自动上下料机械手的主要零部件设计及三维造型
数控机床上下料机械手的机械结构设计

161中国设备工程Engineer ing hina C P l ant中国设备工程 2017.08 (上)1 数控机床上下料机械手发展意义首先,上下料机械手是数控机床科学化、模块化和可重构化项目发展的前提条件,能够对数据进行有效的分析和进行综合处理。
其次,数控机床上下料机械手是一种现代化的操作手段,它主要是PC 机开放型控制器的运维方向,可以有效的提高机床整体的操作效率和水平。
同时,它具有较强的集成性,能够加强系统安全性能的管理和控制,从而达到最优效果。
另外,可以对数据进行整合,实现机床的网络化和标准化控制。
最后,数控机床上下料机械手设备中的传感器在整体设备中发挥着重要的作用,使得相对应的速度参数得到了不断的优化,而在焊接和装配方向能够实现集中处理和综合管理控制,更加提升了设备的仿真效果和动态运行的优化。
2 机械手的主要优势和运用数控机床上下料机械手具有很多优势,在机械运行中起到关键的作用。
机械手在实施过程中,具有较快的速度,工作效率高,具有很强的负载能力。
同时,在进行移位时,也具有很好的精准性,在很大程度上减低了故障发生率,其优势非常明显。
当前,机械手已经得到了广泛的应用,特别在DK050机床上的成功应用,大大提高了数控机床的工作效率,也是数控机床柔性输送方面的巨大创新。
随着制造业的快速发展,机械手将会得到不断的完善和发展,并更加广泛的应用到制造业中,在最短的时间内创造出最大的工作效率,有利于企业获得更多的经济效益。
3 上下机械手手爪架构的流程设计数控机床上下料机械手存在多种类型,在实际操作中,必须根据数控机床实际作业和装置情况进行严格选择,针对不同的操作要求,选择与之相适应的机械手。
最为常见的机械手包括三种,分别为测量式手抓,搬用式手抓和加工式手抓,这几种机械手存在很多差异,也有自己相应的用途。
在机械式手抓设计和使用中必须符合每种样式具体的使用要求,遵循相应的原则进行施工,在符合它运转和作用具体要求下进行合理的设计和开发,如图1。
毕业设计---数控车床上下料机械手Solidworks三维建模及动画演示

机床上料机械手是典型的机电一体化设备,它可自动地为机床抓取工件,取代操作人员频繁取料,降低劳动强度,提高工作效率。
本课题所涉及的数控车上下料机械手自1999年投入运行,工作安全可靠,效果良好,可用做数控机床自动上料设备和生产线上的自动抓取设备。
本课题主要是应用Solidworks软件的三维设计功能,对数控车床上下料机械手的各零部件进行三维设计并实现其各部件的装配和运动仿真。
1. 1
人类在改造自然的历史进程中,随着对材料、能源和信息这三者的认识和用,不断创造各种工具(机器),满足并推动生产力的发展。
机器人技术从诞生到现在,虽然只有短短三十几年的历史,但是它却显示了旺盛的生命力。近年来,世界上对于发展机器人的呼声更是有增无减,发达国家竞相争先,发展中国家急起直追。许多先进技术国家已先后把发展机器人技术列入国家计划,进行大力研究。我国的机器人学的研究也已经起步,并把“机器人开发研究”和柔性制造技术系统和设备开发研究等与机器人技术有关的研究课题列入国家“七五”、“八五”科技发展计划以及“八六三”高科技发展计划。
总之,机械手是提高劳动生产率,改善劳动条件,减轻工人劳动强度和实现工业生产自动化的一个重要手段,国内外都很重视它的应用和发展。
1.3
1.3.1国外应用
美国制造155毫米的钢弹体洛克福特军械厂,从胚料加工开始到加工完毕直至弹体包装都自动进行,不用人手去接触,达到全自动生产。
自动上下料机械手设计

自动上下料机械手的设计摘要随着机电一体化技术和计算机技术的应用,机械手的研究和开发水平获得了迅猛的发展并涉及到人类社会生产及生活的各个领域,特别是工业机械手在生产加工中的应用。
机械手是近代自动控制领域中出现的一种新型技术装备,它能模仿人体上肢某些动作,在生产中代替人搬运物体或操持工具进行动作,已成为现代机械制造系统中的一个重要组成部分。
本次设计主要设计自动上下料的机械手,该系统采用液压驱动,传动平稳,且易于控制,控制系统采用一般PLC所具有的位移寄存器和位移指令来编程。
