第三届时代学习报数学文化节 第一轮(九年级)书面问题解答及答案和评分标准
2024-2025学年初中九年级数学上册第一次月考模拟卷含答案解析

重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b23.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:35.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.729.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是.12.(4分)一个多边形的内角和是720°,这个多边形的边数是.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于.15.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.【解答】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b2【解答】解:a2•a3=a5,故A错误,不符合题意;a与2a2不能合并,故B错误,不符合题意;(﹣3ab)2•2ab2=18a3b4,故C错误,不符合题意;6ab3÷(﹣2ab)=﹣3b2,故D正确,符合题意;故选:D.3.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.【解答】解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=.故选:B.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:3【解答】解:∵OA:AA′=1:2,∴OA:OA′=1:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=1:3,∴△ABC和△A′B′C′的周长之比为1:3,故选:D.5.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分【解答】解:A、平行四边形的两条对角线长度不一定相等,故本选项命题不一定是真命题,符合题意;B、菱形的两条对角线互相垂直,是真命题,不符合题意;C、矩形的两条对角线长度相等且互相平分,是真命题,不符合题意;D、正方形的两条对角线长度相等,并且互相垂直平分,是真命题,不符合题意;故选:A.6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.【解答】解:设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是:.故选:D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间【解答】解:∵25<31<36,∴5<<6,∴3<﹣2<4.故选:A.8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.72【解答】解:观察图形发现第一个图形有8个正方形,第二个图形有8+7=15个正方形,第三个图形有8+7×2=22个正方形,…第n个图形有8+7(n﹣1)=7n+1个正方形,当n=9时,7n+1=7×9+1=64个正方形.故选:C.9.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α【解答】解:过点E作EM⊥AB于点M,作EN⊥AD,交DA的延长线于N,设EF与AD交于T,如图所示:则∠N=∠EMB=∠EMA=90°,∵四边形ABCD和DEFG都是正方形,∴∠BEF=∠BAD=∠EFG=∠ADC=∠EDG=90°,DE=EF,∴∠N=∠EMA=∠MAN=90°,∴四边形AMEN为矩形,∴∠1+∠DTE=90°,∠2+∠FTA=90°,∵∠DTE=∠FTA,∴∠1=∠2,在△DME和△FNE中,,∴△DME≌△FNE(AAS),∴EM=EN,∴矩形AMEN为正方形,∴AE平分∠DAN,∴∠EAD=45°,∴∠EAF=∠BAD+∠EAD=90°+45°=135°,∴∠2=180°﹣∠EAF﹣AEF=180°﹣135°﹣α=45°﹣α,∴∠1=∠2=45°﹣α,∵BD是正方形ABCD的对角线,∴∠ADB=45°,∴∠EDH=∠1+∠ADB=45°﹣α+45°=90°﹣α,∴∠HDG=∠EDG﹣∠EDH=90°﹣(90°﹣α)=α,∴∠BHF=∠DHG=90°﹣∠HDG=90°﹣α.故选:D.10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个【解答】解:①﹣d“闪减操作”后的式子|a+b﹣c|﹣|﹣e|,﹣c﹣d“闪减操作”后的式子|a+b|﹣|﹣e|对这两个式子作差,得(|a+b﹣c|﹣|﹣e|)﹣(|a+b|﹣|﹣e)=|a+b﹣c|﹣|﹣e|﹣|a+b|+|﹣e|=|a+b﹣c|﹣|a+b|,结果不含与e相关的项,∴①正确;②若每种操作只闪退一项,则分三种情况:+b闪减操作”后的结果|a|﹣|﹣c﹣d﹣e|,当a≥0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=a+c+d+e,当a≥0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=a﹣c﹣d﹣e,当a≤0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=﹣a+c+d+e,当a≤0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=﹣a﹣c﹣d﹣e,﹣c“闪减操作”后的结果|a+b|﹣|﹣d﹣e|,当a+b≥0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