四年级迎春杯第五讲作业答案
迎春杯分类计数与数论标准答案及详解

迎春杯分类计数与数论标准答案及详解迎春杯分类⼀计数与数论答案及详解计数:1. 国际象棋中“马”的⾛法如图1所⽰,位于○位置的“马”只能⾛到标有×的格中,类似于中国象棋中的“马⾛⽇”。
如果“马”在8×8的国际象棋棋盘中位于第⼀⾏第⼆列(图2中标有△的位置),要⾛到第⼋⾏第五列(图2中标有★的位置),最短路线有条。
(12)2.3.给你⼀架天平和两个砝码,这两个砝码分别重50克和100克,如果再添上3个砝码,则这5个砝码能称出的重量种类最多是种.(天平的左右两盘均可放砝码)【答案】94【解析】只有50,100两种砝码,可以组成的重量:50,100,150,即:3种,当加⼊砝码a,可以组成的重量:是50,100,150分别加减a,还有50,100,150本⾝,还要有a,所以此时有:3×3+1=10种,再加⼊⼀枚砝码,同理:有10×3+1=31种,再加⼀枚:为31×3+1=94种.分析教师:⾟洪涛4.将下图中的2007分成若⼲个1×2的⼩长⽅形,共有种分法.【答案】15【解析】从右下⾓,观察发现,从右向上只有唯⼀的分法,右⾯的区域只有唯⼀的情况.事实上只有左边和中间的两块有选择余地左边有5种情况,中间有3种情况所以⼀共就有5 3=15种5. 已知九位数2007□12□2既是9的倍数,⼜是11的倍数;那么,这个九位数是。
2007312126. 将0~9填⼊下⾯算式,每个数字只能⽤⼀次;那么满⾜条件的正确填法共有种。
□+□□+□□□=□□□□因为3个加数只有⼀个达到三位,所以结果的千位只能为1,各位可能的进位最多为2,所以⼗位上的和最⼤为9+8+2=19,进位不超过1,所以加数中三位数的百位只能为9,同时结果中的百位只能为0,因为⼗位必须要向百位进⼀位,且个位三位数之和最⼩为9最⼤为21且均不满⾜题意,所以个位数必向⼗位进1。
因此⼗位的数字组合只能为(3,8)(4,7)(4,8)(5,6)(5,7)(5,8)(6,7)(6,8)(7,8)⼀⼀枚举有5组数可⾏:⼗位(3,8),个位(4,5,7);⼗位(4,7),个位(3,5,8);⼗位(4,8),个位(2,6,7);⼗位(6,8),个位(2,4,7);⼗位(7,8),个位(3,4,5)。
迎春杯五级试题及答案.doc

感谢你的欣赏感谢你的欣赏1.计算:82.54+835.27-20.38÷2+2×6.23-390.81-9×1.03=2.某班女同学人数是男同学的2倍,如果女同学的平均身高是150厘米,男同学的平均身高是162厘米.那么全班同学的平均身高是 厘米.3.如果两个合数互质,它们的最小公倍数是126,那么,它们的和是 .4.图中三角形共有 个.5.从l ,2,3,4,5,6中选取若干个数(可以只选取一个),使得它们的和是3的倍数,但不是5的倍数.那么共有 种不同的选取方法.6.某城市的交通系统由若干个路口(图中线段的交点)和街道(图中的线段)组成,每条街道都连接着两个路口.所有街道都是双向通行的,且每条街道都有一个长度值(标在图中相应的线段处)一名邮递员传送报纸和信件,要从邮局出发经过他所管辖的每一条街道最后返回邮局(每条街道可以经过不止一次).他合理安排路线,可以使得自己走过最短的总长度是7.如图,一个面积为2009平方厘米的长方形,被分割成了一个长方形、两个等腰直角三角形、三个梯形.已知除了阴影长方形外,其它的五块面积都相等,且B 是AC 的中点;那么阴影长方形的面积是 平方厘米。
8.将数字4,5,6,7,8,9各使用一次,组成一个被667整除的6位数,那么,这个6位数除以667的结果是 。
9.计算: 1155×(4325⨯⨯+5437⨯⨯+…+109817⨯⨯+1110919⨯⨯)感谢你的欣赏感谢你的欣赏=10.200名同学编为1至200号面向南站成一排.第1次全体同学向右转 (转后所有的同学面朝西):第2次编号为2的倍数的同学向右转;第3次编号为3的倍数的同学向右转;……;第200次编号为200的倍数的同学向右转;这时,面向东的同学有 名.11.有一位奥运会志愿者,向看台上的一百名观众按顺序发放编号1,2,3,……100,同时还向每位观众赠送单色喇叭.他希望如果两位观众的编号之差是质数,那么他们拿到的喇叭就是不同颜色的.为了实现他自己的愿望,他最少要准备 种颜色的喇叭.12.一些棋子被摆成了一个四层的空心方阵(下图是一个四层空心方阵的示意图).后来小林又添入28个棋子,这些棋子恰好变成了一个五层的空心方阵(不能移动原来的棋子),那么最开始最少有 个棋子.13.请将l 个1,2个2,3个3,…,8个8,9个9 填入右图的表格中,使得相同的数所在的方格都连在一起(相连的两个方格必须有公共边).现在已经给出了其中8个方格中的数,并且知道A,B,C,D,E,F,G 各不相同;那么,五位数CDEFG -----------是.14.A 地位于河流的上游,B 地位于河流的下游.每天早上,甲船从A 地、乙船从B 地同时出发相向而行.从12月1号开始,两船都装上了新的发动机,在静水中的速度变为原来的1.5倍,这时两船的相遇地点与平时相比变化了1千米.由于天气原因,今天(12月6号)的水速变为平时的2倍,那么今天两船的相遇地点与12月2号相比,将变化 千米.15如图,长方形ABCD 中被嵌入了6个相同的正方形.已知 AB=22厘米,BC=20厘米,那么每一个正方形的面积为 平方厘米.答案:感谢你的欣赏。
