理,而且广泛地应用于测量和设计领域。
数论数论是中国古代最为重要的数学领域之一,主要研究整数和整数运算的规律,其研究的问题包括完全平方数、质数分解、同余方程等等。
中国古代数学

祖氏父子数学成就:
据《随书•律历志》记载,祖冲之求得的π值的 取值范围为3.141592 <π<3.1415927。
由于史料中没有祖冲之推算这个值的记载,后人 只能对其推导过程做出推测,一般认为它是利用 刘徽的割圆术得到的。然而要想用此法得到上述 结果,需要从正六边形起,连续的倍增正多边形 的边数,至24 576边形。这在当时的条件下是不 易做到的。
中国初等数学理论体系的形成时期
(春秋战国时代到西汉末年)
刘徽的地位:
吴文俊:“从对数学贡献的角 度来衡量,刘徽应该与欧几里 得、阿基米德相提并论”。
梅荣照:“刘徽是整个中国古 代数学理论的奠基人”。
定位:如果按成就和创造性 的大小来论,刘徽在中国的数 学家中首推第一,另一位可以 和他相提并论的是祖冲之。
思考:2013年癸巳年,2014年是( )年?
• 3.算筹记数法和十进位值制
春秋战国之际,筹算 已得到普遍的应用,筹 算记数法已使用十进位 值制,这种记数法对世 界数学的发展是有划时 代意义的 。
一、主要的数学成就(先秦数学)
• (四)乘法口诀: 从出土的文物来看,春秋战国时期的文献中已 有乘法口诀。次序与现代不同,由“九九八十 一”开始。因此又称乘法口诀或乘法表为“九 九”,这种次序流行了一千六、七百年,直到 南宋初才改为现今的顺序。
一、主要的数学成就(先秦数学)
• (五)周易的八卦和64卦:
《周易》是我国古代专讲卜筮(bu’shi)的书, 约成书于殷商时期 ,包含数学内容最丰富的著作。 《易经》中利用爻卦的变化预测吉凶,分别用 “—”与“--”表示阳爻和阴爻,构成八卦、六 十四别卦。《周易》由《易经》和《易传》两部 分组成。自汉代开始,许多算学家都热衷于将算 法与《周易》相联系。
中国古代数学成就梳理

引言:中国古代数学是世界数学史上的一大瑰宝,它在几千年的发展中积累了丰富的数学知识和成就。
本文将梳理中国古代数学的主要成就,深入探讨其重要性和对现代数学的影响。
概述:中国古代数学的成就可以追溯到公元前11世纪的商代,发展至公元17世纪的明代。
它的独特之处在于其思维方式、方法和应用。
中国古代数学的主要成就包括:算术、几何、代数、方程、数论等方面。
这些成就不仅为古代中国人民提供了实用工具,还为现代数学的发展奠定了基础。
正文内容:一、算术的发展1. 数的表示法:中国古代的数的表示法有繁体和简体两种,其中繁体的代表是算筹,简体的代表是算盘。
2. 四则运算:中国古代的算术运算包括加法、减法、乘法和除法。
通过算盘和算筹的运算,中国古代人民能够做到快速和精确的计算。
3. 进位制:中国古代人民首次提出了十进制的概念,这为后来的科学计数系统奠定了基础。
二、几何的研究1. 几何基本概念:中国古代的几何研究涉及到平面几何和立体几何,包括点、直线、面、角等基本概念的研究。
2. 勾股定理:中国古代的数学家在约公元前11世纪就发现了勾股定理,这项重要的几何成就对后来的几何推理和解决实际问题有着深远的影响。
3. 等边三角形的研究:中国古代数学家还研究了等边三角形的性质和应用,为后来的三角学奠定了基础。
三、代数的探索1. 方程的解法:中国古代数学家在公元前5世纪已经掌握了二次方程的解法,并且还研究了高次方程的解法。
2. 未知数的处理:中国古代数学家发展了一套完整的未知数处理方法,包括了负数、零和分数的概念,这为后来的代数学科奠定了基础。
3. 等比数列和等差数列:中国古代数学家还研究了等比数列和等差数列的性质和应用,为数列的研究提供了重要的思路。