=a+b+d+e,当a+b≥0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|=a+b﹣d﹣e,当a+b≤0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=﹣a﹣b+d+e,当a+b≤0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|﹣a﹣b﹣d﹣e,﹣d“闪减操作”后的结果|a+b﹣c|﹣|﹣e|,当a+b﹣d≥0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=a+b﹣c+e,当a+b﹣d≥0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=a+b﹣c﹣e,当a+b﹣d≤0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c+e,当a+b﹣d≤0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c﹣e,共有12种不同的结果,∴②错误;③∵|+b|+|+b+2|=|b﹣0|+|b﹣(﹣2)|,在数轴上表示点b与0和﹣2的距离之和,∴当距离取最小值0﹣(﹣2)=2时,b的最小值为﹣2,同理|﹣c+1|+|﹣c+4|=|1﹣c|+|4﹣c|,在数轴上表示点c与1和4的距离之和,∴当距离取最小值4﹣1=3时,c的最小值为1,|﹣d+1|+|﹣d﹣6|=|1﹣d|+|﹣6﹣d|,在数轴上表示点d与1和﹣6的距离之和,∴当距离取最小值1﹣(﹣6)=7时,d的最小值为﹣6,∴当|+b|+|+b+2|,|﹣c+1|+|﹣c+4|,|﹣d+1|+|﹣d﹣6|都取最小值时,(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=2×3×7=42,∴③正确,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是30° .【解答】解:∵∠A是锐角,sin A=,∴∠A=30°,故答案为:30°.12.(4分)一个多边形的内角和是720°,这个多边形的边数是6.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为142° .【解答】解:∵l1∥l2,∠1=38°,∴∠ADP=∠1=38°,∵四边形ABCD为矩形,∴AD//BC,∴∠BPD+∠ADP=180°,∴∠BPD=180°﹣38°=142°.故答案为:142°.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于5.【解答】解:根据题意得a2﹣a=1,b2﹣b=1,所以3a2+2b2﹣3a﹣2b=3a2﹣3a+2b2﹣2b=3(a2﹣a)+2(b2﹣b)=3+2=5.故填515.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=8.【解答】解:如图,过点B′作B′D⊥x轴于点D,∵BA⊥OB于点B,∴∠ABD=90°.∵线段BA绕点B逆时针旋转60°到BB′的位置,∴∠ABB′=60°,∴∠B′BD=90°﹣60°=30°.∵点B′的坐标为(1,),∴OD=1,B′D=,∴BB′=2B′D=2,BD==3,∴OB=1+3=4,AB=BB′=2,∴A(4,2),∴k=4×2=8.故答案为:8.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为8.【解答】解:,解得:,∵不等式组有且只有2个整数解,∴,解得2<a≤5.5,解分式方程得y=2a﹣5,∵y的值解为正数,∵2a﹣5>0,且2a﹣5≠3,∵a>2.5且a≠4,∴满足条件的整数a的值有3和5,∴3+5=8.故答案为:8.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=3.【解答】解:∵四边形ABCD是矩形,∴AD=BC=10,∠B=∠C=∠D=90°,由折叠的性质可得AF=AD=10,∠AFE=∠D=90°,在Rt△ABF中,,∴,∴CF=BC﹣BF=4,在Rt△ABF,由勾股定理得,∴,∵∠BAF+∠BF A=90°=∠BF A+∠CFE,∴∠BAF=∠CFE,∴在Rt△EFC中,,∴,故答案为:3.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=5;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是2222.【解答】解:根据题意可知0≤a﹣c≤8,a﹣c=b﹣d+1.M=1000a+100b+10c+d,N=1000c+100d+10a+b.=,=,=10(a﹣c)+b﹣d=10(a﹣c)+a﹣c﹣1,=11(a﹣c)﹣1,∵F(M)能被6整除,∴a﹣c=5.∵c≥1,∴a≥6.当a=6时,c=1.∵a﹣c=b﹣d+1,∴d=b﹣4.∴,∵G(M)为完全平方数,∴b=3.∴d=﹣1(舍去).同理,当a=7时,c=2,M=7420;当a=8时,c=3,M=8531;当a=9时,c=4,M=9642;∴满足条件的“多一数”M中,最大值与最小值的差=9642﹣7420=2222.故答案为:5;2222.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.【解答】解:(1)9(x+y)2﹣25(x﹣y)2=(3x+3y+5x﹣5y)(3x+3y﹣5x+5y)=﹣4(4x﹣y)(x﹣4y);(2)=1﹣•=1﹣==﹣.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).