2013年“迎春杯”数学解题能力奥数初赛试卷(四年级)

2013年“迎春杯”数学解题能力展示初赛试卷(四年级)一.填空题(每小题8分,共24分)1.(8分)1+3+5+…+17+19+20+22+…+40= .2.(8分)爸爸生日是5月1日,而春春生日是7月1日,从2012年12月26日算起(第1天),直到第2013天,爸爸和春春总共过了 个生日.3.(8分)笼子里有30只蛐蛐和30只蝈蝈.红毛魔术师每变一次,会把其中的4只蝈蝈变成1只蛐蛐;绿毛魔术师每变一次会把其中的5只蛐蛐变成2只蝈蝈.两个魔术师一共变了18次后,笼子里只有蝈蝈没有蛐蛐了.这时蝈蝈有 只.二.填空题(每小题12分,共36分)4.(12分)从1、2、3、4、5、6、7中选择若干个不同的数(所选数不计顺序),使得其中偶数之和等于奇数之和,则符合条件的选法共有 种.5.(12分)从4、5、6、7、8、9这六个数字中选出互不相同的5个填入下面方格内,使得等式成立.有 种不同的填法.□□﹣□□=□6.(12分)A、B、C三人在猜一个1~99中的自然数.A:“它是偶数,比6小.”B:“它比7小,是个两位数.”C:“A的前半句是对的,A的后半句是错的.”如果这3人当中有1人两句都为真话,有1人两句都为假话,有1人两句话一真一假.那么,这个数是 .三.填空题(每小题15分,共60分)7.(15分)如图,有两个小正方形和一个大正方形,大正方形的边长是小正方形边长的2倍,阴影部分三角形面积为240,请问三个正方形的面积和 .8.(15分)小张早晨8点整从甲地出发去乙地,速度是每小时60千米.早晨9点整小王从乙地出发去甲地.小张到达乙地后立即沿原路返回,恰好在12点整与小王同时到达甲地.那么两人相遇时距离甲地 千米.9.(15分)如图是由9个2×2的小网格组成的一个正方形大网格并要求相邻两个小网格内的相邻数字完全相同(这些小网格可以旋转,但不能翻转).现在大网格中已放好一个小网格,请你将剩余8个网格按要求放好.右下角格内的数是 .10.(15分)狼堡的狼欺羊太甚,终于导致羊群造反.接到攻打狼堡的通知后,小羊们陆续出发.7点时小灰灰登高一望,发现有5只羊到狼堡的距离恰好是一个公差为20(单位:米)的等差数列,从前到后,这5只羊分别为A、B、C、D、E;8点时,小灰灰登高一望,发现这5只羊到狼堡的距离仍然是一个公差为30(单位:米)的等差数列,但从前到后的顺序变成了B、E、C、A、D.这5只羊中跑得最快的羊比跑得最慢的羊,每小时多跑 米.2013年“迎春杯”数学解题能力展示初赛试卷(四年级)参考答案与试题解析一.填空题(每小题8分,共24分)1.(8分)1+3+5+…+17+19+20+22+…+40= 430 .【解答】解:1+3+5+…+20+22+…+40=(1+3+5+...+19)+(20+22+ (40)=(1+19)×10÷2+(20+40)×11÷2=20×10÷2+60×11÷2=100+330=430故答案为:430.2.(8分)爸爸生日是5月1日,而春春生日是7月1日,从2012年12月26日算起(第1天),直到第2013天,爸爸和春春总共过了 11 个生日.【解答】解:根据分析可得,(2013﹣6)÷365=5 (182)商是5说明爸爸和春春都过了5个生日,考虑5年内必有一个闰年,余的181天正好在上半年,所以在这181天内爸爸能过1个生日,而春春不能过生日,所以爸爸过5+1=6个生日,春春过5个生日,所以,共过生日:6+5=11(个);答:爸爸和春春总共过了 11个生日.故答案为:11.3.(8分)笼子里有30只蛐蛐和30只蝈蝈.红毛魔术师每变一次,会把其中的4只蝈蝈变成1只蛐蛐;绿毛魔术师每变一次会把其中的5只蛐蛐变成2只蝈蝈.两个魔术师一共变了18次后,笼子里只有蝈蝈没有蛐蛐了.这时蝈蝈有 6 只.【解答】解:不管红毛魔术师还是绿毛魔术师,每次操作都减少3个动物,所以还剩:60﹣18×3,=60﹣54,=6(只);答:这时蝈蝈有 6只.故答案为:6.二.填空题(每小题12分,共36分)4.(12分)从1、2、3、4、5、6、7中选择若干个不同的数(所选数不计顺序),使得其中偶数之和等于奇数之和,则符合条件的选法共有 7 种.【解答】解:1,2,3,4,5,6,7中1,3,5,7是奇数,2,4,6是偶数;3+5=2+61+5=2+41+3=41+5=63+7=4+65+7=2+4+6共7种;答:符合条件的选法共有 7种.故答案为:7.5.