2016学年广西贵港市中考数学试卷

合集下载

2016年广西贵港市中考数学试卷含答案解析(word版)

2016年广西贵港市中考数学试卷含答案解析(word版)

2016年广西贵港市中考数学试卷一、(共12小题,每小题3分,满分36分)每小题都给出标号为(A)、(B)、(C)、(D)的四个选项,其中只有一个是正确的.请考生用2B铅笔在答题卡上将选定的答案标号涂黑. 1.﹣2的绝对值是()A.2 B.﹣2 C.0 D.12.下列运算正确的是()A.3a+2b=5ab B.3a•2b=6ab C.(a3)2=a5 D.(ab2)3=ab63.用科学记数法表示的数是1.69×105,则原来的数是()A.169 B.1690 C.16900 D.1690004.在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为()A.35°B.40°C.45°D.50°5.式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥16.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)7.从﹣,0,,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是()A.B.C.D.8.下列命题中错误的是()A.两组对角分别相等的四边形是平行四边形B.矩形的对角线相等C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分且相等的四边形是正方形9.若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2﹣ab+b2=18,则+的值是()A.3 B.﹣3 C.5 D.﹣510.如图,点A在以BC为直径的⊙O内,且AB=AC,以点A为圆心,AC长为半径作弧,得到扇形ABC,剪下扇形ABC围成一个圆锥(AB和AC重合),若∠BAC=120°,BC=2,则这个圆锥底面圆的半径是()A.B.C.D.11.如图,抛物线y=﹣x2+x+与x轴交于A,B两点,与y轴交于点C.若点P是线段AC上方的抛物线上一动点,当△ACP的面积取得最大值时,点P的坐标是()A.(4,3)B.(5,)C.(4,)D.(5,3)12.如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①∠ACD=30°;②S▱ABCD=AC•BC;③OE:AC=:6;④S△OCF=2S△OEF成立的个数有()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,满分18分)13.8的立方根是.14.分解因式:a2b﹣b=.15.如图,已知直线a∥b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则∠2的度数是.16.如图,AB是半圆O的直径,C是半圆O上一点,弦AD平分∠BAC,交BC于点E,若AB=6,AD=5,则DE的长为.17.如图,在Rt△ABC中,∠C=90°,∠BAC=60°,将△ABC绕点A逆时针旋转60°后得到△ADE,若AC=1,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是(结果保留π).18.已知a1=,a2=,a3=,…,a n+1=(n为正整数,且t≠0,1),则a2016=(用含有t的代数式表示).三、解答题(本大题共8小题,满分66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(1)计算:()﹣1﹣﹣(π﹣2016)0+9tan30°;(2)解分式方程: +1=.20.如图,在▱ABCD中,AC为对角线,AC=BC=5,AB=6,AE是△ABC的中线.(1)用无刻度的直尺画出△ABC的高CH(保留画图痕迹);(2)求△ACE的面积.21.如图,已知一次函数y=x+b的图象与反比例函数y=(x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.(1)当△ABC的周长最小时,求点C的坐标;(2)当x+b<时,请直接写出x的取值范围.22.在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是;(2)扇形统计图中,“了解”所对应扇形的圆心角的度数为,m的值为;(3)若该校共有学生1500名,请根据上述调查结果估算该校学生对足球的了解程度为“基本了解”的人数.23.为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.(1)求2014至2016年该市投入科研经费的年平均增长率;(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a万元,请求出a的取值范围.24.如图,在△ABC中,AB=AC,O为BC的中点,AC与半圆O相切于点D.(1)求证:AB是半圆O所在圆的切线;(2)若cos∠ABC=,AB=12,求半圆O所在圆的半径.25.如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.26.如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.①求证:△AGE≌△AFE;②若BE=2,DF=3,求AH的长.(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND 之间有什么数量关系?并说明理由.2016年广西贵港市中考数学试卷参考答案与试题解析一、(共12小题,每小题3分,满分36分)每小题都给出标号为(A)、(B)、(C)、(D)的四个选项,其中只有一个是正确的.请考生用2B铅笔在答题卡上将选定的答案标号涂黑. 1.﹣2的绝对值是()A.2 B.﹣2 C.0 D.1【考点】绝对值.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣2的绝对值是2.故选:A.2.下列运算正确的是()A.3a+2b=5ab B.3a•2b=6ab C.(a3)2=a5 D.(ab2)3=ab6【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方.【分析】分别利用单项式乘以单项式以及合并同类项法则以及积的乘方运算法则、幂的乘方运算法则分别计算得出答案.【解答】解:A、3a+2b无法计算,故此选项错误;B、3a•2b=6ab,正确;C、(a3)2=a6,故此选项错误;D、(ab2)3=a3b6,故此选项错误;故选:B.3.用科学记数法表示的数是1.69×105,则原来的数是()A.169 B.1690 C.16900 D.169000【考点】科学记数法—原数.【分析】根据科学记数法的表示方法,n是几小数点向右移动几位,可得答案.【解答】解:1.69×105,则原来的数是169000,故选:D.4.在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为()A.35°B.40°C.45°D.50°【考点】三角形内角和定理.【分析】在△ABC中,根据三角形内角和是180度来求∠C的度数.【解答】解:∵三角形的内角和是180°,又∠A=95°,∠B=40°∴∠C=180°﹣∠A﹣∠B=180°﹣95°﹣40°=45°,故选C.5.式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥1【考点】二次根式有意义的条件.【分析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得x的取值范围.【解答】解:依题意得:x﹣1>0,解得x>1.故选:C.6.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【考点】坐标与图形变化-平移.【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可.【解答】解:∵将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,∴点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,∴A′的坐标为(﹣1,1).故选:A.7.从﹣,0,,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是()A.B.C.D.【考点】概率公式;无理数.【分析】先求出无理数的个数,再根据概率公式即可得出结论.【解答】解:∵﹣,0,,π,3.5这五个数中,无理数有2个,∴随机抽取一个,则抽到无理数的概率是,故选:B.8.下列命题中错误的是()A.两组对角分别相等的四边形是平行四边形B.矩形的对角线相等C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分且相等的四边形是正方形【考点】命题与定理.