【解答】解:(1)x2﹣2x﹣2=0,移项得x2﹣2x=2,配方得x2﹣2x+1=2+1,即(x+1)2=3,开方得,解得;;(2),去分母,得m﹣4+m+2=0,解得m=1,经检验,m=1是原方程的根.21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.【解答】(1)解:如图所示..(2)证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.故答案为:DF=CF;∠AFD=∠MFC;;等于两底边之和的一半.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.【解答】解:(1)设桂花鱼的单价是x元,则大罗非的单价是1.5x元,根据题意得:﹣=20,解得:x=14,经检验,x=14是所列方程的解,且符合题意,∴1.5x=1.5×14=21(元).答:桂花鱼的单价是14元,大罗非的单价是21元;(2)第一次购买大罗非的数量是840÷21=40(斤).根据题意得:14(80﹣40﹣2m)+(21﹣m)(40+2m)=1340,整理得:m2+13m﹣30=0,解得:m1=2,m2=﹣15(不符合题意,舍去).答:m的值为2.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).【解答】解:(1)当0≤x≤3时,y1==4x,当3<x≤5时,y1=﹣×6×(2x﹣6)﹣=﹣4x+24,∴y1=;(2)函数y1,y2的图象如图:函数y1的性质:当0≤x≤3时,y随x的增大而增大,当3<x≤5时,y随x的增大而减小;(3)由两个函数图像可知,当y1≤y2时x的取值范围为0<x≤2.1或x=5.24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)【解答】解:(1)AC⊥BC,理由如下:∵AC=72cm,BC=54cm,AB=90cm,∴AC2+BC2=722+542=8100,AB2=8100,∴AC2+BC2=AB2,∴∠ACB=90°,∴AC⊥BC.(2)过F作FN⊥AB交AB延长线于N,过C作CM⊥AB于M,延长DG交FN于K,∵EH∥DG∥AB,∴GK⊥FN,∴四边形MNKC是矩形,∴NK=CM,∵△ABC的面积=AB•CM=AC•BC,∴90CM=72×54,∴CM=43.2(cm),∴NK=CM=43.2(cm),∵EH∥DG,∴∠FGK=∠EHG=60°,∴sin∠FGK=sin60°==,∵FG=80cm,∴FK=40≈69.28(cm),∴FN=FK+NK=69.28+43.2≈112.5(cm).∴购物车把手F到AB的距离约是112.5cm.25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.【解答】解:(1)根据题意可知点A(m,﹣3)在直线和双曲线的图象上,∴,解得m=﹣2,∴点A的坐标为(﹣2,﹣3),代入双曲线得:k=(﹣2)×(﹣3)=6,由图象可知点B与点A关于原点对称,∴B(2,3);(2)过点B、C分别作x轴的垂线,垂足分别为E、F,作点B关于y轴的对称点点B',并向下平移一个单位记为B'',连接B''C,则BE∥CF,B'B''=1,∴△DCF∽△DBE,∴,∵BC=2CD,B(2,3),B'(﹣2,3),B''(﹣2,2),∴,BE=3,∴CF=1,即点C的纵坐标为1,∵点C在反比例函数的图象上,∴C(6,1),B''C=,∴MB+MN+NC的最小值即为B'B''+B''C=1+;(3)当∠ODP=∠DOB时,当DP在x轴下方时,DP∥AB,设直线BC的解析式为y=kx+b,由(2)可知:B(2,3),C(6,1),∴解得,∴,当y=0时,,解得x=8,∴D(8,0),∵DP∥AB,直线AB的解析式为,∴设直线DE的解析式为,把D(8,0)代入得:12+m=0,∴m=﹣12,∴,由P是直线DE与反比例函数的交点可得:,解得,此时点P在第三象限,符合题意,当DP在x轴上方时,则与下方的DP关于x轴对称,可得直线DP的解析式为:,再解方程组得,此时点P在第一象限,两个都符合题意,∴点P的横坐标为:..26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.【解答】解:(1)∵∠B=30°,AD⊥BC,∴∠BAD=60°,∴AD=2AE=4,∴AB=2AD=8,BD=AD=4,∴BE=AB﹣AE=6,过E作EF⊥BC于F,如图1,∴EF=BE=3,BF=BE=3,∵AB=AC,∴BD=CD,∴CF=2BD﹣BF=8﹣3=5,∴CE==2,(2)证明:∵∠ABC=30°,AB=AC,∴∠BAC=120°,又∵∠GAH=120°,∴∠F AB=∠CAH,∵AH=AG,∴∠AHG=30°=∠ABC,∴∠ABF=∠AHC,∴△ABF∽△AHC,∴=,∵PH∥FG,∴△CHP∽△CGF,∴=,又∵△ABC∽△AGH,∴=,∴=,∴=,∵=,∴==+1=+1=,∴CP=FB;(3)延长BM交AC于F,延长AN到E,使NE=BN,连接BE,如图3:∵∠BAN﹣∠CBN=30°,∴∠BAN=∠CBN+30°,∴∠BNE=∠BAN+∠ABN=∠CBN+∠ABN+30°=60°,∵NE=BN,∴△BEN是等边三角形,∴∠E=60°,∵∠ANB=180°﹣∠BNE=120°=∠BAC,∴△ABN∽△FBA,∴==,∠BAE=∠AFB,∴△ANF∽△BEA,∴==,∴FN===,∴BF=FN+BN=,∴AB2=BN•BF=5+,过F作FG⊥BC于F,过N作NH⊥BC于H,∵∠ACB=30°,∴FG=FC=(AB﹣AF)=AB,CG=AB,∴BG=BC﹣CG=AB﹣AB=AB,∵NH∥CF,∴===,∴NH=AB,BH=AB,∴CH=BC﹣BH=AB,∴CN2=CH2+NH2=9,∴CN=3.。
数学金试卷九年级上册答案【含答案】