关键词:机械手,液压驱动,控制系统目录1绪论 (1)2 工业机械手的设计方案 (2)2.1 工业机械手的组成 (2)2.2 上下料机械手的工作原理 (3)2.3 规格参数的选择 (3)2.4 设计路线与方案 (4)2.4.1 机械手的总体设计方案 (4)2.4.2 设计步骤 (4)2.4.3 研究方法和措施 (4)3 机械手各部分的计算与分析 (5)3.1 手部计算与分析 (5)3.1.1 滑槽杠杆式手部设计的基本要求 (5)3.1.2 手部的计算和分析 (5)3.2 腕部计算与分析 (12)3.2.1 腕部设计的基本要求 (12)3.2.2 腕部回转力矩的计算 (13)3.2.3 腕部摆动油缸设计 (16)3.2.4 选键并校核强度 (18)3.3 臂部计算与分析 (18)3.3.1 臂部设计的基本要求 (18)3.3.2 手臂的设计计算 (20)3.4 机身计算与分析 (28)4 液压系统设计 (29)4.1 液压系统总体设计 (29)4.2 液压元件的选择 (29)4.2.1 液压缸 (29)4.2.2 液压泵的选取要求及其具体选取 (31)4.2.3 选择液压控制阀的原则 (33)4.2.4 选择液压辅助元件的要求 (33)5 液压元件的保养与维修 (37)5.1 液压元件的安装 (37)5.2 液压系统的一般使用与维护 (37)5.3 一般技术安全事项 (37)6 结论 (39)参考文献 (40)致谢 (41)附录 (42)1绪论工业机械手是人类创造的一种机器,更是人类创造的一项伟大奇迹,其研究、开发和设计是从二十世纪中叶开始的。
自动送料机械手设计(含CAD图纸)

1 绪论1.1 机器人目前,工业机器人的定义,世界各国尚未统一,分类也不尽相同。
最近联合国国际标准化组织采纳了美国机器人协会给工业机器人下的定义:工业机器人是一种可重复编程的多功能操作装置,可以通过改变动作程序,来完成各种工作,主要用于搬运材料,传递工件。
参考国外的定义,结合我国的习惯用语,对工业机器人作如下定义:工业机器人是一种机体独立,动作自由度较多,程序可灵活变更,能任意定位,自动化程度高的自动操作机械。
主要用于加工自动线和柔性制造系统中传递和装卸工件或夹具[1]。
工业机器人以刚性高的手臂为主体,与人相比,可以有更快的运动速度,可以搬运更重的东西,而且定位精度相当高,它可以根据外部来的信号,自动进行各种操作。
工业机器人是在计算机控制下可编程的自动机器。
采用工业机器人是提高产品质量与劳动生产率,实现生产过程自动化,改善劳动条件,减轻劳动强度的一种有效手段。
机器人的诞生和发展虽只有30多年的历史,但它已应用到国民经济,民事技术等众多的领域,具有广阔的应用和发展前景,显示出强大的生命力[2]。
根据所处的环境和作业需求,工业机器人具有至少一项或多项拟人功能,如抓取功能或移动功能,或两者兼有之,另外还可能程度不等的具有某些环境感知功能(如视觉,力觉,触觉等)。
以及语音功能及至逻辑思维,判断决策功能等。
从而使其能在要求的环境中代替人进行作业。
在工业机器人的诸多功能中,抓取和移动是最主要的功能。
这两项功能实现的技术基础是精巧的机械结构设计和良好的伺服控制驱动。
本次设计就是在这一思维下展开的。
根据设计内容和需求确定圆柱坐标型工业机器人,利用锥齿轮传动实现机器人的旋转,利用液压缸实现其移动以及对零件的抓取。
在步进电机的控制下,机器达到精确的回转运动。
工业机器人的发展,由简单到复杂,由初级到高级逐步完善,它的发展过程可分为三代:第一代工业机器人就是目前工业中大量使用的示教再现型工业机器人,它主要由手部、臂部、驱动系统和控制系统组成。
数控机床上下料机械手的机械结构设计

数控机床上下料机械手的机械结构设计【摘要】上下料机械手的设计是数控机床的关键,直接关系到机床的工作质量和工作效率。
所以,在设计数控机床上的上下料机械手时,必须要对其工作特性有一定的认识,并对其进行合理的机械结构设计,以保证其在实际加工过程中的使用。
合理地设计机械手的机械结构,不仅能提高结构的紧凑性,同时也能节省搬运设备。
因此,探索机械手的结构设计是非常有实际意义的。
本文着重介绍了数控机床上下料机械手的机械结构设计,以期对有关技术人员提供一定的借鉴.【关键词】数控机床;上下料机械手;结构设计;1.数控机床上下料机械手的机械结构设计1.1手爪设计爪子是用来抓取工件,确保抓取的力量,根据工件的抓取部位和特点,可将其分为三指和两指,一种是用来抓取圆盘和轴的,另一种是用来抓取异形或盒状的。
在手爪的结构设计中,手爪是工作操作的主要设备,其类型有多种,如搬运手爪、加工手爪、测量手爪等。