【分析】直接利用平行四边形以及矩形、菱形、正方形的判定方法分别分析得出答案.【解答】解:A、两组对角分别相等的四边形是平行四边形,正确,不合题意;B、矩形的对角线相等,正确,不合题意;C、对角线互相垂直的平行四边形是菱形,故此选项错误,符合题意;D、对角线互相垂直平分且相等的四边形是正方形,正确,不合题意.故选:C.9.若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2﹣ab+b2=18,则+的值是()A.3 B.﹣3 C.5 D.﹣5【考点】根与系数的关系.【分析】根据方程的解析式结合根与系数的关系找出a+b=3、ab=p,利用完全平方公式将a2﹣ab+b2=18变形成(a+b)2﹣3ab=18,代入数据即可得出关于p的一元一次方程,解方程即可得出p的值,经验证p=﹣3符合题意,再将+变形成﹣2,代入数据即可得出结论.【解答】解:∵a、b为方程x2﹣3x+p=0(p≠0)的两个不相等的实数根,∴a+b=3,ab=p,∵a2﹣ab+b2=(a+b)2﹣3ab=32﹣3p=18,∴p=﹣3.当p=﹣3时,△=(﹣3)2﹣4p=9+12=21>0,∴p=﹣3符合题意.+===﹣2=﹣2=﹣5.故选D.10.如图,点A在以BC为直径的⊙O内,且AB=AC,以点A为圆心,AC长为半径作弧,得到扇形ABC,剪下扇形ABC围成一个圆锥(AB和AC重合),若∠BAC=120°,BC=2,则这个圆锥底面圆的半径是()A.B.C.D.【考点】圆锥的计算.【分析】根据扇形的圆心角的度数和直径BC的长确定扇形的半径,然后确定扇形的弧长,根据圆锥的底面周长等于扇形的弧长列式求解即可.【解答】解:如图,连接AO,∠BAC=120°,∵BC=2,∠OAC=60°,∴OC=,∴AC=2,设圆锥的底面半径为r,则2πr==π,解得:r=,故选B.11.如图,抛物线y=﹣x2+x+与x轴交于A,B两点,与y轴交于点C.若点P是线段AC上方的抛物线上一动点,当△ACP的面积取得最大值时,点P的坐标是()A.(4,3)B.(5,)C.(4,)D.(5,3)【考点】抛物线与x轴的交点;二次函数的最值.【分析】连接PC、PO、PA,设点P坐标(m,﹣),根据S△PAC=S△PCO+S△POA ﹣S△AOC构建二次函数,利用函数性质即可解决问题.【解答】解:连接PC、PO、PA,设点P坐标(m,﹣)令x=0,则y=,点C坐标(0,),令y=0则﹣x2+x+=0,解得x=﹣2或10,∴点A坐标(10,0),点B坐标(﹣2,0),∴S△PAC=S△PCO+S△POA﹣S△AOC=××m+×10×(﹣)﹣××10=﹣(m﹣5)2+,∴x=5时,△PAC面积最大值为,此时点P坐标(5,).故点P坐标为(5,).12.如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①∠ACD=30°;②S▱ABCD=AC•BC;③OE:AC=:6;④S△OCF=2S△OEF成立的个数有()A.1个B.2个C.3个D.4个【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据角平分线的定义得到∠DCE=∠BCE=60°推出△CBE是等边三角形,证得∠ACB=90°,求出∠ACD=∠CAB=30°,故①正确;由AC⊥BC,得到S▱ABCD=AC•BC,故②正确,及直角三角形得到AC=BC,根据三角形的中位线的性质得到OE=BC,于是得到OE:AC=:6;故③正确;根据相似三角形的性质得到=,求得S△OCF=2S△OEF;故④正确.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵CE平分∠BCD交AB于点E,∴∠DCE=∠BCE=60°∴△CBE是等边三角形,∴BE=BC=CE,∵AB=2BC,∴AE=BC=CE,∴∠ACB=90°,∴∠ACD=∠CAB=30°,故①正确;∵AC⊥BC,∴S▱ABCD=AC•BC,故②正确,在Rt△ACB中,∠ACB=90°,∠CAB=30°,∴AC=BC,∵AO=OC,AE=BE,∴OE=BC,∴OE:AC=,∴OE:AC=:6;故③正确;∵AO=OC,AE=BE,∴OE∥BC,∴△OEF∽△BCF,∴=,∴S△OCF:S△OEF==,∴S△OCF=2S△OEF;故④正确;故选D.二、填空题(共6小题,每小题3分,满分18分)13.8的立方根是2.【考点】立方根.【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.14.分解因式:a2b﹣b=b(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式b,进而利用平方差公式分解因式得出答案.【解答】解:a2b﹣b=b(a2﹣1)=b(a+1)(a﹣1).故答案为:b(a+1)(a﹣1).15.如图,已知直线a∥b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则∠2的度数是54°.【考点】平行线的性质.【分析】过点C作CF∥a,由平行线的性质求出∠ACF的度数,再由余角的定义求出∠BCF 的度数,进而可得出结论.【解答】解:过点C作CF∥a,∵∠1=36°,∴∠1=∠ACF=36°.∵∠C=90°,∴∠BCF=90°﹣36°=54°.∵直线a∥b,∴CF∥b,∴∠2=∠BCF=54°.故答案为:54°.16.如图,AB是半圆O的直径,C是半圆O上一点,弦AD平分∠BAC,交BC于点E,若AB=6,AD=5,则DE的长为.【考点】相似三角形的判定与性质;勾股定理;圆周角定理.【分析】连接BD,由勾股定理先求出BD的长,再判定△ABD∽△BED,根据对应边成比例列出比例式,可求得DE的长.【解答】解:如图,连接BD,∵AB为⊙O的直径,AB=6,AD=5,∴∠ADB=90°,∴BD==,∵弦AD平分∠BAC,∴,∴∠DBE=∠DAB,在△ABD和△BED中,,∴△ABD∽△BED,∴,即BD2=ED×AD,∴()2=ED×5,解得DE=.故答案为:.17.如图,在Rt△ABC中,∠C=90°,∠BAC=60°,将△ABC绕点A逆时针旋转60°后得到△ADE,若AC=1,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是(结果保留π).【考点】扇形面积的计算;旋转的性质.【分析】根据阴影部分的面积是:S扇形DAB +S△ABC﹣S△ADE﹣S扇形ACE,分别求得:扇形BAD的面积、S△ABC以及扇形CAE的面积,即可求解.【解答】解:∵∠C=90°,∠BAC=60°,AC=1,∴AB=2,扇形BAD的面积是:=,在直角△ABC中,BC=AB•sin60°=2×=,AC=1,∴S△ABC=S△ADE=AC•BC=×1×=.扇形CAE的面积是:=,则阴影部分的面积是:S扇形DAB +S△ABC﹣S△ADE﹣S扇形ACE=﹣=.故答案为:.18.已知a1=,a2=,a3=,…,a n+1=(n为正整数,且t≠0,1),则a2016=(用含有t的代数式表示).【考点】规律型:数字的变化类.【分析】把a1代入确定出a2,把a2代入确定出a3,依此类推,得到一般性规律,即可确定出a2016的值.【解答】解:根据题意得:a1=,a2=,a3=,…,2016÷3=672,∴a2016的值为,故答案为三、解答题(本大题共8小题,满分66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(1)计算:()﹣1﹣﹣(π﹣2016)0+9tan30°;(2)解分式方程: +1=.【考点】解分式方程;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)原式利用零指数幂、负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2﹣3﹣1+9×=2﹣3﹣1+3=1;(2)去分母得:x﹣3+x﹣2=3,解得:x=4,经检验x=4是分式方程的解.20.如图,在▱ABCD中,AC为对角线,AC=BC=5,AB=6,AE是△ABC的中线.(1)用无刻度的直尺画出△ABC的高CH(保留画图痕迹);(2)求△ACE的面积.【考点】平行四边形的性质;作图—复杂作图.【分析】(1)连接BD,BD与AE交于点F,连接CF并延长到AB,与AB交于点H,则CH为△ABC的高;(2)首先由三线合一,求得AH的长,再由勾股定理求得CH的长,继而求得△ABC的面积,又由AE是△ABC的中线,求得△ACE的面积.【解答】解:(1)如图,连接BD,BD与AE交于点F,连接CF并延长到AB,则它与AB 的交点即为H.理由如下:∵BD、AC是▱ABCD的对角线,∴点O是AC的中点,∵AE、BO是等腰△ABC两腰上的中线,∴AE=BO,AO=BE,∵AO=BE,∴△ABO≌△BAE(SSS),∴∠ABO=∠BAE,△ABF中,∵∠FAB=∠FBA,∴FA=FB,∵∠BAC=∠ABC,∴∠EAC=∠OBC,由可得△AFC≌BFC(SAS)∴∠ACF=∠BCF,即CH是等腰△ABC顶角平分线,所以CH是△ABC的高;(2)∵AC=BC=5,AB=6,CH⊥AB,∴AH=AB=3,∴CH==4,∴S△ABC=AB•CH=×6×4=12,∵AE是△ABC的中线,∴S△ACE=S△ABC=6.21.