数学金试卷九年级上册答案【含答案】专业课原理概述部分一、选择题1. 如果一个三角形的两边分别是8厘米和15厘米,那么第三边的长度可能是多少厘米?()A. 7厘米B. 23厘米C. 17厘米D. 20厘米2. 一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的周长是多少厘米?()A. 36厘米B. 42厘米C. 26厘米D. 46厘米3. 一个数的算术平方根是9,那么这个数是()A. 81B. 18C. 162D. 824. 下列函数中,哪个函数在其定义域内是增函数?()A. y = -2x + 3B. y = x^2C. y = 3/xD. y = 2x 15. 一个正方形的对角线长度是10厘米,那么它的面积是多少平方厘米?()A. 50平方厘米B. 100平方厘米C. 200平方厘米D. 80平方厘米二、判断题6. 任何两个等边三角形的面积一定相等。
()7. 一个数的立方根和它的平方根相等。
()8. 两个负数相乘的结果是正数。
()9. 一元二次方程的解可以是两个相等的实数根。
()10. 在直角坐标系中,点(3, 4)和点(4, 3)的距离相等。
()三、填空题11. 一个等差数列的前三项分别是2,5,8,那么第四项是______。
12. 如果一个数的平方是64,那么这个数是______。
13. 一个圆的半径是5厘米,那么这个圆的面积是______平方厘米。
14. 两个函数y = 2x + 3和y = -0.5x + 7的交点坐标是______。
15. 一个正方体的体积是1000立方厘米,那么它的边长是______厘米。
四、简答题16. 请简述勾股定理的内容。
17. 什么是算术平方根?如何计算一个数的算术平方根?18. 请解释等差数列和等比数列的区别。
19. 什么是函数的单调性?如何判断一个函数的单调性?20. 请解释直角坐标系中两点之间的距离公式。
五、应用题21. 一个长方形的长是10厘米,宽是6厘米,求它的面积和周长。
第三届时代数学报数学文化节(九年级)第二轮试题及答案

时代数学报第三届数学文化节第二轮活动“能力素质挑战”书面问题解答(九年级)(2008年1月6日 上午9:00~11:00)亲爱的读者,欢迎参加时代数学报第三届数学文化节!在第一轮“基础知识闯关”活动中,你已经感受到扑面而来的数学文化气息,以你良好的基础,完全有信心从容地接受第二轮活动的“能力素质挑战”!这里,重要的不是为了胜人一筹,而是由此更上一层楼。
进一步明白学好数学需要多方面的知识和素养,同时再一次展现你的灵性和潜能,品味数学文化的美丽芬芳和博大精深,简单些吧,写成一个公式:广泛阅读+深入思考+仔细品味=享受数学再简单些吧,写成一个“数学公式”:G +S +Z =X 。
Let’s go!(注:满分150分,除第6题10分,第12题10分,第15题9分外每题7分,选择题只有一个正确答案) 数学之史1、36军官问题 在数学文化节第一轮活动中,我们以探讨一个趣题的方式纪念了数学大师欧拉诞辰300周年。
著名数学家拉普拉斯说过:“读读欧拉,他是我们所有人的导师。
”是啊!欧拉在数学上的贡献实在太多了,即使在初等数学中也到处可见他的身影。
我们再来看看欧拉研究过的“36军官问题”:从6支部队中各选出6名不同军衔的军官,将这36名军官排成一个6行6列的方阵,要求每行每列的6个军官分别来自不同的部队,并具有不同的军衔。
用大写字母A ,B ,C ,D ,E ,F 分别表示6支不同的部队,用小写字母a ,b ,c ,d ,e ,f 分别表示6种不同的军衔,于是问题转化为:在6×6的方格阵中,每个方格分别填入一个大写字母和一个小写字母,使每行和每列中的大小写字母只能各出现一次(通常称这种方阵为欧拉方阵或正交拉丁方)。
欧拉搅尽脑汁,也没能排出符合要求的6×6方阵,他猜想并不存在这样的6×6方阵。
100多年以后,才有人证明了欧拉的这个猜想是正确的。
于是欧拉继而探究了其他情形,例如,他分别作出了3×3,4×4,5×5正交拉丁方,并证明了当n 除以4的余数不等于2时,n ×n 正交拉丁方是存在的。
第一届时代学习报数学文化节 第二轮(八年级)

时代学习报首届数学文化节第二轮活动“能力素质挑战”书面问题解答(八年级)(时间90分钟,满分150分)班级学号姓名得分数学之史1.几何鼻祖古时候,人们从生活实践中积累了丰富的几何知识.公元前300年-左右,古希腊数学家欧几里得对它们进行了系统整理,写成一部数学巨著,书名是.书中先给出少数基本定义、数学事实和原理,然后以它们为根据,严格推演出数百个几何结论,成为后世数学科学研究的典范.例如,从“平面上两点之间,最短”,可以推出“三角形的两边之和第三边(填“大于”、“小于”或“等于”)”.2.数学群星华人著名科学家:华罗庚、苏步青、陈省身、竺可桢、茅以升、陈景润中,数学家是3.七巧世界七巧板是我国古代劳动人民的智慧结晶,在国际上受到广泛重视,英文里有一个专门单词 (填翻译后的汉语名称)称呼七巧板.下面的4幅由七巧板拼成的人物图案中,有3张完全相同,则与众不同的那一张是( ).数学之美4.透过表面 (1)如图1,有半径分别为7cm,5 cm,4 cm,2 cm,2 cm的5个圆.要求将4个较小的圆与最大的圆进行重叠,使大圆中与小圆不重叠部分(黑色)的面积正好等于4个小圆中与大圆不重叠部分(阴影部分)的面积之和.请简要说明你的办法:(2)如果透过图形的外表,仔细反思你的解题过程,然后将5个圆改变成6个圆,当最大圆的半径仍然是7 cm,并且5个较小的圆与最大的圆进行重叠时,大圆中与小圆不重叠部分的面积正好等于5个小圆中与大圆不重叠部分的而积之和.那么,这5个较小圆的半径(都是整数cm)从大到小依次可以是.5.对称与对仗 《时代数学学习》曾发表过张奠宙教授的文章《对称与对仗》,文中指出,轴对称图形沿对称轴折叠后能完全重合,这种“变中有不变”的思想,在古典文学诗词中就是“对仗”.例如唐朝王维的诗句“明月松间照,清泉石上流”,内容从描写月亮到描写泉水,确有变化,但这一变化中有许多是不变的,特别是两句中对应词的词性不变.如“明”、“清”都是形容词,“月”、“泉”都是名词(景物).请你再写出两首古代名诗中的对仗句:6.