机械手的设计必须以机械操作为基础,以满足机械操作的要求,使其体积小、质量轻、结构紧凑、通用性强,便于操作和维护。
按工艺要求,手爪的冲程设计也要注意同时兼顾毛坯与成品的抓取,同时还要考虑到是否要采用弹丸机构。
根据实际情况,工件是轴类零件,本次设计中使用了空气动力夹具,在手指部位涂上了聚氨酯,在保证工件表面质量的前提下,提高了摩擦系数。
V型指头还能实现对工件的自动定心,确保了上料过程中的精度一致性。
1.2手腕设计在机械臂的结构设计中,腕部充当了操作机的终端,将爪子与机械的手臂连接起来,从而实现了机械的工作空间。
因此,在设计腕部时,必须尽量使其结构部件更轻更紧凑,并与机械结构的工作需求相结合,使腕部结构的自由度得到合理的设计。
腕部连接两只爪,分别进行下料和上料,节约换料时间。
腕部设有减震装置,并设有硬限位,可有效防止因超限引起的机械损伤。
在分析上、下料操作时,应充分考虑到数控机床的加工方式,以保证系统的设计要求为前提,提高总体的安全性,减少机械臂的控制难度,简化机械结构,在不增加自由度的情况下,根据这三个自由度,就可以完成对机床的下料。
数控机床上下料机械手设计

数控机床上下料机械手设计前言随着工业的不断发展和升级,机械制造产业已经成为了各国经济发展不可或缺的重要组成部分。
数控机床则是机械制造产业中的重要设备之一。
而数控机床上下料机械手,作为数控机床的附属设备,它的功能是在机床的输入、输出端之间自动输送加工件,减少了人力,提高了加工效率,为制造行业带来了极大的便利和效益。
本文将介绍数控机床上下料机械手的设计过程。
设计思路首先,在设计机械手之前,我们需要了解机械手的结构和工作原理。
1.机械手结构数控机床上下料机械手的结构一般分为机械手臂、机械手控制系统、夹手器、传感器和运动轴等主要部分。
其中,机械手臂是机械手的核心部件,它的结构一般采用铝合金或者碳纤维材料制作,具有较高的强度和刚度,能够承受较大的载荷;机械手控制系统则是机械手的智能核心,能够根据预设的程序进行自动化控制;夹手器则是机械手的末端执行器,用于夹持加工件;传感器则可以对加工件的位置、形状等进行检测和反馈;而运动轴则是机械手的实际运动部分,能够实现机械手的动作。
2.机械手工作原理数控机床上下料机械手的工作原理是通过控制机械手臂的运动轴和夹手器的打开、关闭,来实现机械手夹取、放置加工件的过程。
在机械手的控制系统中,我们可以预设机械手的运动轨迹和夹手器的运动规律,当接收到工艺指令后,机械手会按照预设的程序自动地执行加工件的夹取和放置操作。
在了解了机械手的结构和工作原理之后,我们可以开始设计机械手的具体实现方案。
设计方案1.机械手臂结构设计机械手臂的结构设计是机械手整体设计中的核心环节之一。
在设计机械手臂时,我们需要考虑以下几个方面:•材料的选择。
由于机械手臂需要具备较强的承载能力和刚度,因此在材料的选择上,我们可以考虑采用铝合金或者碳纤维等高强度材料,来满足机械手的结构要求。
•结构的设计。
机械手臂的结构设计需要采用工程力学理论,考虑机械手的承重和刚度等因素。
在结构设计中,需要确定机械手臂的长度、形状和悬挂方式等关键参数,保证机械手的稳定运行和准确夹取加工件的能力。
数控车床自动上下料机械手结构设计

数控车床自动上下料机械手结构设计摘要:本课题针对于数控车床而设计了结构圆柱坐标型的自动上下料机械手,通过对机械手的传动机构,驱动系统、液压系统以及控制系统进行了理论分析和计算。
同时对机械手整体结构进行了详细的设计,主要包括机械手的机身机座,机械手手臂,机械手手爪等部分。
并分析了数控车床自动上下料机械手的操作流程,主要采用液压缸、步进电机等元件实现机械手的运动部分。
关键词:数控车床;机械手;传动机构:液压系统;驱动系统1、数控车床自动上下料机械手的设计方案1.1机械手结构的设计工业机器人的结构形式主要包括直角坐标型机器人、圆柱坐标型机器人、球坐标型机器人、关节型坐标机器人四种。
其对应的特点如表1。
表1工业机器人结构类型球坐标型机器人两个回抬运动以及一个直线运动结构简单.造价成本较低、精度较差搬运机器人关节型机器人三个回转运动动作灵活、结构疑凌焊接机器人、喷漆机器人、搬运1.2数控车床自动上下料机械手手部设计1.2.1机械手手部的设计要求本课题机械手手爪开闭范围需够大。
在机械手工作时,其中一个手爪张开夹紧角度的最大变化量为开闭范围。