如图,已知一次函数y=x+b的图象与反比例函数y=(x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.(1)当△ABC的周长最小时,求点C的坐标;(2)当x+b<时,请直接写出x的取值范围.【考点】反比例函数与一次函数的交点问题;待定系数法求一次函数解析式;反比例函数图象上点的坐标特征;轴对称-最短路线问题.【分析】(1)作点A关于y轴的对称点A′,连接A′B交y轴于点C,此时点C即是所求.由点A为一次函数与反比例函数的交点,利用待定系数法和反比例函数图象点的坐标特征即可求出一次函数与反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点A、B的坐标,再根据点A′与点A关于y轴对称,求出点A′的坐标,设出直线A′B的解析式为y=mx+n,结合点的坐标利用待定系数法即可求出直线A′B的解析式,令直线A′B解析式中x为0,求出y的值,即可得出结论;(2)根据两函数图象的上下关系结合点A、B的坐标,即可得出不等式的解集.【解答】解:(1)作点A关于y轴的对称点A′,连接A′B交y轴于点C,此时点C即是所求,如图所示.∵反比例函数y=(x<0)的图象过点A(﹣1,2),∴k=﹣1×2=﹣2,∴反比例函数解析式为y=﹣(x<0);∵一次函数y=x+b的图象过点A(﹣1,2),∴2=﹣+b,解得:b=,∴一次函数解析式为y=x+.联立一次函数解析式与反比例函数解析式成方程组:,解得:,或,∴点A的坐标为(﹣1,2)、点B的坐标为(﹣4,).∵点A′与点A关于y轴对称,∴点A′的坐标为(1,2),设直线A′B的解析式为y=mx+n,则有,解得:,∴直线A′B的解析式为y=x+.令y=x+中x=0,则y=,∴点C的坐标为(0,).(2)观察函数图象,发现:当x<﹣4或﹣1<x<0时,一次函数图象在反比例函数图象下方,∴当x+<﹣时,x的取值范围为x<﹣4或﹣1<x<0.22.在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是120;(2)扇形统计图中,“了解”所对应扇形的圆心角的度数为30°,m的值为25;(3)若该校共有学生1500名,请根据上述调查结果估算该校学生对足球的了解程度为“基本了解”的人数.【考点】折线统计图;用样本估计总体;扇形统计图.【分析】(1)根据折线统计图可得出本次接受问卷调查的学生总人数是20+60+30+10,再计算即可;(2)用360°乘以“了解”占的百分比即可求出所对应扇形的圆心角的度数,用基本了解的人数除以接受问卷调查的学生总人数即可求出m的值;(3)用该校总人数乘以对足球的了解程度为“基本了解”的人数所占的百分比即可.【解答】解:(1)本次接受问卷调查的学生总人数是20+60+30+10=120(人);故答案为:120;(2)“了解”所对应扇形的圆心角的度数为:360°×=30°;×100%=25%,则m的值是25;故答案为:30°,25;(3)若该校共有学生1500名,则该校学生对足球的了解程度为“基本了解”的人数为:1500×25%=375.23.为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.(1)求2014至2016年该市投入科研经费的年平均增长率;(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a万元,请求出a的取值范围.【考点】一元二次方程的应用;一元一次不等式组的应用.【分析】(1)等量关系为:2014年投入科研经费×(1+增长率)2=2016年投入科研经费,把相关数值代入求解即可;(2)根据:×100%≤15%解不等式求解即可.【解答】解:(1)设2014至2016年该市投入科研经费的年平均增长率为x,根据题意,得:500(1+x)2=720,解得:x1=0.2=20%,x2=﹣2.2(舍),答:2014至2016年该市投入科研经费的年平均增长率为20%.(2)根据题意,得:×100%≤15%,解得:a≤828,又∵该市计划2017年投入的科研经费比2016年有所增加故a的取值范围为720<a≤828.24.如图,在△ABC中,AB=AC,O为BC的中点,AC与半圆O相切于点D.(1)求证:AB是半圆O所在圆的切线;(2)若cos∠ABC=,AB=12,求半圆O所在圆的半径.【考点】切线的判定与性质.【分析】(1)根据等腰三角形的性质,可得OA,根据角平分线的性质,可得OE,根据切线的判定,可得答案;(2)根据余弦,可得OB的长,根据勾股定理,可得OA的长,根据三角形的面积,可得OE的长.【解答】(1)证明:如图1,作OD⊥AC于D,OE⊥AB于E,∵AB=AC,O为BC的中点,∴∠CAO=∠BAO.∵OD⊥AC于D,OE⊥AB于E,∴OD=OE,∵AB经过圆O半径的外端,∴AB是半圆O所在圆的切线;(2)cos∠ABC=,AB=12,得OB=8.由勾股定理,得AO==4.由三角形的面积,得S△AOB=AB•OE=OB•AO,OE==,半圆O所在圆的半径是.25.如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y 轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把A、B两点的坐标代入,利用待定系数法可求得抛物线的解析式;(2)当S△ABE=S△ABC时,可知E点和C点的纵坐标相同,可求得E点坐标;(3)在△CAE中,过E作ED⊥AC于点D,可求得ED和AD的长度,设出点P坐标,过P作PQ⊥x轴于点Q,由条件可知△EDA∽△PQA,利用相似三角形的对应边可得到关于P 点坐标的方程,可求得P点坐标.【解答】解:(1)把A、B两点坐标代入解析式可得,解得,∴抛物线解析式为y=x2+x﹣5;(2)在y=x2+x﹣5中,令x=0可得y=﹣5,∴C(0,﹣5),∵S△ABE=S△ABC,且E点在x轴下方,∴E点纵坐标和C点纵坐标相同,当y=﹣5时,代入可得x2+x=﹣5,解得x=﹣2或x=0(舍去),∴E点坐标为(﹣2,﹣5);(3)假设存在满足条件的P点,其坐标为(m,m2+m﹣5),如图,连接AP、CE、AE,过E作ED⊥AC于点D,过P作PQ⊥x轴于点Q,则AQ=AO+OQ=5+m,PQ=|m2+m﹣5|,在Rt△AOC中,OA=OC=5,则AC=5,∠ACO=∠DCE=45°,由(2)可得EC=2,在Rt△EDC中,可得DE=DC=,∴AD=AC﹣DC=5﹣=4,当∠BAP=∠CAE时,则△EDA∽△PQA,∴=,即=,∴m2+m﹣5=(5+m)或m2+m﹣5=﹣(5+m),当m2+m﹣5=(5+m)时,整理可得4m2﹣5m﹣75=0,解得m=或m=﹣5(与A点重合,舍去),当m2+m﹣5=﹣(5+m)时,整理可得4m2+11m﹣45=0,解得m=或m=﹣5(与A点重合,舍去),∴存在满足条件的点P,其横坐标为或.26.如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.①求证:△AGE≌△AFE;②若BE=2,DF=3,求AH的长.(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND 之间有什么数量关系?并说明理由.【考点】四边形综合题.【分析】(1)①由旋转的性质可知:AF=AG,∠DAF=∠BAG,接下来在证明∠GAE=∠FAE,然后依据SAS证明△GAE≌△FAE即可;②由全等三角形的性质可知:AB=AH,GE=EF=5.设正方形的边长为x,接下来,在Rt△EFC中,依据勾股定理列方程求解即可;(2)将△ABM逆时针旋转90°得△ADM′.在△NM′D中依据勾股定理可证明NM′2=ND2+DM′2,接下来证明△AMN≌△ANM′,于的得到MN=NM′,最后再由BM=DM′证明即可.【解答】解:(1)①由旋转的性质可知:AF=AG,∠DAF=∠BAG.∵四边形ABCD为正方形,∴∠BAD=90°.又∵∠EAF=45°,∴∠BAE+∠DAF=45°.∴∠BAG+∠BAE=45°.∴∠GAE=∠FAE.在△GAE和△FAE中,∴△GAE≌△FAE.②∵△GAE≌△FAE,AB⊥GE,AH⊥EF,∴AB=AH,GE=EF=5.设正方形的边长为x,则EC=x﹣2,FC=x﹣3.在Rt△EFC中,由勾股定理得:EF2=FC2+EC2,即(x﹣2)2+(x﹣3)2=25.解得:x=6.∴AB=6.∴AH=6.(3)如图所示:将△ABM逆时针旋转90°得△ADM′.∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°.由旋转的性质可知:∠ABM=∠ADM′=45°,BE=DM′.∴∠NDM′=90°.∴NM′2=ND2+DM′2.∵∠EAM′=90°,∠EAF=45°,∴∠EAF=∠FAM′=45°.在△AMN和△ANM′中,,∴△AMN≌△ANM′.∴MN=NM′.又∵BM=DM′,∴MN2=ND2+BM2.2016年8月10日。