(12分)从4、5、6、7、8、9这六个数字中选出互不相同的5个填入下面方格内,使得等式成立.有 13 种不同的填法.□□﹣□□=□【解答】解:据分析,列举如下:①74﹣69=5; ②84﹣79=5;③85﹣79=6;④86﹣79=7;⑤56﹣49=7;⑥57﹣49=8;⑦67﹣59=8;⑧74﹣65=9;⑨84﹣75=9;⑩85﹣76=9;⑪56﹣47=9;⑫57﹣48=9;⑬67﹣58=9,故答案为13.6.(12分)A、B、C三人在猜一个1~99中的自然数.A:“它是偶数,比6小.”B:“它比7小,是个两位数.”C:“A的前半句是对的,A的后半句是错的.”如果这3人当中有1人两句都为真话,有1人两句都为假话,有1人两句话一真一假.那么,这个数是 8 .【解答】解:根据分析,显然B说的两句话自相矛盾,故B说的话不可能是全是真话,可以推测出A和C中必有一人是全为真话的人,假设A说的全是真话,则BC中必有一人是全为假话,又因为B说的有一句“它比7小”是对的,B不能是全错的那个人,则C必是全为假话的人,而C说的若全错,则A说的必有一句是错的,矛盾,故A不能是全为真话的人,从而可以断定C是全为真话的人;则A为说话一真一假的人,B为说话全假的人,故可以断定此数为偶数,且比7大,不是两位数,那就只能是1位数了,大于7的1位数中为偶数的只有8.故答案是:8.三.填空题(每小题15分,共60分)7.(15分)如图,有两个小正方形和一个大正方形,大正方形的边长是小正方形边长的2倍,阴影部分三角形面积为240,请问三个正方形的面积和 360 .【解答】解:见下图:设较小正方形的边长为x,较大正方形的边长就是2x,最大正方形的边长为x+2x=3xS△AEB=S△ADC=x×(x+2x)÷2=1.5x2S△BFC=2x×2x÷2=2x2S△AEB+S△ADC+△BFC=1.5x2+1.5x2+2x2=5x2S□ADFE=(3x)2=9x2S△ABC=S□ADFE﹣(S△AEB+S△ADCS+△BFC)=9x2﹣5x2=4x2因为S△ABC=240,所以4x2=240,那么x2=240÷4=60所以三个正方形的面积和:x2+(2x)2+x2=60+240+60=360.答:三个正方形的面积和是360.故答案为:360.8.(15分)小张早晨8点整从甲地出发去乙地,速度是每小时60千米.早晨9点整小王从乙地出发去甲地.小张到达乙地后立即沿原路返回,恰好在12点整与小王同时到达甲地.那么两人相遇时距离甲地 96 千米.【解答】解:全程:60×4÷2=120(千米)小王的速度:120÷3=40(千米/小时)相遇的时间:(120﹣60)÷(60+40)=60÷100=0.6(小时)距甲地的距离:60+60×0.6=60+36=96(千米)答:两人相遇时距离甲地 96千米.故答案为:96.9.(15分)如图是由9个2×2的小网格组成的一个正方形大网格并要求相邻两个小网格内的相邻数字完全相同(这些小网格可以旋转,但不能翻转).现在大网格中已放好一个小网格,请你将剩余8个网格按要求放好.右下角格内的数是 1 .【解答】解:依题意可知:现在已知方格的下方数字是2和4,需要找一个2和4在一面的小网格.那么只有第四个网格满足条件,那么第五个网格的右边是2个4,那么满足条件的有第五个和第七个.在已知网格的右边需要接数字1和4.第五个和第七个都是满足条件的,那么发现右边只能是第五个和第七个,无论是谁在上谁在下右下角的数字固定是数字1..如图所示:或者故答案为:110.(15分)狼堡的狼欺羊太甚,终于导致羊群造反.接到攻打狼堡的通知后,小羊们陆续出发.7点时小灰灰登高一望,发现有5只羊到狼堡的距离恰好是一个公差为20(单位:米)的等差数列,从前到后,这5只羊分别为A、B、C、D、E;8点时,小灰灰登高一望,发现这5只羊到狼堡的距离仍然是一个公差为30(单位:米)的等差数列,但从前到后的顺序变成了B、E、C、A、D.这5只羊中跑得最快的羊比跑得最慢的羊,每小时多跑 140 米.【解答】解:设公共部分长度为LA跑了L+30B跑了20+L+120=140+LC跑了40+L+60=100+LD跑了60+LE跑了80+L+90=170+L;跑的最快是E,最慢是A,差距为:170+L﹣(30+L)=140.140÷1=140米/小时答:最快最慢差距140米/小时.11。
迎春杯初赛试题及答案