手爪开闭范围的要求与工件的形状以及尺寸等因素都有关联。
通常情况下,机械手手爪的开闭范围越大越好。
1.2.2手爪结构的采用方案结合具体的工作要求,综上所述,本课题采用的是齿轮齿条式。
通过活塞往返带动齿条完成手爪张开或夹紧的动作。
1.3数控车床自动上下料机械手腕部设计机械手手腕主要功能是可以使被夹持工件的方位产生变化,此时机械手手腕需做回转运动,即只存在一个回转自由度。
结合本课题,本设计手腕不加自由度以便于机械手结构简单,操作简单。
1.4数控车床自动上下料机械手手臂设计考虑到操纵器在工作中的稳定性和安全性,将两个平行的导向杆添加到该对象的水平框架中,使其与运动活塞杆截面形成等腰三角形结构,以保证其结构更加稳定牢靠。
垂直手臂添加四个导杆其截面为正四边形,每个导杆都选用空心结构以保证机械手整体重量。
数控机床上下料机械手的机械结构设计

机械结构设计原则
数控机床上下料机械手的机械结构设计需要遵循以下原则:
1、机械强度:机械手在搬运和装载工件时需要承受一定的重量和力矩,因 此其结构件应具有足够的强度和刚度,以避免产生形变和损坏。
2、耐久性:机械手需要长时间、高频率地工作,因此其结构件应具有较好 的耐久性,以延长机械手的使用寿命。
此外,还需考虑机械手的夹持机构和电气控制等因素,以确保机械手的安全 性和稳定性。
2、自动化生产线设计
自动化生产线设计是实现数控车床自动上下料的重要环节。通过将数控车床 与机械手连接起来,能够使整个生产过程更加协调和高效。在设计中,我们需要 根据生产节拍和生产工艺要求,合理规划机械手的运动路径和抓取速度,以确保 生产线的顺畅运行。此外,还需采用先进的数控技术,实现生产线的自动化和智 能化,提高生产效率和产品质量。
1、手臂:手臂是机械手的主要承载部件,通常采用轻质高强的材料制造, 以减小运动阻力。同时,手臂应具有足够的刚度和精度,以确保工件搬运和装载 的稳定性。
2、手腕:手腕是连接手臂和手部的关键部件,它不仅需要传递动力和运动 信息,还需确保手部姿态的精确控制。
3、手部:手部是机械手直接与工件接触的部分,它的结构设计需要根据所 搬运工件的形状和尺寸进行定制化设计。
4、驱动系统:驱动系统是机械手的动力来源,它可采用电动、气动或液压 等多种形式,根据实际需求进行选择。
5、控制系统:控制系统是机械手的“大脑”,它负责接收指令并控制机械 手的运动轨迹和姿态,以确保工件的精确搬运和装载。
机性能和降低成本,可采取以下优化 措施:
未来研究方向和意义:
1、进一步优化设计:通过对自动上下料机械手进一步研究和优化设计,提 高其性能表现、稳定性和使用寿命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.摘要本次设计的课题是自动上下料机械手的主要零部件设计及三维造型,确定了机械手的座标型式和自由度,确定了机械手的技术参数。
机械手能代替人工操作,起到减轻工人劳动强度,节约加工时间,提高生产效率,降低生产成本的特点。
在实用基础上,对自动上下料机械手直臂与夹持部件进行三维设计,其中分为三个部分:手爪、手腕、直臂。
整体机械手为直角坐标型,驱动均为电机驱动,结构简单可靠,精度高。
设计了手爪为平移型夹持式手爪,传动结构为滑动丝杆;手腕为回转型,转动角度为0-180°,传动结构为蜗轮蜗杆;设计了机械手的手腕结构,计算出了手腕转动时所需的驱动力矩;画出机械手的运动简图;对工作机构和传动系统进行设计计算,包括主要部件的设计计算、强度校核和运动分析;设计绘制起升装置的总图和主要零件工作图;利用三维CAD软件对主要零件进行实体设计和造型。
关键词:直臂与夹持部件;机械手;CAD二维设计;Pro/e三维设计AbstractThe topic of this design is the main component of the automatic up-down material manipulator design and 3 d modelling, determine the coordinates of the manipulator type and degree of freedom, determine the technical parameters of the manipulator.Robots can replace manual operation, reduce labor intensity, save