烙饼翻身 野营活动中,同学们创造性地选用铁皮代替锅来烙饼.(1)小明找到一张如图2(a)的等腰三角形铁皮,用它烙一块与铁皮形状、3veJ,,9同的饼.烙好一面后把饼翻身,这块饼正好落在“锅”中,这是因为 .(2)小倩只找到一张如图2(b)的直角三角形铁皮,用它烙一块与铁皮形状、大小相同的饼,这块饼翻身就不能正好落在“锅”中.小华将饼切了一刀(沿直线切饼,下同),然后把两小块饼都翻身,它们也能正好落在“锅”中.请你在图2(b)中画出上述刀痕.(3)小强最后拿到的是一张如图2(e)的三角形铁皮,但它既不是等腰三角形又不是直角三角形.请在图2(c)中画出刀痕的位置(不超过3刀),也能使饼翻身届正好落在“锅”中.7.数也对称 (1)计算(直接填写结果):1212222++⨯= ;12321333333++++⨯= (2)先猜想结果,再计算验证:123432144444444++++++⨯= ;1234543215555555555++++++++⨯= ; (3)归纳:设N 为各位数字都是n 的n 位数(n 是小于l0的正整数),那么12)1(321+++-++++⨯ n N N 是 位数,其正中的一个数字是 . 数学之思8.滴水不漏 点M ,N 为线段AB 上的两点,若AB=20cm ,AM=12cm ,MN=4cm ,则NB= .9.不思则罔 小刚被邀请参加另一个班的数学晚会,回来后告诉小飞:“晚会上共有40道抢答题,规定答对一道题得5分,不答得1分,答错一道题得-3分.’抢答结束后,统计各入所得分数,总分好像是147分吧!”小刚所说的总分是否记错了?简要说明理由: .10.积木成塔 如图3是由若干个正方体形状的积木堆成的,平放于桌面上.其中,上面1个正方体下底面的4个顶点正好是相邻的下面l 个正方体的上底面各边的中点.如果最下面的正方体的棱长为l,且这些正方体积木露在外面的面积之和超过8,则正方体积木最少有个.按此规律不断堆下去,请估计,这些正方体积木露在外面的面积之和与整数最接近.11.纵横错落如图4,长方形ABCD中,放置9个形状、大小都相同的小长方形(尺寸如图),则图中阴影部分的面积是。
浙江省温州市2022-2023学年九年级上学期第一次月考数学试题(含答案)

温州市2022学年第一学期九年级学业水平第一次检测数 学 试 题2022.9(课改班卷)本卷共4页,满分150分。
请在规定时间内于答题区域内作答,全程不得使用计算器,考试时间120分钟。
选择题部分一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,选择正确才给分)1.有10张背面完全相同的卡片,正面分别写有数字:1至10,把这些卡片背面朝上洗匀后,从中随机抽取三张卡片a ,b ,c ,则这三张卡片a ,b ,c 的数字正好是直角三角形的三边长的概率是( ) A .1120B .160C .145D .1722.已知⊙O 的半径为13,弦AB ∥CD ,AB =24,CD =10,则四边形ACDB 的面积是( ) A .119 B .289 C .77或119 D .119或2893.如图,△ADC 是由等腰直角△EOG 经过位似变换得到的,位似中心在x 轴的正半轴,已知EO =1,D 点坐标为D (2,0),位似比为1:2,则两个三角形的位似中心的坐标是( )A .(23,0)B .(1,0)C .(0,0)D .(13,0)4.我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点A (0,2),点C (2,0),则互异二次函数y =(x −m )2−m 与正方形OABC 有交点时m 的最大值和最小值分别是( )A .4,-1B .5−√172,-1 C .4,0 D .5+√172,-15.如图,在△ABC中,∠C=90°,AC=BC=6,点D,E分别在AC和BC上,CD=2,若以DE为直径的⊙O交AB的中点F,可知⊙O的直径是()A.2√3B.2 C.2√5D.56.如图,在△ABC中∠BAC=90°,AB=AC=2,点D为△ABC所在平面内一点,∠BDC=90°,以AC、CD为边作平行四边形ACDE,则CE的最小值为()A.√10−√2B.3−√2C.75D.2√3−√27.如图1,是清代数学家李之铉在他的著作《几何易简集》中研究过的一个图形,小圆同学在研究该图形后设计了图2,延长正方形ABCD的边BC至点M,作矩形ABMN,以BM为直径作半圆O交CD于点E,以CE为边做正方形CEFG,G在BC上,记正方形ABCD,正方形CEFG,矩形CMND的面积分别为S1,S2,S3,则S1S2+S3=()A.3+√54B.1+√52C.3+√24D.1+√228.如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P(即连接OP有OP⊥AD).若AB=6,BC=3√3,其中正确的结论数量为( )①F 是CD 的中点;②⊙O 的半径是2;③AE =3CE ;④S 阴影=√32.A .1个B .2个C .3个D .4个9.如图,抛物线y =-x ²+2x +1交x 轴于A ,B 两点,交y 轴于点C ,点D 为抛物线的顶点,点C 关于抛物线的对称轴的对称点为点E ,点G ,F 分别在x 轴和y 轴上,则四边形EDFG 周长的最小值为( )A .6B .4√2C .√30D .2√710.如图,正方形ABCD 边长为6,E 、F 是对角线AC 的三等分点,连接BE 并延长交AD 于点G ,连接GF 并延长交BC 于点H ,记△GEF 的面积为m ,△CHF 的面积为n ,m +n =( )A .92 B .6 C .152D .7 非选择题部分二、填空题(本题有6小题,每小题5分,共30分)11.若实数a 是一元二次方程x 2-3x +1=0的一个根,则a 3+224a 1+的值为____________. 12.温故知新:若满足不等式871513n n k <<+的整数k 只有一个,则正整数N 的最大值_____________。