迎春杯初赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是迎春杯初赛的举办时间?A. 1月1日B. 2月2日C. 3月3日D. 4月4日答案:B2. 迎春杯初赛的参赛对象是?A. 小学生B. 初中生C. 高中生D. 大学生答案:C3. 迎春杯初赛的报名费是多少?A. 50元B. 100元C. 150元D. 200元答案:B4. 迎春杯初赛的考试科目包括哪些?A. 语文B. 数学C. 英语D. 以上都是5. 迎春杯初赛的考试时间是多长?A. 60分钟B. 90分钟C. 120分钟D. 150分钟答案:C6. 迎春杯初赛的考试形式是?A. 笔试B. 口试C. 笔试和口试D. 机考答案:A7. 迎春杯初赛的考试地点在哪里?A. 学校B. 图书馆C. 社区中心D. 以上都不是答案:A8. 迎春杯初赛的考试结果将在何时公布?A. 考试后一周B. 考试后两周C. 考试后三周D. 考试后一个月答案:B9. 迎春杯初赛的奖项设置包括哪些?B. 二等奖C. 三等奖D. 以上都是答案:D10. 迎春杯初赛的获奖者将获得什么?A. 证书B. 奖杯C. 奖金D. 以上都是答案:D二、填空题(每题2分,共20分)1. 迎春杯初赛的报名时间是____月____日至____月____日。
答案:1月1日至1月15日2. 迎春杯初赛的考试地点通常设在学校的____。
答案:教室3. 迎春杯初赛的考试内容涵盖了____、____、____等学科。
答案:语文、数学、英语4. 迎春杯初赛的考试形式为闭卷,考试时间为____分钟。
答案:120分钟5. 迎春杯初赛的考试结果将在考试结束后的____周内公布。
答案:两周6. 迎春杯初赛的奖项设置中,一等奖的奖金为____元。
答案:1000元7. 迎春杯初赛的获奖者除了获得证书和奖金外,还将获得____。
答案:奖杯8. 迎春杯初赛的参赛者需要在报名时提供个人照片,照片的尺寸为____。
(仅供参考)2014年-迎春杯-四年级初赛试题及解析(高清无水印)

2014“数学解题能力展示”读者评选活动试题四年级组一.选择题(每小题8分,共32分)1.下面计算结果等于9的是()(A)3×3÷3+3(B)3÷3+3×3(C)3×3-3+3(D)3÷3+3÷32.如下图,每条边都相等,每个角都是直角,则根据信息下图的面积为()平方厘米.(A)16(B)20(C)24(D)323.亮亮早上8:00从甲地出发去乙地,速度是每小时8千米.他在中间休息了1小时,结果中午12:00到达乙地.那么,甲、乙两地之间的距离是()千米.(A)16(B)24(C)32(D)404.有四个数,它们的和是45,把第一个数加2,第二个数减2,第三个数乘2,第四个数除以2,得到的结果都相同.那么,原来这四个数依次是().(A)10,10,10,10(B)12,8,20,5(C)8,12,5,20(D)9,11,12,13二.选择题(每小题10分,共70分)5.动物园的饲养员把一堆桃子分给若干只猴子,如果每只猴子分6个,剩57个桃子;如果每只猴子分9个,就有5只猴子一个也分不到,还有一只猴子只分到3个.那么,有_______个桃子.(A)216(B)324(C)273(D)3016.大、中、小三个正方形,边长都是整数厘米,小正方形的周长比中正方形的边长大,把这两个正方形放在大正方形上(如右图),大正方形露出部分的面积是10平方厘米(图中阴影部分).那么,大正方形的面积是()平方厘米.(A)25(B)36(C)49(D)647.一些糖果,如果每天吃3个,十多天吃完,最后一天只吃了2个;如果每天吃4个,不到10天就吃完了,最后一天吃了3个.那么,这些糖果原来有()个.(A)32(B)24(C)35(D)368.有一种特殊的计算器,当输入一个10~49的自然数后,计算器会先将这个数乘以2,然后将所得结果的十位和个位顺序颠倒,再加2后显示出最后的结果.那么,下列四个选项中,()可能是最后显示的结果.(A)44(B)43(C)42(D)41三.选择题(每小题12分,共48分)9.有20间房间,有的开着灯,有的关着灯,在这些房间里的人都希望与大多数房间保持一致.现在,从第一间房间里的人开始,如果其余19间房间的灯开着的多,就把灯打开,否则就把灯关上.如果最开始开灯与关灯的房间各10间,并且第一间的灯开着.那么,这20间房间里的人轮完一遍后,关着灯的房间有()间.(A)0(B)10(C)11(D)2010.如图,一个长方体由四块拼成,每块都由4个小立方体粘合而成,4块中有3块都可以完全看见,但包含黑色形状的那块只能看见一部分.那么,下列四个选项中的_____是黑色块所在的形状.(A)(B)(C)(D)11.你能根据以下的线索找出百宝箱的密码吗?(1)密码是一个八位数;(2)密码既是3的倍数又是25的倍数;(3)这个密码在20000000到30000000之间;(4)百万位与十万位上的数字相同;(5)百位数字比万位数字小2;(6)十万位、万位、千位上数字组成的三位数除以千万位、百万位上数字组成的两位数,商是25.依据上面的条件,推理出这个密码应该是().(A)25526250(B)26650350(C)27775250(D)2887035012.下面的除法算式给出了部分数字,请将其补充完整.当商最大时,被除数()(A)21944(B)21996(C)24054(D)2411113.老师在黑板上将从1开始的计数连续地写下去:1,3,5,7,9,11……写好后,擦去了其中的两个数,将这些奇数隔成了3段,如果前两段的和分别是961和1001,那么,老师擦去的两个奇数之和是().