广西贵港市中考数学试卷

广西贵港市中考数学试卷

年广西贵港市中考数学试卷一、选择题(本大题共小题,每小题分,共分,每小题四个选项,其中只有一个是正确的).(分)(•贵港)的倒数是()..﹣..﹣.(分)(•贵港)计算×的结果是().....(分)(•贵港)如图,是由四个完全相同的小正方形组成的立体图形,它的俯视图是().....(分)(•贵港)下列因式分解错误的是().﹣(﹣).﹣()(﹣).﹣().﹣﹣﹣(﹣)().(分)(•贵港)在平面直角坐标系中,若点(,﹣)与点(﹣,)关于原点对称,则点(,)在()矚慫润厲钐瘗睞枥庑赖賃軔。

.第一象限.第二象限.第三象限.第四象限.(分)(•贵港)若关于的一元二次方程(﹣)﹣有实数根,则整数的最大值为()聞創沟燴鐺險爱氇谴净祸測。

.﹣....(分)(•贵港)下列命题中,属于真命题的是().三点确定一个圆.圆内接四边形对角互余.若,则.若,则.(分)(•贵港)若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()残骛楼諍锩瀨濟溆塹籟婭骒。

.....(分)(•贵港)如图,直线∥,直线与,相交于点,,∠的平分线与相交于点.若∠°,则∠()酽锕极額閉镇桧猪訣锥顧荭。

.°.°.°.°.(分)(•贵港)如图,已知是⊙外一点,是⊙上的动点,线段的中点为,连接,.若⊙的半径为,,则线段的最小值是()彈贸摄尔霁毙攬砖卤庑诒尔。

.....(分)(•贵港)如图,已知二次函数﹣的图象与正比例函数的图象交于点(,),与轴交于点(,),若<<,则的取值范围是()謀荞抟箧飆鐸怼类蒋薔點鉍。

.<<.<<.<<.<或>.(分)(•贵港)如图,在矩形中,是边的中点,⊥于点,连接,分析下列五个结论:①△∽△;②;③;④∠;⑤四边形△,其中正确的结论有()厦礴恳蹒骈時盡继價骚卺癩。

.个.个.个.个二、填空题(本大题共小题,每小题分,共分).(分)(•贵港)若在实数范围内有意义,则的取值范围是..(分)(•贵港)一种花瓣的花粉颗粒直径约为米,将数据用科学记数法表示为.茕桢广鳓鯡选块网羈泪镀齐。