2018学年第一学期初三数学参考答案和评分建议

长宁区2018学年第一学期初三数学参考答案和评分建议2019.1一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.A ; 4.D ; 5.B ; 6.D . 二.填空题:(本大题共12题,满分48分)7.54; 8.3>m ; 9.1:16; 10.33; 11.29; 12.15+; 13.6; 14.232+; 15.525-或525+; 16.79; 17.512; 18.7725或.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19. (本题满分10分)解:原式=232221)33(32-+⨯ (4分)=321313-+⨯(2分) =)32(33+- (2分) =3322-- (2分) 20.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)∵BC 平分ABF ∠ ∴CBF ABC ∠=∠ ∵AC //BD ∴ ACB CBF ∠=∠ ∴ACB ABC ∠=∠ ∴AB AC =∵ 3,2==BE AE∴5==AC AB (3分)∵AC //BD ∴BEAEBD AC =(1分) ∴325=BD ∴ 215=BD (1分) (2)∵AC //BD ∴32==BD AC ED EC ∵b ED =, ∴b EC 32-= (2分)∴ b a EC ρρ32--=+=→ (3分)21.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)过点O 作OH ⊥AB ,垂足为点H ,在 OAH Rt ∆中,∠OHA=︒90 ∴53sin ==AO OH A 设k OH 3=,k AO 5= (1分) 则k OH AO AH 422=-=∵OH 过圆心O ,OH ⊥AB ∴k AH AB 82== (2分)∴k AB AC 8== ∴358+=k k ∴ 1=k (1分) ∴5=AO 即 ⊙O 的半径长为5. (1分) (2) 过点C 作CG ⊥AB ,垂足为点G , 在 ACG Rt ∆中,∠AGC=︒90∴53sin ==AC CG A ∵8=AC ∴524=CG , 53222=-=CG AC AG ,58=BG (3分)在 CGB Rt ∆中,∠CGB=︒90∴ 5108)524()58(2222=+=+=BG CG BC (2分) 22.(本题满分10分,第(1)小题6分,第(2)小题4分)解:(1)延长DE 交AB 于点F ,过点C 作CG ⊥AB ,垂足为点G ,由题意可知CE=GF=2,CG=EF (1分) 在BCG Rt ∆中,∠BGC=︒90 ∴ 3475.01===BG CG i (1分) 设k CG 4=,k BG 3=,则10522==+=k BG CG BC∴2=k ∴6=BG , ∴8==EF CG (2分) ∵3=DE ∴1183=+=+=EF DE DF 米 (1分) 答:瞭望台DE 的顶端D 到江面AB 的距离为11米. (1分) (2)由题意得 ∠A=︒40 在 ADF Rt ∆中,∠DF A=︒90∴ DF AF A =cot ∴19.111≈AF∴09.1319.111=⨯≈AF (2分) ∴1.509.5≈=--=GF BG AF AB 米 (1分)答:渔船A 到迎水坡BC 的底端B 的距离为5.1米. (1分) 23.(本题满分12分,第(1)小题5分,第(2)小题7分) 证明:(1)∵AC AD AB AE ⋅=⋅ ∴ABADAC AE =(1分) 又∵A A ∠=∠ ∴AED ∆∽ACB ∆ (2分) ∴C AED ∠=∠ (1分) 又∵FEB AED ∠=∠ ∴C FEB ∠=∠ (1分)(2)∵C FEB ∠=∠ , CFD EFB ∠=∠ ∴EFB ∆∽CFD ∆ ∴FDC FBE ∠=∠ (1分)∵FD CD AB FB = ∴FDABCD FB = ∴ FBA ∆∽CDF ∆ ∴C AFB ∠=∠ ∴AC AF = (2分) ∵C FEB ∠=∠ ∴AFB FEB ∠=∠ (1分) 又∵ABF FBE ∠=∠ ∴EFB ∆∽FAB ∆ (1分)∴ABFBAF EF = (1分) ∵AC AF = ∴FB AC AB EF ⋅=⋅. (1分)24.(本题满分12分,每小题4分)解:(1)过点B 作BH ⊥x 轴,垂足为点H, ∵)3,1(B ∴3,1==BH OH ∵,90︒=∠BHA ︒=∠45BAO ∴3==BH AH ,4=OA∴)0,4(A (2分) ∵抛物线过原点O 、点A 、B ∴设抛物线的表达式为)0(2≠+=a bx ax y⎩⎨⎧=+=+04163b a b a ∴ ⎩⎨⎧=-=41b a (1分)∴抛物的线表达式为x x y 42+-= (1分) (2)∵OB PM //∴BPM OBA ∠=∠ 又∵AOB BMP ∠=∠ ∴BPM ∆∽ABO ∆ ∴OAB MBP ∠=∠ ∴OA BM //∴设)3,(x M ∵M 在抛物线x x y 42+-=上 ∴ )3,3(M (2分) ∵直线OB 经过点)0,0(O 、)3,1(B ∴ 直线OB 的表达式为x y 3= ∵OB PM //且直线PM 过点)3,3(M ∴ 直线PM 的表达式为63-=x y ∵直线AB 经过点)0,4(A 、)3,1(B ∴ 直线AB 的表达式为4+-=x y∴⎩⎨⎧+-=-=463x y x y ∴ ⎪⎩⎪⎨⎧==2325b x ∴)23,25(P (2分) (3) 延长MP 交x 轴于点D ,作MN PG ⊥,垂足为点G∴AD PG // ∴MDC MPG ∠=∠,︒=∠=∠45BAO GPN ∵BO PM // ∴BOA MDC ∠=∠ ∴BOA MPG ∠=∠∴3tan tan =∠=∠BOA MPG ∵︒=∠90MPG ∴3tan ==∠PGMGMPG设t PG =,则t MG 3= ∵︒=∠90PGN ,︒=∠45GPN∴t GN