(A)154(B)156(C)158(D)16014.甲乙两人合作打一份材料.开始甲每分钟打100个字,乙每分钟打200个字.合作到完成总量的一半时,甲速度变为原来的3倍,而乙休息了5分钟后继续按原速度打字.最后当材料完成时,甲、乙打字数相等.那么,这份材料共()个字.(A)3000(B)6000(C)12000(D)1800015.下图是一个立方体,六个面分别写着1、2、3、4、5、6.其中1的对面是6,2的对面是5,3的对面是4.开始时,写有6的面朝下.把立方体沿桌面翻滚,并记录下每次朝下的数字(从6开始).5次翻转后,记录的数字刚好是1、2、3、4、5、6各一次.那么,记录的这6个数字的排列顺序有()种.(A)36(B)40(C)48(D)601.2.【考点】几何,图形分割【难度】☆☆【答案】D【分析】经过分割,可以分成8个正方形,那么面积和为8⨯22=32平方厘米.3.4.5.【考点】几何,面积计算【难度】☆☆☆【答案】B【分析】一条阴影部分的面积为10÷2=5平方厘米.因为都是整数,所以只能为1⨯5.大正方形面积为6636.7.8.9.11.12.13.15.。
迎春杯历年题目分类解析

“迎春杯”历年题目分类解析(四年级)(学而思名师解题)1答案:5操作问题:将1、3、5、7、9 称为奇数格,将2、4、6、8称为偶数格。
开始时奇数格总和比偶数格总和大5, 而每一次变化并不影响这个结果所以A=5点评:操作题目,要寻找不变量,进行突破2答案:161提示:从里到外层数逐渐增加,差值逐渐增大,表n可以看成是n层,可以得到:N=1 S1=1N=2 S2=1+8X1X2N=3 S3=1+8X(1X2+2X3)N=4 S4=1+8X(1X2+2X3+3X4)=161N=5 S5=1+8X(1X2+2X3+3X4+4X5)N=6 S6=1+8X(1X2+2X3+3X4+4X5+5X6)=561由于差值逐渐增大,差值为400的情况只可能出现在前面,所以N=4符合要求。
题目:3答案:2346奇数位和是2345×1005,每个偶数位比它对应的奇数位大1,所以1005个偶数位比1005个奇数位大1005,那么偶数位和是2345×1005+1005=2346×1005,平均数自然是23464答案:30点评:此题难度不大,通过奇偶分析可得5个连续数应为3偶2奇,不难通过尝试得到4+5+6=7+8,结果是30题目:10月16日试题答案:第一题:446点评:排成一排,空隙数量比球多一个,所以去掉1红之后1红— 2黄—6蓝(2008-1)÷9×2=446第二题:60点评:一笔画问题结合行程,难度不大,只需算出总路程即可,图中共4个奇点,而A进A出的要求是所有点均是偶点,需要多走两条连接奇点的线才能保证所有点都变成偶点,那么需要多走两次260 即(480×3+200×3+260×4+260×2)÷60=60(分)注:在高年级学过勾股定理之后,260米的边长是可以计算出来的,不需题目给出条件10月17日试题:10月17日试题答案:第一题:28第二题:2682(其它年级所占的是5份少78人,标准和差倍)10月21日试题:10月21日试题答案:第一题:20点评:从这两天可以看出,应用题在迎春杯中考察还是相对简单的,如果孩子能够熟练掌握方程,做出第一、第二档的应用题应该难度不大10月22日试题:第二题:30点评:这两道题都是标准的列方程解应用题,在四年级迎春杯初赛中,题号比较靠前的应用题请特别注意方程的应用10月23日试题:10月23日试题答案:第一题:48(提示:画线段图,最后三段剩下的刚好是等差数列,公差是两段线段)第二题:21(提示:1个男生会有左右两个牵手,共60次牵手,男女牵手共18次,男男牵手则有(60-18)÷2=21(次)那么就会分成21组,此题难度还是比较大的)10月24日试题:10月24日试题答案:第一题:7提示:此题考察鸡兔同笼多个动物打包思想有四脚蛇是双头龙的2倍,把2个四脚蛇和1个双头龙打1个包作为新动物,包内是4头12脚发现4头12脚正好是4只三脚猫,所以包内的新动物和三脚猫一样,这三个动物和一起算做1个,其实本题相当于对三脚猫和独角兽做鸡兔同笼,可求出独角兽的只数(160-58)÷(3-1)=51 58-51=7第二题:英语提示:应用题和逻辑推理结合问题,采取枚举法,让9本分别是数学、语文、英语、历史,进行尝试计算,只有9本是英语书时4个数不重复,其余均有重复10月28日试题——数字谜今天开始进入数字谜阶段~中年级最重要的是加法数字谜!10月28日试题答案:第一题:10第二题:3010月29日试题:10月31日题目1.(2013年四年级组第9题)2.(2013年三年级组第6题)10月31日答案1、20342、3135(提示:这两道题都可以通过尝试得到,但如果掌握弃9法的话,做出来将会非常简单)1.11月4日题目——计数篇1.(2013四年级第6题)2.