四、方程与方程组的研究1. 方程与问题的联系:中国古代数学家非常注重将数学理论与实际问题相结合,他们将方程与实际问题相联系,提出了一系列解决实际问题的方程和方程组。
2. 中国古代数学名著《九章算术》:这本书涵盖了各种类型的方程和方程组的应用,被视为中国古代数学的杰作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 中国古代数学
教学重点:1理解并掌握《九章算术》的主要贡献。
2能叙述《算经十书》的名称;掌握祖冲之的贡献,知道密率及约率值。
3 掌握宋元数学家的贡献。
3.1《九章算术》
1 介绍
中国古典数学最重要的著作,成书1cen B.C
《九章算术》:问题集,共九章,分别为:方田,粟米,衰分,少广,商功;均输 ,盈不足,方程,勾股。
面积、体积:方田,商功;
比例:粟米,衰分,均输 ;
开方:少广
贡献一:正负数加减法则
正负数的加减运算法则
李文林在《数学史教程》中指出:“对负数的认识是人类数系扩充的重大步骤。
如果说古希腊无理量是演绎思维的发现,那么中算负数则是算法思维的产物。
中算家们心安理得地接受并使用了这一概念,并没有引起震撼和迷惑。
”
国外首先承认负数的是7世纪印度数学家婆罗门及多,欧洲16世纪时韦达等数学家的著作还回避使用负数。
贡献二:方程术
线性方程组求解:消元法
例:今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗;问上、中、下禾实一秉各几何?
贡献三:开方术
今有积五万五千二百二十五步,问为方几何?答曰:二百三十五步。
“开方术”演变为”增乘开方法“,开高次方,求高次方程数值解;
“开方术”:包含求 方法; 02=++c bx ax
接受开方不尽的数——无理数;
贡献四:盈不足
例:今有共买物,人出八盈三,人出七不足四,问人数、物价各几何?
“盈不足”:线性插值法;
“盈不足”可以解决非盈亏类问题;
“盈不足”通过丝绸之路传入阿拉伯国家,被称为“契丹算法”。
贡献五:几何
“方田”:各种图形的面积计算;
“商功”:各种土木工程中的体积计算。
长方体、台体、圆柱体、锥体等体积的计算公式正确;只是圆周率取3,误差较大。
“勾股”:今有池方一丈,葭生其中央,出水一尺。
引葭赴岸,适与岸齐,问水深、葭长各几何?答曰:水深一丈二尺;葭长一丈三尺。
评价
小苍金之助(日):《九章算术》是中国的《几何原本》。
吴文俊:《九章算术》和刘徽的《九章算术注》,在数学的发展历史中具有崇高的地位,足可与《几何原本》东西辉映,各具特色。
1968年德国沃格尔(V ogel)把《九章算术》译成德文出版时的评论:“在古代算术中,包含如此丰富的246个算题,现存的埃及和巴比伦算题与之相比,真望尘莫及。
”
《九章算术》数学理论门类繁多,依题列术,术文不附原理说明。
刘徽注《九章》,一面阐明每个具体算法的理论依据,一面揭示各种算法之间的内在联系,使之成为一个严谨、完整的理论体系。
刘徽(魏晋, 公元3世纪),幼习《九章》,长再详览。
知识渊博,精通四书五经、诸子,谙熟前人数学,《周髀算经》、张衡数学。
刘徽集前辈之大成,又不迷信古人。
注方田章圆田时,由于前人用径一周三,古率失之于粗,刘徽注说:“世传此法,莫肯精核,学者踵古,习其谬失”。
在中国古代数学中的地位、影响:阐述了中国传统数学的理论体系与数学原理;《九章算术注》中有的注文千字以上,是一篇高水平的数学论文;公元263
年撰《九章算术注》,《海岛算经》;中国传统数学最具代表性的人物,其学术思想为后世继承,如祖冲之,李淳风(唐)。
(一) 割圆术-极限思想闪烁
“割圆术”:用圆内接正多边形去逐步逼近圆。