PG ==,t MN 4= ∴22421t t t S PMN =⋅⋅=∆ (2分)∴222142NC t S S PMN ANC ===∆∆ ∴t NC 22= (1分)∴2224==ttNC MN (1分)25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分) 解:(1)∵在 BAC Rt ∆中 ︒=∠90BAC∴53cos cos ==∠=∠BC AC MBN BCA ∵25=BC ∴15=AC (1分)2022=-=AC BC AB (1分)∵AF BC AC AB S ABC ⋅=⋅=∆2121 ∴12=AF (1分) ∵BC AF ⊥ ∴︒=∠90AFC∴ 34tan tan ==∠=∠AF EF BCA FAE∴16=EF (1分) (2)过点A 作EF AH ⊥于点H ∴ ︒=∠90AHB∴ 1622=-=AH AB BH∵x BF =,x FH -=16,x FC -=25∴ 40032)16(122222+-=-+=x x x AF (1分) ∵ BCA MBN ∠=∠,EAF MBN ∠=∠∴BCA EAF ∠=∠ 又∵CFA AFE ∠=∠ ∴AFE ∆∽CFA ∆ ∴AFEFCF AF =,FAC AEF ∠=∠, ∴EF FC AF ⋅=2∴EF x x x ⋅-=+-)25(400322(1分)∴xx x EF -+-=25400322,xxx x x x BF EF BE --=+-+-=+=25740025400322 (1分)∵ ACB MBN ∠=∠,FAC AEF ∠=∠,∴BDE ∆∽CFA ∆∴ACBEFC BD = (1分) ∴1525740025x xx y--=- ∴157400x y -=(2250≤<x ) (1分+1分) (3)596或 1172000(2分+2分)。
九年级第一次中考数学模拟考试试题(含参考答案及评分标准)

B. a6 a a 5
2
D. 3 2 7
5.已知方程 kx+b=0 的解是 x=3,则函数 y=kx+b 的图象可能是(
)
A .
B.
C.
D.
6.如果式子 2x 6 有意义,那么 x 的取值范围在数轴上表示出来,正确的
是(
)
A
B
C
D
7. 如图 1,一个正方体切去一个三棱锥后所得几何体的俯视图是(
)
A
B. 2 个
C.3 个
D. 4 个
图4
16.如图 7,在平面直角坐标系中, 已知点 A( 1,0),B( 1﹣ a,0),C( 1+a,
0)(a> 0),点 P 在以 D( 4,4)为圆心, 1 为半径的圆上运动,且始终
满足∠ BPC =90°,则 a 的最大值是(
)
A. 3 B. 4 C. 5
y PD
1
C.
3
1
D.
2
10.某学校为绿化环境, 计划种植 600 棵树, 实际劳动中每小时植树的数量比
原计划多 20%,结果提前 2 小时完成任务 .设原计划每小时植树 x 棵,则列
出的方程为(
)
A. 600
600
2
x (1 20%) x
C. 600 600 2 x 20% x
11.如图 3,阴影部分是两个半径为
B
A
F
CE
D
图1
B
A
C
D
备用图
26.(本题 12 分) 如图 13,直线 l :y=﹣ 3x+3 与 x 轴、 y 轴分别相交于 A、B 两点,抛物线
y=ax2﹣ 2ax+a+4( a<0)经过点 B. ( 1)求 a 的值,并写出抛物线的表达式; ( 2)已知点 M 是抛物线上的一个动点, 并且点 M 在第一象限内, 连接 AM 、
(答案及评分标准)2022-2023学年第一学期基础质量监测九年级数学试题

(答案及评分标准)2022-2023学年第一学期基础质量监测九年级数学试题绝密★启用前试卷类型:A2022-2023学年第一学期基础质量监测九年级数学试题答案(总分120分考试时间120分钟)选择题:题号12345678910选项CCBDCCCABC填空题:本大题共8小题,其中11~14题每小题3分,15~18题每小题4分,共28分,只要求填写最后结果.11.;?12.20;13.; 14.y=﹣x2+2x +4 ;15.π﹣2 ; 16.;17.1 .19.(8分)计算(1).....................................4分(2)sin45°﹣(tan30°)﹣1+()0+cos230°. ....................................4分20.(8分)如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD至点E.(1)若AB=AC,求证:∠ADB=∠ADE;(2)若B C=3,⊙O的半径为2,求sin∠BAC.(1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠ADE=∠ABC∵AB=AC,∴∠ABC=∠ACB∵∠ACB=∠ADB∴∠ADB=∠ADE (4)分(2)解:连接CO并延长交⊙O于点F,连接BF则∠FBC=90°,在Rt△BCF中,CF=4,BC=3,∴sinF==.............................7分∵∠F=∠BAC,∴sin∠BAC=...............................8分(8分)九年级一班的小明和小亮在学校组织的普法答题中都获得了满分,为了推举其中一人代表班级在周一升旗时致辞,小颖准备了如图所示的两个可以自由转动的转盘A、B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.规定:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为1时,小明致辞;数字之和为2时,小亮致辞.如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止.(1)用画树状图或列表法求小亮致辞的概率;(2)这个规则对小明、小亮双方公平吗?对谁有利?