(2013三年级第10题)(此题难度很大,当年正确率不超过1%)11月4日答案1、7(特别提示:本题当年答案5也算作正确了,因为4=1+3,6=1+5这两组偶数不算作和)2、3211月5日答案1、62、21000昨天这两道题目不难哈!~ 11月6日题目11月6日答案:1、30(提示:实际操作法很有效哦!)2、30(提示:湖人只能在第6场或第7场获胜,所以比分是4:2或4:3,之后用树形图方法分两类讨论)11月7日题目:11月8日试题答案:第一题:18种第二题:25128(提示:这道题方法真的是一点一点算的,没有特别简单的解法,类似的题目华杯总决赛也考过,而且数比今天这个还大!)11月11日试题——逻辑推理11月12日答案:11月13日试题:11月13日答案:(点评:这次的两道题都是从六年级的考题当中摘下来的,难度虽然很大,但从知识点上四年级绝对可以)1、2、7192511月14日题目:11月14日答案11月18日题目(标准鸡兔同笼)(从本周开始,做一些杯赛最爱考的配套类型题目哈)1、在某电视机厂质量检测评比中,每生产出一台合格电视机记5分,每生产出一台不合格电视机扣10分。
2012年“迎春杯”数学解题能力展示初赛试卷(四年级)-含答案解析

2021年“迎春杯〞数学解题能力展示初赛试卷〔四年级〕一、填空题1.〔8分〕计算:12+34×56+7+89=.2.〔8分〕骆驼有两种,背上只有一个驼峰的单峰骆驼和背上有两个驼峰的双峰骆驼,单峰骆驼比拟高大,四肢较长,在沙漠中可走可跑;双峰骆驼四肢短粗,适合在沙漠和雪地中行走.有一群骆驼有23个驼峰,60只脚,这些骆驼有只.3.〔8分〕在如图的每个方框中填入一个数字,使得乘法竖式成立.那么,这个算式的乘积是.4.〔8分〕A、B、C三人采西瓜.A与B所采西瓜的个数之和比C少6个;B与C所采西瓜的个数之和比A多16个;C与A所采西瓜的个数之和比B多8个;请问他们共采西瓜个.二、填空题5.〔10分〕30名同学按身高由低到高排成一队,相邻两个同学的身高差相同.前10名同学的身高和是12.5米,前20名同学的身高和是26.5米,那么这30名同学的身高和是米.6.〔10分〕正方形ABCD与长方形BEFG如图放置,AG=CE=2厘米,那么正方形ABCD 的面积比长方形BEFG的面积大平方厘米.7.〔10分〕红、黄、蓝3种颜色的球分别有11、12、17个,每次操作可以将2个不同颜色的球换成2个第三种颜色的球,那么在操作过程中,红色球至多有个.8.〔10分〕宁宁、蕾蕾和凡凡三人合租一辆轿车从学校回家〔如图〕,他们约定:共同乘坐的局部所产生的车费由乘坐者平均分摊;单独乘坐的局部所产生的车费,由乘坐者单独承当.结果,三人承当的车费分别为10元、25元、85元,宁宁家距离学校12公里,凡凡家距离学校公里.三、填空题9.〔12分〕甲乙二人相距30米面对面站好,两人玩“石头、剪子、布〞.胜者向前走3米,负者向后退2米,平局两人各向前走1米,玩了15局后,甲距出发点17米,乙距出发点2米.甲胜了次.10.〔12分〕在羊羊运动会上,喜羊羊、沸羊羊、懒羊羊、暖羊羊和灰太郎进行了400米赛跑,赛完结束后,五人谈论比赛结果.第一名说:“喜羊羊跑得比懒羊羊快.〞第二名说:“我比暖羊羊跑得快.〞第三名说:“我比灰太郎跑得快.〞第四名说:“喜羊羊比沸羊羊跑得快.〞第五名说:“暖羊羊比灰太郎跑得快.〞如果五人中只有灰太郎说了假话,那么喜羊羊得了第名.11.〔12分〕假设三位数〔其中a、b、c都是非零数字〕满足>>,那么称该三位数为“龙腾数〞,那么共有个“龙腾数〞.12.〔12分〕在边缘的每个空白格内都填入一个箭头,方格中的数字表示指向该数字的箭头个数,箭头的方向可以是上、下、左、右、左上、左下、右上、右下,但每个箭头必须指向一个数字,例如,图2的填法是图1的答案,请按照此规律在图3中填入箭头,那么指向右下方向的箭头共有个.2021年“迎春杯〞数学解题能力展示初赛试卷〔四年级〕参考答案与试题解析一、填空题1.〔8分〕计算:12+34×56+7+89=2021.【解答】解:12+34×56+7+89=12+1904+7+89=1916+7+89=1923+89=2021;故答案为:2021.2.〔8分〕骆驼有两种,背上只有一个驼峰的单峰骆驼和背上有两个驼峰的双峰骆驼,单峰骆驼比拟高大,四肢较长,在沙漠中可走可跑;双峰骆驼四肢短粗,适合在沙漠和雪地中行走.有一群骆驼有23个驼峰,60只脚,这些骆驼有15只.【解答】解:60÷4=15〔只〕,答:一共有15只.故答案为:15.3.〔8分〕在如图的每个方框中填入一个数字,使得乘法竖式成立.那么,这个算式的乘积是837.【解答】解:依题意可知:根据结果的尾数是7,推理出第一个乘数的个位是7,再根据乘积的结果首位是2.可推理出第一个乘数是27;再根据27乘以一个数字尾数是1同时是2位数,那么只能是27×3=81;所以27×31=837.故答案为:8374.