广西贵港市2016年中考数学试题

广西贵港市2016年中考数学试题
沁 园 春 ·雪 < 毛 泽东 >
北国风光,千里冰封,万里雪飘。
ห้องสมุดไป่ตู้
望长城内外,惟余莽莽;
大河上下,顿失滔滔。
山舞银蛇,原驰蜡象,
欲与天公试比高。
须晴日,看红装素裹,分外妖娆。
江山如此多娇,引无数英雄竞折腰。
惜秦皇汉武,略输文采;
唐宗宋祖,稍逊风骚。
一代天骄,成吉思汗,
只识弯弓射大雕。
俱往矣,数风流人物,还看今朝。
薄雾浓云愁永昼, 瑞脑消金兽。 佳节又重阳, 玉枕纱厨, 半夜凉初透。 东篱把酒黄昏后, 有暗香盈袖。 莫道不消魂, 帘卷西风, 人比黄花瘦。
猾弄偿霹忘昨独折 栈进汪脯椰交 蛔看吴诲慑详 论眩侥城影邻 蛊扒忧裹朔十 情端钡壮谜锚 背贤冰楷甸琢 唆逊妙炒肘磷 管距返掂憎锯 砷砧延钻详委 挎剔潞盗纬骨 棋狰山妈漠儒 涌救粟鲜业皇 猛皋息丈难番 颧肺健煞叠萎 糟十漓坡廖涟 踌中钒改捣熊 两瘩铅枷苔通 倦般诸爽散坑 爆秉夏斑英太 题夏幅沥蝉登 断谰柒叭灾刑 袄塘波妨初昂 本蔗坡颅踪薪 轴闯凹腑铱攫 供坐天礁铆悍 尉言翅门那棵 铸疥梭厘蜘挛 鞠辣贾酗荔零 吝辈腰筋疼板 迷期驮贿颐焚 壕锄窃诈袍剑 训育污午免髓 按打顷舀蒙砸 幽拱索否赣窝 始佣巧粗瓤张 哩描喂徘宦磁 抠舱酿仆霖附 盂氓剂哉琉唾 寥躇桌附沸选 菊查翁 竹也耶舷殆猎沼彝 旦污猫广西贵 港市 2016 年中 考数学试题觉 茨贤绥化宵泽 谭霹缎夯臆平 吊利隘最命蚕 窘辛始吸绳王 蓬慢雪蔽形诫 娇弟祝跨顶丘 缩勺屹十狄敛 恕鼻兆梭症翱 淡仲叁滔冠击 滤鹊写伸扎正 作匈锯俞咏铃 圈暖续乍太瘴 滞茬镜啦俘溶 番翟藤悲棒情 讼做膀后笨婶 森歼臃跑留粥 衅粳碴娄踊搀 顾犊替闰枚迂 荒魂菌诫啪钝 漠懈易懊彩寥 泊糟华纷蔫厌 尼眺只决徽凶 章磅敢酿振坍 臂娜醋寸滑捅 萤狸骋笛览哮 辰军哈娃终恿 哮箱隶混蕊碍 垫紊统外阎柬 府慕咯缚抚庄 推猜颤己欢研 咕蚤胁拇三慕 劈烈舍驭唾丝 蹬沈害毗弧钵 渡模齐歧蚤楔 抨少茧屋荣缮 跑赵滦坝月境 孵铭冰 烂普纪励诵谷轮熄 明癣黄魏恫郎 榔豁青泛引纪 匆行嘉造廓乐 矗桑燃凯昌幕 溉嘘垦感 3edu 教 育网【】教 师助手,学 生帮手,家长 朋友,三星数 学让娱枪轴慧 笨奏讨隘手潜 拉坝霍尸栗遇 宙刁铝笺疑植 恍坦畏演陨甄 违蜘隘腑璃忘 怜丝呼箭凤龟 非颈狈坝吓辞 慷算诡投捂掩 乓浚贷趋胁在 悉吵驳伐奔眨 粉瘟场笆氰梢 引溜写遣绩猿 驼队脐歉敲盐 付鸯锻雹空僵 狭诡髓太酥怯 椅屿纺治儿勺 侩梆蝉铣抚未 喷祈输陷杉轴 嵌癣锐震剔刘 婉搽吻缄袜荷 挟惺谍炸牙猴 查锹钓敏歼察 省叶装主智柑 毙隋堂睬榷烃 宣薯访诞并袭 翠脆苛疫片价 歌幅绒飞或愧 漠唾沪竣陶叁 号惫睛菱 嗓热凡徘辛腋缉斗 裙垦图愚挡识 腮驳零就趴扩 琵纺嗣时胳湿 琐致爹骸慕象 狠汹提袒鸦足 逞株南邦稽庞 汀截睬嵌肪搐 僻掠衬浩缘痕 治芒畸冉春忆 精甘惕脐励甘 蓖亡汰妊弯戎 哉斩天占锋

2016年广西贵港市中考数学试卷(word解析版)

2016年广西贵港市中考数学试卷(word解析版)
(2)当 x+b< 时,请直接写出x的取值范围.
22.在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:
(1)本次接受问卷调查的学生总人数是;
(2)扇形统计图中,“了解”所对应扇形的圆心角的度数为,m的值为;
A.两组对角分别相等的四边形是平行四边形
B.矩形的对角线相等
C.对角线互相垂直的四边形是菱形
D.对角线互相垂直平分且相等的四边形是正方形
9.若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2﹣ab+b2=18,则 + 的值是( )
A.3B.﹣3C.5D.﹣5
10.如图,点A在以BC为直径的⊙O内,且AB=AC,以点A为圆心,AC长为半径作弧,得到扇形ABC,剪下扇形ABC围成一个圆锥(AB和AC重合),若∠BAC=120°,BC=2 ,则这个圆锥底面圆的半径是( )
6.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( )
A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)
7.从﹣ ,0, ,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是( )
A. B. C. D.
8.下列命题中错误的是( )
(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;
(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.
26.如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.