请判断并说明理由.解:(1)根据题意列表格:.............................2分共有12种等可能的结果,其中和为2的有2种结果.............................3分∴P(小亮致辞) ............................4分(2)不公平,...........................5分理由:∵P(小亮致辞),P(小明致辞).∴P(小亮致辞)≠P(小明致辞)...........................7分∴规则不公平.对小明有利...........................8分22.(8分)某校为检测师生体温,在校门安装了某型号的测温门,如图为该“测温门”截面示意图.身高1.6米的小聪做了如下实验:当他在地面M处时“测温门”开始显示额头温度,此时在额头B处测得A的仰角为30°;当他在地面N处时,“测温门”停止显示额头温度,此时在额头C处测得A的仰角为58°.如果测温门顶部A处距地面的高度AD为2.8米,求小聪在有效测温区间MN的长度约为多少米?(保留两位小数,注:额头到地面的距离以身高计,sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,1.73.)解:如图,延长BC交AD于点E,则AE=AD﹣DE=2.8﹣1.6=1.2(米)..................................2分在Rt△ABE中,∠ABE=30°,∴BEAE (米)..................................2分在Rt△ACE中,∠ACE=58°,tan∠ACEtan58°≈1.60,∴C E0.75(米),..................................2分∴MN=BC=BE﹣CE0.75≈1.33(米)..................................1分答:小聪在有效测温区间MN的长度约为1.33米...................................1分23.(10分)如图,点C在以AB为直径的⊙O上,BD平分∠ABC交⊙O于点D,过D作BC的垂线,垂足为E.(1)求证:DE与⊙O相切;(2)若AB=5,BE=4,求BD的长;(1)证明:连接OD,∵OD=OB∴∠ODB=∠OBD∵BD平分∠ABC∴∠OBD=∠CBD∴∠ODB =∠CBD.∴OD∥BE∵BE⊥DE∴OD⊥DE 又∵OD是半径∴DE与⊙O相切 .........................5分(2)解:∵AB是⊙O的直径∴∠ADB=90°∵BE⊥DE∴∠ADB=∠BED=90°∵BD平分∠ABC∴∠OBD=∠CBD∴△ABD∽△DBE ∴ ∴,即BD2=20∴BD=2.........................10分24.(8分)某网店专售一款电动牙刷,其成本为20元/支,销售中发现,该商品每天的销售量y(支)与销售单价x(元/支)之间存在如图所示的关系.(1)求y与x之间的函数关系式.(2)该网店店主决定从每天获得的利润中抽出200元捐给中国青少年发展基金会,为了保证捐款后每天剩余利润不低于550元,如何确定这款电动牙刷的销售单价?解:(1)设y与x之间的函数关系式为y=kx+b(k≠0)将(30,100),(35,50)代入y=kx+b中,得:,解得:.......................2分∴y与x之间的函数关系式为y=﹣10x+400........................3分(2)设捐款后每天的剩余利润为w元,依题意,得:w=(x ﹣20)(﹣10x+400)﹣200=﹣10x2+600x﹣8200........................5分令w=550,则﹣10x2+600x﹣8200=550,解得x1=25,x2=35∵﹣10<0,∴抛物线开口向下,∴当该款电动牙刷的销售单价每支不低于25元且不高于35元时,可保证捐款后每天剩余利润不低于550元........................8分25.(12分)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是第四象限内抛物线上的一个动点,试求四边形ACPB面积的最大值.解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx﹣3,∴,解得,∴y=x2﹣2x﹣3 ..................................................3分(2)连接CB交对称轴于点Q,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为直线x=1,∵A、B关于对称轴x=1对称,∴AQ=BQ,△ACQ的周长=AC+AQ+CQ=AC+BQ+CQ≥AC+BC,当C、B、Q三点共线时,△ACQ的周长最小..............................................5分∵C(0,﹣3),B(3,0)设直线BC的解析式为y=kx+b∴解得∴y=x﹣3把x=1代入y =x-3得y=﹣2∴Q(1,﹣2) .........................................8分在第四象限内的抛物线上取点P,连接CB,做PH∥y轴交直线BC于点H设P(x,x2﹣2x﹣3),H(x,x﹣3)PH=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3xAB=OB+OA=4,OC=3S四边形ACPB=S△ACB+S△CPB=AB·CO+PH·BO==当x=时,四边形ACPB 的面积最大,最大值= .........................................12分密封线学校班级姓名考场考号座号密封线八年级数学试题第7页(共8页)八年级数学试题第8页(共8页)八年级数学试题第1页(共8页)八年级数学试题第2页(共8页)。