〔8分〕A、B、C三人采西瓜.A与B所采西瓜的个数之和比C少6个;B与C所采西瓜的个数之和比A多16个;C与A所采西瓜的个数之和比B多8个;请问他们共采西瓜18个.【解答】解:根据分析,第一句可知,C﹣〔A+B〕=6;第二句可知,B+C﹣A=16;第三句可知,C+A﹣B=8;将三个等式加起来得:〔A+B﹣C〕+〔B+C﹣A〕+〔C+A﹣B〕=﹣6+16+8⇒2〔A+B+C〕﹣〔A+B+C〕=A+B+C=18∴他们共采西瓜18故答案是:18.二、填空题5.〔10分〕30名同学按身高由低到高排成一队,相邻两个同学的身高差相同.前10名同学的身高和是12.5米,前20名同学的身高和是26.5米,那么这30名同学的身高和是42米.【解答】解:根据分析,30名同学的身高是一个等差数列,设第n名同学的身高为a n,前n名同学的身高和为S n,那么S10=12.5米,S20=26.5米,根据等差数列的性质,S10=a1+a2+…a10;S20﹣S10=a11+a12+…+a20;S30﹣S20=a21+a22+…+a30.易知,S10;S20﹣S10;S30﹣S20是等差数列,得S20﹣S10﹣12.5=14米;S30﹣S20=S10+2×〔14﹣12.5〕=12.5+3=15.5米;⇒S30=S20+15.5=26.5+15.5=42米.∴这30名同学的身高和是42米.故答案是:42米.6.〔10分〕正方形ABCD与长方形BEFG如图放置,AG=CE=2厘米,那么正方形ABCD 的面积比长方形BEFG的面积大4平方厘米.【解答】解:根据分析,图中公共局部为长方形GHCB,故:正方形ABCD的面积﹣长方形BEFG的面积=长方形ADHG的面积﹣长方形EFHC的面积=AG×AD﹣CE×CH=2×AD﹣2×CH=2×〔AD﹣CH〕=2×〔CD﹣CH〕=2×DH=2×2=4〔平方厘米〕.故答案是:4.47.〔10分〕红、黄、蓝3种颜色的球分别有11、12、17个,每次操作可以将2个不同颜色的球换成2个第三种颜色的球,那么在操作过程中,红色球至多有39个.【解答】解:三种球的个数除以3的余数分别为2.0、2,任意操作一次后,除以3的余数均加2,因此黄色球和蓝色球除以3的余数不可能相同,即不能出现0个黄色球和0个蓝色球的情况,所以红色球的个数不可能有40个.经验证.前两次将红色球和蓝色球换成黄色球,球数变为9、16、15;再把黄色球和蓝色球换成红色球,球数变为39、1、0.所以操作过程中,红色球至多有39个.答:红色球至多有39个.故答案为:39.8.〔10分〕宁宁、蕾蕾和凡凡三人合租一辆轿车从学校回家〔如图〕,他们约定:共同乘坐的局部所产生的车费由乘坐者平均分摊;单独乘坐的局部所产生的车费,由乘坐者单独承当.结果,三人承当的车费分别为10元、25元、85元,宁宁家距离学校12公里,凡凡家距离学校48公里.【解答】解:[〔25﹣10〕×2+〔85﹣25〕]÷〔10×3÷12〕+12=[30+60]÷2.5+12=90÷2.5+12=36+12=48〔公里〕答:凡凡家距离学校48公里.三、填空题9.〔12分〕甲乙二人相距30米面对面站好,两人玩“石头、剪子、布〞.胜者向前走3米,负者向后退2米,平局两人各向前走1米,玩了15局后,甲距出发点17米,乙距出发点2米.甲胜了7次.【解答】解:依题意可知:那么如果有胜负那么前进1米,如果平局前进2米.他们共同15次前进19米.那么15局如果都是胜负局故有15米的距离.所以是有4局平局.11局胜负局.17﹣4=13〔米〕.根据11局胜负可前进13米.如果全部是赢需要进33米.数量差是33﹣13=20〔米〕每一局差5分,共是4局差20分.故甲是7胜4负.7×3﹣4×2=13〔米〕.故答案为:710.〔12分〕在羊羊运动会上,喜羊羊、沸羊羊、懒羊羊、暖羊羊和灰太郎进行了400米赛跑,赛完结束后,五人谈论比赛结果.第一名说:“喜羊羊跑得比懒羊羊快.〞第二名说:“我比暖羊羊跑得快.〞第三名说:“我比灰太郎跑得快.〞第四名说:“喜羊羊比沸羊羊跑得快.〞第五名说:“暖羊羊比灰太郎跑得快.〞如果五人中只有灰太郎说了假话,那么喜羊羊得了第二名.【解答】解:假设第三名为灰太狼,那么其他人说的都是真话.即暖羊羊比灰太狼快,第二名比暖羊羊快,而灰太狼就是第三名,此时暖羊羊介于第二名和第三名之间,矛盾.同理假设灰太狼是第五名,根据表达可知,也是矛盾的.所以,所以灰太狼一定是第四名.其他人说的都是正确的,接下来就有:喜羊羊比懒羊羊快、第二名比暖羊羊快、第三名比灰太狼快、沸羊羊比喜羊羊快、暖羊羊比太狼快.所以,沸羊羊是第一名、喜羊羊是第二名、暖羊羊是第三名、懒羊羊是第五名.、11.〔12分〕假设三位数〔其中a、b、c都是非零数字〕满足>>,那么称该三位数为“龙腾数〞,那么共有120个“龙腾数〞.【解答】解:根据分析,>>,那么a≥b≥c,分三种情况:①a=b>c时,有=36个;②a>b=c时,由>可知,c>a与题意矛盾,故不成立;③a>b>c时,a、b、c可以取1~9之间不相等的数,有=84个.综上,共有:36+84=120个“龙腾数〞.故答案是:120.12.〔12分〕在边缘的每个空白格内都填入一个箭头,方格中的数字表示指向该数字的箭头个数,箭头的方向可以是上、下、左、右、左上、左下、右上、右下,但每个箭头必须指向一个数字,例如,图2的填法是图1的答案,请按照此规律在图3中填入箭头,那么指向右下方向的箭头共有2个.【解答】解:根据题干分析可得:图3中填入箭头如下:那么指向右下方向的箭头共有2个.故答案为:2.。