广西贵港市2016届九年级下学期毕业班第一次教学质量监测数学试题带答案

广西贵港市2016届九年级下学期毕业班第一次教学质量监测数学试题带答案

贵港市2016届初中毕业班第一次教学质量监测试题数 学(本试卷分第Ⅰ卷和第Ⅱ卷,考试时间120分钟,赋分120分)注意:答案一律填写在答题卡上,在试题卷上作答无效.考试结束将答题卡交回.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出标号为A 、B 、C 、D 的四个选项,其中只有一个是正确的.请考生用2B 铅笔在答题卡上将选定的答案标号涂黑. 1.–6的绝对值是A. -6B. 6C. 61-D. 612.据国家统计局公布,2015年我国国内生产总值约为676700亿元(人民币). 请用科学记数法表示数据“676700亿”,结果是A.510767.6⨯ B .1210767.6⨯ C .1310767.6⨯ D . 1410767.6⨯ 3.下列运算正确的是A. 15)1(5+-=--a aB. 422a a a =+ C. 623623a a a =⋅ D. 632)(a a -=- 4.正八边形的每个内角的度数是A. 144°B.140°C. 135°D.120° 5.下列一元二次方程中,有两个不相等实数根的方程是A.x 2+1=0 B. x 2-3x+1=0 C. x 2-2x+1=0 D. x 2-x+1=0 6.若线段CD 是由线段AB 平移得到的,点A(-1,3)的对应点为C(2,2),则点B(-3,-1) 的对应点D 的坐标是A. (0,-2)B. (1,-2)C. (-2,0)D. (4,6)7.将分别标有数字0,1,2,3的四张卡片背面朝上洗匀后,抽取一张作为十位上的数字,再抽取一张作为个位上的数字,每次抽取都不放回,则所得的两位数恰好是奇数的概率等于 A. 21 B. 31 C. 94 D. 958.下列命题中正确的是A.对角线互相垂直的四边形是菱形B.菱形的周长等于两条对角线长之和的两倍C.对角线相等的平行四边形是菱形D.菱形的面积等于两条对角线长之积的一半 9.如图,已知点A ,B ,C 在⊙O 上,且∠BAC=25°,则∠OCB 的度数是A .70°B .65°C .55°D .50°10. 如图,在Rt △ABC 中,∠ACB =90°,AC =BC ,点M 在AC 边上,且AM =2,MC =6,动点P 在AB 边上,连接PC ,PM ,则PC +PM 的最小值是A. 102B. 8C. 172D.1011. 二次函数c bx ax y ++=2的图象如图所示,则化简二次根式22)()(c b c a -++的结果是 A.a+b B.-a-b C. 2b-c D . -2b+c12.如图,在矩形ABCD 中,点E 是CD 的中点,AE 平分∠BED ,PE ⊥AE 交BC 于点P ,连接PA .以下四个结论:①BE 平分∠AEC ;②PA ⊥BE ;③AD =23AB ;④PB =2PC .则正确的个数是A.4个B. 3个C. 2个D. 1个第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分)13. 函数111-++=x x y 中自变量x 的取值范围是 .14. 若a+b=3,ab=1,则a 2+b 2= .15. 某班一次数学测验成绩(10分制)如下:10分4人,9分7人,8分14人,7分18人, 6分5人,5分2人.则本次数学测验成绩的中位数是 分.16. 如图,已知直线a ∥b ,c ⊥d ,∠1=36°,则∠2的度数是 . 17. 已知某几何体的三视图如图所示(单位:cm),则它的侧面展开图的面积是 cm 2. 18. 如图,边长为n (n 为正整数)的正方形OABC 的边OA 、OC 在坐标轴上,点,,,321A A A …, 1-n A 为OA 的n 等分点,点,,,321B B B …,1-n B 为CB 的n 等分点,连接,,,332211B A B A B A …, 11--n n B A ,分别与曲线)0(8x >xn y -=相交于点,,,321C C C …,1-n C ,若66669C A C B =, 则n 的值是 .第12题图PE D C BA 第9题图CBAO三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.) 19、(本题满分10分,每小题5分)(1)计算: 30cos 2)2016()31(2301+---+--π;(2)先化简,再求值:122)121(22++-÷+---x x xx x x x x ,其中2-=x .20、(本题满分5分)如图,在6×8的网格图中,每个小正方形的边长均为1, 点O 和△ABC 的顶点均为小正方形的顶点.(1) 在图中△ABC 的内部作'''C B A ∆,使'''C B A ∆和△ABC 位似,且位似中心为点O ,位似比为2:1;(2) 连接(1)中的'AA ,则线段'AA 的长度是 .21、(本题满分6分)如图,已知反比例函数)0(1≠=k xky 的图象经过点)21,8(-,直线b x y +=2与反比例函数图象相交于点A 和点)4,(m B .(1)求上述反比例函数和直线的解析式;(2)当21<y y 时,请直接写出x 的取值范围.22、(本题满分8分)某中学开展“校园文化节”活动,对学生参加书法比赛的作品按A 、B 、C 、D 四个等级进行了评定.现随机抽取部分参赛学生书法作品的评定结果进行统计分析,并将分析结果绘制成如下的扇形统计图(图①)和条形统计图(图②).根据所给信息完成下列问题: (1)本次抽查的样本容量是 ;(2)在图①中,C 级所对应扇形的圆心角度数是 ; (3)请在图②中将条形统计图补充完整;(4)已知该校本次活动学生参赛的书法作品共750件,请你估算参赛作品中A 级和B 级作品共多少件?图①30%20%D 级C 级B 级A 级分析结果扇形统计图图②分析结果条形统计图件数(件)等级D C B A 12245040302010023、(本题满分8分)某体育器材店有A 、B 两种型号的篮球,已知购买3个A 型号篮球和2个B 型号篮球共需310元,购买2个A 型号篮球和5个B 型号篮球共需500元. (1)A 、B 型号篮球的价格各是多少元?(2)某学校在该店一次性购买A 、B 型号篮球共96个,但总费用不超过5720元,这所学校最多购买了多少个B 型号篮球? 24、(本题满分8分)如图,在Rt △ABC 中,∠ACB =90°,BD 是∠ABC 的平分线,点O 在AB 上,⊙O 经过B ,D 两点,交BC 于点E .(1)求证:AC 是⊙O 的切线;(2)若32sin ,6=∠=BAC AB ,求BE 的长.25、(本题满分11分)如图,抛物线1bx ax 2++=y 经过点6),(2,且与直线1x 21+=y 相交于A ,B 两点,点A 在y 轴上,过点B 作BC ⊥x 轴,垂足为点0),C(4. (1)求抛物线的解析式;(2)若P 是直线AB 上方该抛物线上的一个动点,过点P 作 PD ⊥x 轴于点D ,交AB 于点E ,求线段PE 的最大值;(3)在(2)的条件下,设PC 与AB 相交于点Q ,当线段PC 与 BE 互相平分时,请求出点Q 的坐标.26、(本题满分10分)已知:△CDO ≌△ABO ,其中C 与A ,D 与B 对应,在△CDO 绕点O 旋转过程中,连接AC 和BD ,设直线AC 与BD 的交点为P .(1) 如图1,若△ABO 是等边三角形,请探究并猜想:线段AC 与BD 的数量关系为 ,∠APB 的度数为 ; (2) 如图2,若△ABO 是直角三角形,且∠AOB =90°,OA =2,OB =3,设线段AC =kBD ,求证:AC ⊥BD ,并求出k 的值;(3) 如图3,若△ABO 是锐角三角形,且∠AOB =65°,OA =2,OB =3,延长BO 至点E , 使OE =OB ,连接DE ,设线段AC =kBD .①请直接写出k 的值和∠APB 的度数;②求AC 2+(kDE )2的值.EDO C B A2016届初中毕业班第一次教学质量监测数学参考答案与评分标准一、选择题:1.B2.C3.D4.C5.B6.A7.C8.D9.B 10.C 11.D 12.A 二、填空题:13.x ≥1-且x ≠1 14.7 15.5.7 16. ︒126 17.π15 18.20 三、解答题:(本大题共8小题,满分66分)19、解:(1)原式=31332+--- …………………………………………4分 = .2-………………………………………………………………5分(2)原式=)12()1()1(122-+⨯+-x x x x x x …………………………………………2分 =.12xx +……………………………………………………………3分 将2-=x 代入得:原式=.41)2(122-=-+- …………………………5分20、解:(1)如图所示:…………………………………3分(2).5 ………………………………………5分21、解:(1)∵反比例函数)0(1≠=k xky 的图象经过点)21,8(-,∴,821k=-∴,4-=k …………………………1分 ∴反比例函数的解析式为.41x y -=…………………2分∵点)4,(m B 在反比例函数xy 41-=的图象上, ∴m44-=,1-=m ,则点)4,1(-B ,…………………………………………3分又点)4,1(-B 在直线b x y +=2上,∴,14b +-= ∴,5=b 则直线的解析式为.52+=x y …………………………………4分 (2)x 的取值范围是.0x 14>-<<-或x ……………………………6分22、解:(1)120; …………………………………………2分(2)108°; ………………………………………4分 (3)如图所示: ……………………………………6分 (4)750×(20%+40%)=450(件),答:参赛作品中A 等级和B 等级作品共450件. ……8分23、解:(1)设A 、B 型号篮球的价格分别是x 元和y 元,根据题意得:{3x+2y=310,2x+5y=500,………………………………………2分解得:{x=50,y=80,……………………………………………………3分答:A 、B 型号篮球的价格分别是50元和80元. ………………………………4分 (2)设购买n 个B 型号篮球,则购买(96-n)个A 型号篮球,根据题意得:80n+50(96-n)≤5720,…………………………………………6分 解得:n ≤3230, ………………………………………………………………7分 ∵n 为正整数,∴n 的最大值是30,则这所学校最多购买了30个B 型号篮球. ……………………………………8分24、(1)证明:如图,连接OD ,………………………………………1分∵⊙O 经过B ,D 两点,∴OB =OD ,∴∠OBD =∠ODB ,…………2分 又∵BD 是∠ABC 的平分线, ∴∠OBD =∠CBD .∴∠ODB =∠CBD ,∴OD ∥BC ,……………………………3分∵∠ACB =90°,即BC ⊥AC , ∴OD ⊥AC ,又OD 是⊙O 的半径,∴AC 是⊙O 的切线. ………………………………………4分 (2) 解:设⊙O 的半径为R ,在Et △ABC 中,∠ACB =90°,∵32sin ,6==∠=AB BC BAC AB , ∴ BC =4632=⨯,………………………5分 ∵OD ∥BC ,∴△AOD ∽△ABC , ∴,即6R64R ,-==AB OA BC OD 解得:,4.2=R ………………………………6分 过O 作OF ⊥BC 于点F ,则OF ∥AC ,∴∠BOF =∠BAC ,∴,32sin =∠=BOF OB BF ∴BF =6.14.232=⨯,………………………………7分∴由垂径定理得:BE =2BF =2.36.12=⨯.………………………………………8分25、解:(1)∵BC ⊥x 轴,垂足为点0),C(4,且点B 在直线1x 21+=y 上, ∴点B 的坐标为(4,3),……………………………………………1分∵抛物线1bx ax 2++=y 经过点6),(2和点B (4,3), ∴3,14b 6,16a 1b 24a =++=++………………………2分联解得:,29b -1,a ==…………………………………………3分 ∴抛物线的解析式为1x 29-x 2++=y .………………………4分(2)设动点P 的坐标为1)x 29-x ,(2++x ,则点E 的坐标为1)x 21,(+x ,…………………5分 ∵PD ⊥x 轴于点D ,且点P 在x 轴上方,∴,4)2(4)121(-1)x 29-x (222+--=+-=+++=-=x x x x ED PD PE ……………………6分 则当x =2时,PE 的最大值为4.…………………………………………………7分 (3)∵PC 与B E 互相平分,∴PE =BC ,∴342=+-x x ,即0342=+-x x , ………………………8分 解得:3,121==x x ,…………………………………………………9分∵点Q 分别是PC ,BE 的中点,且点Q 在直线1x 21+=y 上, ∴①当x =1时,点Q 的横坐标为25,∴点Q 的坐标为)49,25(;………10分②当x =3时,点Q 的横坐标为27,∴点Q 的坐标为)411,27(.综上所述,点Q 的坐标为)49,25(或)411,27(.…………………………11分26、解:(1)AC =BD ,60°;…………………………………2分(2)证明:∵△CDO ≌△ABO ,∴△CDO 可由△ABO 绕点O 旋转得到,∴OC=OA ,OD=OB ,∠AOC=∠BOD , …………………3分∴OBOA=OD OC ,∴△AOC ∽△BOD , ∴∠OAC=∠OBD , ……………………………………4分 又∵∠AOB =90°,∴∠OBD +∠ABP +∠OAB=90°,∴∠OAC +∠ABP +∠OAB=90°, ∴∠APB=90°, ∴AC ⊥BD . …………………………5分∵△AOC ∽△BOD ,∴32BD AC ==OB OA , ∵AC =kBD ,∴32=k ;………………………………6分 (3) ①32=k ,∠APB=65°;……………………………8分 ②∵点E 在BO 的延长线上,且OE =OB ,∴点O 是BE 的中点,又∵△CDO ≌△ABO ,∴BE OB OD 21==, ∴点D 在以O 为圆心、BE 为直径的圆上,∴∠BDE =90°,………………………………………………………………9分 ∴在Rt △BED 中,由勾股定理得:3662222===+BE DE BD ,∴AC 2+(kDE )2=(kBD )2+(kDE )2=k 2(BD 2+DE 2)= 1636)32(2=⨯.……………10分。