processing time, improve the production efficiency, reduce the production cost. On the basis of practical, automatic manipulator arm straight up and down and clamping parts for 3 d design, which is divided into three parts: hand, wrist, arm straight. Integral type manipulator for rectangular coordinates, drive for motor drive, structure simple, reliable and high precision. Design hand claw clamping type gripper for translation, the transmission structure for sliding screw; Wrist for transformation, rotation Angle of 0-180 °, for the worm gear and worm drive structure; Manipulator wrist structure was designed, calculated the wrist when the driving moment; Draw the manipulator kinematic sketch; The working mechanism and transmission system design and calculation, including design calculation, intensity and the movement of the main parts of analysis; Design drawing general layout and main parts of lifting device working drawing; Using three-dimensional CAD software for the main parts for physical design and modelling.Key word: Straight arm and clamping parts; Manipulator;2 d CAD design;Pro/e3 d design目录摘要 (I)Abstract (II)Abstract (I)1绪论 (1)1.1前言和意义 (1)1.2 工业机械手的简史 (1)1.3 国内外研究现状和趋势 (3)2机械手直臂部分的总体设计 (5)2.1 执行机构的选择 (5)2.2 驱动机构的选择 (6)2.3传动结构的选择 (6)2.4 机械手的基本形式选择 (8)2.5 机械手直臂部分的主要部件及运动 (8)2.6 机械手的技术参数 (9)3机械手手爪的三维设计 (11)3.1 手部设计基本要求 (11)3.2 典型的手部结构 (11)3.3 机械手手爪的设计计算 (11)3.3.1选择手爪的类型和夹紧装置 (11)3.3.2 手爪夹持范围计算 (12)3.3.3 滑动丝杠设计 (13)3.3.4 直齿轮设计 (15)3.3.5电机选型 (16)3.4 机械手手爪的三维出图及其主要零部件出图 (17)4机械手手腕部分的三维设计 (20)4.1腕部设计的基本要求 (20)4.2 腕部的结构以及选择 (20)4.2.1 典型的腕部结构 (20)4.2.2 腕部结构和驱动机构的选择 (20)4.3 腕部的设计计算 (21)4.3.1 蜗轮轴的设计计算 (21)4.3.2 蜗轮齿轮设计 (22)4.3.3 步进电机选型 (23)4.4 手腕部分出图及主要零部件出图 (24)5 直臂部分的三维设计 (31)5.1 手臂的结构的选择及其驱动机构 (31)5.2 滚珠丝杠设计 (31)5.3 锥齿轮设计 (33)5.4 电机选型 (35)5.5 机械手直臂部分三维出图及主要零部件出图 (36)6. 总结 (40)7.致谢 (42)参考文献 (43)1绪论1.1前言和意义作为本次毕业设计研究的课题,此项研究是检验学生在校学习成果的重要措施,也是提高教学质量的重要环节。