“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”
具体贡献:圆周率的推导;球体体积公式的证明
1 圆周率的推导
2 求积理论
刘徽的面积、体积理论基础: “出入相补原理”。
刘徽用这条原理成功地证明了《九章算术》中的许多面积公式。
刘徽在推证《九章算术》中的一些体积公式时,使用:极限方法与不可分量方法。
(1)计算球体积,刘徽提出“牟合方盖”。
(2)阳马体积的推导
祖冲之(429-500A.D):做过小官,创制《大明历》,当时最先进的立法。
著作:《缀术》,已经失传。
贡献一:圆周率的推导
祖冲之求得的π值的取值范围为3.141592 < π<3.1415927 约率:722 密率:113
355 16cenV .Otto 等重新推算出这个分数近似值
贡献二:球体积的推导
祖暅原理:幂势既同,则积不容异。
指“两等高立体图形,若在所有等高处的水平截面积相等,则这两个立体体积相等。
思路:刘徽用水平截面去截球和“牟合方盖”,可知截面的面积之比恒为π:4,于是由祖暅原理立即得到
V 球:V 牟=π:4
即 V 球= (π/4) V 牟。
假设:V 小牟=V 立方体-V 直四棱锥=332r , V 牟=8*33
2r ,则V 球=(π/4)V 牟 《算经十书》
《算经十书》是隋
唐时期的教科书,包括
十本书,分别是:《周
髀算经》《九章算术》
《海岛算经》《孙子算
经》《张邱建算经》《夏侯阳算经》《五曹算经》《五经算术》《缀术》《缉古算经》
《缀术》失传,后用《数术记遗》补。
一《孙子算经》
“物不知数“问题:“今物不知其数,三三除之余二,五五除之余三,七七除之余二,问物几何?”
N ≡2(mod3)≡3(mod5)≡2(mod7)
其解法写作“孙子歌”:三人同行七十稀,五树梅花廿一枝,七子团圆正半月,除百零五便得知。
计算过程为: N=70×2+21×3+15×2-2×105.
二《张邱建算经》
“百鸡问题”: “今有鸡翁一,直钱五;鸡母一,直钱三;鸡雏三,直钱一。
凡百钱,买鸡百只。
问鸡翁、母、雏各几何。
”
给出三组答案:(4,18,78),(8,11,81), (12,4,84)
三《缉古算经》
《辑古算经》是十部算经中最晚的一部,作者王孝通,唐初人。
求解28个如下的三次方程:数值解。
3.3 宋元数学-中国古代数学的顶峰
宋元时期的主要数学家:贾宪,秦九韶,朱世杰,李冶
社会背景:毕升发明活字印刷术 (约1041—1048年) ,促进了数学著作的保存与流传。
三大发明:活字印刷,火药,指南针。
社会的商业繁荣,手工业兴盛,国家统一。
一 贾宪
贾宪:北宋人,《黄帝九章算术细草》,失传,主要内容载于杨辉著作中。
贡献:1 贾宪三角即二项式系数表 2 开高次方
二 秦九韶
秦九韶:著《数书九章》
贡献:
1 “正负开方术”:高次方程数值解法
2 “大衍总数术”:一次同余组解法,称为“中国剩余定理”。
三 李冶与天元术
天元术----半符号代数
天元术:列一元高次方程的方法,“立天元一为某某”,即“设x 为某某”。
四 朱世杰
朱世杰:(1260-1320年)平民数学家,数学教育家。
著作:《四元玉鉴》标志中国古代数学的顶峰;
《算学启蒙》:通俗数学;
贡献1:四元术
四元术:解多元高次联立方程组的方法。
未知数:“天”,“地”,“人”,
“物”。
贡献2:垛积术-高阶等差数列求和法
贡献3:高次内插法
“立方招兵”问题:“以立方招兵,初招方面三尺,次招方面转多一尺,…今招十五日,问招兵几何?”
设每日招兵人数: ,十五日共招兵: 3)2(n +3333)2(543)(+++++=n n s
思考题:与古希腊数学比较,中国古代数学的特点是什么?。