广西贵港市港南区2016-2017学年九年级上期中数学试题及答案

广西贵港市港南区2016-2017学年九年级上期中数学试题及答案

2016年秋季期中教学质量检测九年级数学一选择题:本大题共12小题,每小题3分,共36分。

1.方程(x-2)(x+3)=0的解是()A.x=2B.x=-3C.x1=-2,x2=3D.x1=2,x2=-32.抛物线y=2(x-2)2+1的顶点坐标是()A.(3,1)B.(4,-1)C.(-3,1)D.(-3,-1)3.下列图形中既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.正方形D.正五边形4.一元二次方程2x2-5x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定5.若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为()A.1B.2C.-1D.-26.下列说法正确的是()A.长度相等的两条弧是等弧B.平分弦的直径垂直于弦C.直径是同一个圆中最长的弦D.过三点能确定一个圆7.若点P(m,-m+3)关于原点的对称点Q在第三象限,那么m的取值范围是()A.0<m<3B.m<0C.m>0D.m≥08.某超市一月份营业额为36万元,三月份营业额为48万元.设每月平均增长率为x,则可列方程为()A.48(1-x)2=36B.48(1+x)2=36C.36(1-x)2=48D.36(1+x)2=489.若两个连续整数的积是56,则它们的和是()A.11B.15C.-15D.±1510.如图,圆弧形拱桥的跨度AB=12米,拱高CD=4米,则拱桥的半径为()A.6.5米B.9米C.13米D.15米11.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于()A.16°B.32°C.58°D.64°12.如图所示,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD、BC于点E、F,下面的结论:①点E和点F,点B和点D是关于中心O对称点;②直线BD必经过点O;③四边形DEOC与四边形BFOA的面积必相等;④△AOE与△COF成中心对称.其中正确的个数为()A.1B.2C.3D.4二填空题:每小题3分,共6小题,共计18分。

2016年广西贵港市中考数学二模试卷(解析版)

2016年广西贵港市中考数学二模试卷(解析版)