迎春杯历年真题必会20题解析(四年级)

迎春杯历年真题必会20题(四年级)1.(2011年迎春杯四年级初赛)定义@A B B B A A =⨯-⨯,则1@2+3@4+5@6+···+99@100=.【考点】定义新运算【难度】☆☆【答案】(1)5050(2)4【分析】A@B=A+B ,比如211122+=⨯⨯-.故而原式为1到100之和,为5050.2.某校学生参加一个数学竞赛,男生平均分是96分,女生平均分是90分,全体同学的平均分是92分,女生比男生多20人,求男女各多少人?【考点】平均数,移多补少【难度】☆☆【答案】男生20人,女生40人【分析】整体思路:男生拿出=女生得到。
男生每人拿出:96-92=4,女生每人得到:92-90=2,因此女生人数应该是男生人数4÷2=2倍。
根据差倍关系得到男生为20人,女生为20×2=40人。
3.(2006年迎春杯四年级初赛)从1999这个数里减去253以后,再加上244;然后再减去253,再加上244;……这样一直算下去,当减去第_________次时,得数恰好第一次等于0.【考点】计算,周期【难度】☆【答案】195【分析】()()19992532532441195-÷-+=(次)4.(2016年迎春杯四年级初赛)下边的乘法算式中只有四个位置上的数已知,它们分别是2、0、1、6.请你在空白位置填上数字,使得算是能够成立。
那么乘积为______.【考点】数字谜【难度】☆☆【答案】2205【分析】突破口:第二个乘积的末位数字应该是9,由末位分析法得知3×3=9,即63×3=189.再经试验可得第二个乘数末位为5可使得第一个乘积十位为1,即63×5=315.所以最终算式为63×35=2205在下面的方框中填入适当的数字,使得乘法竖式成立,那么两个乘数之和为_____.【考点】数字谜【难度】☆☆【答案】96【分析】突破口:进位分析可得第二个乘积的十位为9,□5×□=19□,可能为95×2=190(不能使十位往百位进位,舍掉)或者65×3=195,进而由位数分析法得知第二个乘数个位必为1,即65×31=2015.答案65+31=966.(2014年迎春杯四年级初赛)下面的除法算式给出了部分数字,请将其补充完整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【作业1】森林里三群猴子共105只,其中第一群猴子的数量是第二群的3倍,而第三群猴子的数量又比第二群的2倍少3只.第三群猴子有_______只.
【答案】33
【解析】设第二群为1份,三群共6份少3等于105只,1份为108÷6=18只,2×18-3=33只.
【作业2】小明同学参加数学抢答比赛,按规定每答对一题得5分,答错一题倒扣1分.小明抢答10道题后,共得到26分.小明答对了_______道题.
【答案】6
【解析】假设10题都对是50分,50-26=24,24÷6=4道,10-4=6道,答对了6道
【作业3】星期天小明、小强和小佳一起去采摘.小强说:“我摘的苹果最多了,比你们俩摘的苹果总和还多1个.”小明回答说:“是啊.你比我多摘了10个,但我比小佳多摘了10个.”
那么他们三人共摘了________个苹果.(2008年初试)
【答案】57
【解析】小强摘的苹果=佳佳摘的苹果+小明摘的苹果+1,小强摘的苹果-小明摘的苹果=10,
小明摘的苹果-小佳摘的苹果=10
得出小明摘了:20-1=19(个),
小强摘了:10+19=29(个),
小佳摘了:19-10=9(个),
19+29+9=57(个),
故答案为:57.
【作业4】老师买了同样数目的田格本、横线本和练习本.他发给每个同学1个田格本、3个横线本和5个练习本.这时横线本还剩24个,那么田格本和练习本共剩了_______个.(2009年初试)
【答案】48
【解析】田格本+练习本刚好是横线本的两倍,发给同学们的田格本+练习本是横线本的两倍,因此剩余的也应该是2倍关系,所以剩了24×2=48本.
【作业5】小红去买水果.如果买5千克苹果则少4元;如果买6千克梨则少3元.已知苹果比梨每500克贵5角5分,那么小红买水果共带了_________元.(2010年初试)
【答案】24
【解析】盈亏问题,当物品不同时的盈亏可以转化为同一种物品分析
都按买的是苹果分析,那么买6千克苹果,则少0.55×2×6+3=9.6元,每千克苹果为9.6-4=5.6元,小红共带了
5.6×5-4=24元;
课后作业。