是对大学几年所学的专业知识的一次整体的回顾,它将所学的机械设计、机械原理、机械加工工艺、机械制造装配设计等有关的机械设计制造及其自动化专业主要课程紧密的联系在一起;真正利用所学的专业知识来解决实际的生产问题,很好的将理论设计与实际应用结合起来,考虑多方面的问题,诸如成本,可行性,设备的安全性,使用寿命,工作效率等的;在研究的过程当中,通过不断的遇到问题并设法解决之,可以培养我们的个人独立思考的能力和创新的意识;提高个人分析问题、解决实际问题的能力;此外,该通过对机械设计制造及其自动化专业大学本科四年的所学知识进行整合,完成一个特定功能、特殊要求的上下料机械手的设计,能够比较好地体现机械设计制造及其自动化专业毕业生的理论研究水平,实践动手能力以及专业精神和态度,具有较强的针对性和明确的实施目标,能够实现理论和实践的有机结合。
本次设计也要培养自己的自学与创新能力。
因此本次设计综合性和实践性强、涉及知识面广。
所以在设计中既要注意基本概念、基本理论,又要注意生产实践的需要,只有将各种理论与生产实践相结合,才能很好的完成本次设计。
这对我们将来所从事的行业有莫大的帮助。
大学生在毕业前都必须完成毕业论文的撰写任务。
大学生撰写毕业论文的目的,主要有两个方面;一是对学生的知识相能力进行一次全面考核。
二是训练学生对进行科学研究的基本功,培养学生综合运用所学知识独立地分析问题和解决问题的能力,为以后撰写专业学术论文打下良好的基础。
自动上下料机械手的主要零部件设计及三维造型是在学完了机械制图、机械制造技术基础、机械设计、机械工程材料等进行设计之后的下一个教学环节。
本次设计也要培养自己的自学与创新能力。
因此本次设计综合性和实践性强、涉及知识面广。
所以在设计中既要注意基本概念、基本理论,又要注意生产实践的需要,只有将各种理论与生产实践相结合,才能很好的完成本次设计。
1.2 工业机械手的简史现代工业机械手起源于20世纪50年代初,具有多自由度动作功能的柔性自动化产品。
当时数字计算机已经出现,电子技术也有了长足的发展,在产业领域出现了受计算机控制的可编程数控机床,与机器人技术相关的控制技术和零部件加工也已有了扎实的基础。
另外,人类需要开发自动机械,替代人去从事一些恶劣环境下的作业。
正是在这一背景下,机器人技术的研究与应用得到了快速发展。
以下列举了现代机器人工业史上的几个标志性事件。
1954年:美国人戴沃尔(G.C.Devol)制造出世界上第一台可编程的机械手,并注册了专利。
这种机械手能够按照不同的程序从事不同的工作,因此具有通用性和灵活性。
1959年:戴沃尔(G.C.Devol)与美国发明家英格伯格(Ingerborg)联手制造出第一台工业机器人。
随后,成立了世界上第一个机器人制造工厂——Unimaton公司。
由于英格伯格对工业机器人富有成效的研究和宣传,他被成为“工业机器人之父”。
1962年:美国AMF公司生产出万能搬运(Versatran)机器人,与Unimaton公司生产的万能伙伴(Unimate)机器人一样成为真正商业化的工业机器人,并出口到世界各国,掀起了全世界对机器人和机器人研究的热潮。
1967年:日本川崎重工公司和丰田公司分别从美国购进了工业机器人Unimate 和Verstran的生产许可证,日本从此开始了对机器人的研究和制造。
20世纪60年代后期,喷漆弧焊机器人问世并逐步开始应用与工业生产。
1968年:美国斯坦福研究所公布他们研发成功的机器人Shakey。
它带有视觉传感器,能根据人的指令发现并抓取积木,不过控制它的计算机有一个房间那么大。
Shakey可以成为世界上第一台智能机器人,由此拉开了第三代机器人研发的序幕。
1969年:日本早稻田大学加藤一郎实验室研发出第一台以双脚走路的机器人。
加藤一郎长期致力于研发仿人机器人,被誉为“仿人机器人之父”。
日本专家一向以研发仿人机器人和娱乐机器人的技术见长,后来更进一步,催生出本田公司的ASIMO机器人和索尼公司的QRIO机器人。
1973年:世界上机器人和小型计算机第一次携手合作,单身了美国Cincinnati Milacron公司的机器人T3。
1979年:美国Unimaton公司推出通用工业机器人PUMA,这标志着工业机器人技术已经完全成熟。
PUMA至今仍然工作在生产第一线,许多机器人技术的研究都一概机器人为模型和对象。