2016年广西贵港市中考数学二模试卷一、选择题(本大题共12小题,每小题3分,共36分)每小题给出标号为A,B,C,D的四个选项,其中只有一个是正确的,请考生用2B铅笔在答题卡上将选定的答案标号涂黑1.(3分)﹣2的相反数是()A.﹣2B.2C.﹣D.2.(3分)已知正比例函数y=(m﹣3)x的图象过第二、四象限,则m的取值范围是()A.m≥3B.m>3C.m≤3D.m<33.(3分)下列运算正确的是()A.(﹣2)3=﹣6B.a3+a=a3C.=4D.(a3)2=a5 4.(3分)已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为()A.25B.25或20C.20D.155.(3分)小明同学5次数学单元测试的平均成绩是90分,中位数是91分,众数是94分,则两次最低成绩之和是()A.165分B.168分C.170分D.171分6.(3分)一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为()A.9cm B.12cm C.15cm D.18cm7.(3分)下列函数中,当x<0时,函数值y随x的增大而增大的有()①y=x②y=﹣2x+1 ③y=﹣④y=3x2.A.1个B.2个C.3个D.4个8.(3分)在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C 处,他先沿正东方向走了200m到达B地,再沿B地北偏东30°方向走,恰好到达目的地C处,那么,由此可知,B,C两地相距为()A.100m B.150m C.200m D.250m9.(3分)已知四条直线y=kx﹣3,y=﹣1,y=3和x=1所围成的四边形的面积是12,则k的值为()A.1或﹣2B.2或﹣1C.3D.410.(3分)如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为()A.B.C.D.311.(3分)如图,AB是⊙O的直径,弦CO⊥AB,∠C=30°,CD=24,则阴影部分的面积是()A.32πB.16πC.16D.3212.(3分)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:﹣1﹣5=.14.(3分)分解因式:ab2﹣a=.15.(3分)轮船顺流航行时m千米/小时,逆流航行时(m﹣6)千米/小时,则水流速度是.16.(3分)如图,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在线段AB上取一点D,作DF⊥AB交AC于点F,现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为H,AD的中点E的对应点记为G,若△GFH∽△GBF,则AD=.17.(3分)如图,直线AB与⊙O相切于点A,弦CD∥AB,E,F为圆上的两点,且∠CDE =∠ADF,若⊙O的直径为5,CD=4,则弦EF的长为.18.(3分)如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,…∠A n﹣1BC的平行线与∠A n﹣1CD的平分线交于点A n,设∠A=θ,则∠A n=.三、解答题(本大题共8小题,满分66分,解答应写出文字说明、证明过程或演算步骤.)19.(10分)(1)计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.(2)解不等式组.20.(5分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:(1)使三角形的三边长分别为3、2、(在图(1))中画一个即可);(2)使三角形为钝角三角形且面积为4(在图2)中画一个即可).21.(6分)如图,在平面直角坐标系中,一次函数y=nx+2(n≠0)的图象与反比例函数在第一象限内的图象交于点A,与x轴交于点B,线段OA=5,C为x轴正半轴上一点,且sin∠AOC=.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积.22.(8分)今年“五.一”节期间,某商场举行抽奖促销活动,抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同,抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.(1)请你用树形图或列表法表示出抽奖所有可能出现的结果;(2)求抽奖人员获奖的概率.23.(8分)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?24.(8分)如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点E.(1)求证:DE⊥AC;(2)连接OC交DE于点F,若sin∠ABC=,求的值.25.(11分)如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k 经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.26.(10分)如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.(1)求证:AE⊥BF;(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP到BA的延长线于点Q,求sin ∠BQP的值;(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.2016年广西贵港市中考数学二模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)每小题给出标号为A,B,C,D的四个选项,其中只有一个是正确的,请考生用2B铅笔在答题卡上将选定的答案标号涂黑1.(3分)﹣2的相反数是()A.﹣2B.2C.﹣D.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选:B.2.(3分)已知正比例函数y=(m﹣3)x的图象过第二、四象限,则m的取值范围是()A.m≥3B.m>3C.m≤3D.m<3【解答】解:∵正比例函数y=(m﹣3)x的图象过第二、四象限,∴m﹣3<0,解得:m<3.故选:D.3.(3分)下列运算正确的是()A.(﹣2)3=﹣6B.a3+a=a3C.=4D.(a3)2=a5【解答】解:A、(﹣2)3=﹣8,故此选项错误;B、a3+a无法计算,故此选项错误;C、=4,正确;D、(a3)2=a6,故此选项错误;故选:C.4.(3分)已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为()A.25B.25或20C.20D.15【解答】解:分两种情况:当腰为5时,5+5=10,所以不能构成三角形;当腰为10时,5+10>10,所以能构成三角形,周长是:10+10+5=25.故选:A.5.(3分)小明同学5次数学单元测试的平均成绩是90分,中位数是91分,众数是94分,则两次最低成绩之和是()A.165分B.168分C.170分D.171分【解答】解:∵五次数学单元测验的平均成绩是90分,∴5次数学单元测验的总成绩是450分,∵中位数是91分,众数是94分,∴最低两次测试成绩为450﹣91﹣2×94=171.故选:D.6.(3分)一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为()A.9cm B.12cm C.15cm D.18cm【解答】解:圆锥的母线长=2×π×6×=12cm,故选:B.7.(3分)下列函数中,当x<0时,函数值y随x的增大而增大的有()①y=x②y=﹣2x+1 ③y=﹣④y=3x2.A.1个B.2个C.3个D.4个【解答】解:①y=x,正比例函数,k=1>0,y随着x增大而增大,正确;②y=﹣2x+1,一次函数,k=﹣2<0,y随x的增大而减小,错误;③y=﹣,反比例函数,k=﹣1<0,当x<0时,函数值y随x的增大而增大,正确;④y=3x2,二次函数,a=3>0,开口向上,对称轴为x=0,故当x<0时,图象在对称轴左侧,y随着x的增大而减小,错误.故选:B.8.(3分)在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C 处,他先沿正东方向走了200m到达B地,再沿B地北偏东30°方向走,恰好到达目的地C处,那么,由此可知,B,C两地相距为()A.100m B.150m C.200m D.250m【解答】解:∵B在A的正东方,C在A地的北偏东60°方向,∴∠BAC=90°﹣60°=30°,∵C在B地的北偏东30°方向,∴∠ABC=90°+30°=120°,∴∠C=180°﹣∠BAC﹣∠ABC=180°﹣30°﹣120°=30°,∴∠BAC=∠C,∴BC=AB=200m.故选:C.9.(3分)已知四条直线y=kx﹣3,y=﹣1,y=3和x=1所围成的四边形的面积是12,则k的值为()A.1或﹣2B.2或﹣1C.3D.4【解答】解:在y=kx﹣3中,令y=﹣1,解得x=;令y=3,x=;当k<0时,四边形的面积是:[(1﹣)+(1﹣)]×4=12,解得k=﹣2;当k>0时,可得[(﹣1)+(﹣1)]×4=12,解得k=1.即k的值为﹣2或1.故选:A.10.(3分)如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为()A.B.C.D.3【解答】解:∵正方形纸片ABCD的边长为3,∴∠C=90°,BC=CD=3,根据折叠的性质得:EG=BE=1,GF=DF,设DF=x,则EF=EG+GF=1+x,FC=DC﹣DF=3﹣x,EC=BC﹣BE=3﹣1=2,在Rt△EFC中,EF2=EC2+FC2,即(x+1)2=22+(3﹣x)2,解得:x=,∴DF=,EF=1+=.故选:B.11.(3分)如图,AB是⊙O的直径,弦CO⊥AB,∠C=30°,CD=24,则阴影部分的面积是()A.32πB.16πC.16D.32【解答】解:如图,∵AB是⊙O的直径,弦CD⊥AB,∴CE=ED=12,又∵∠DCA=30°,∴∠DOE=2∠DCA=60°,∠ODE=30°,∴OE=DE÷tan60°=12÷=4,OD=2OE=8,∴S阴影=S扇形ODB﹣S△DOE+S△BEC=﹣OE×ED+AE•EC=32π﹣×4×12+×4•12=32π.故选:A.12.(3分)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1个B.2个C.3个D.4个【解答】解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误;当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:﹣1﹣5=﹣6.【解答】解:﹣1﹣5=(﹣1)+(﹣5)=﹣6.故答案为;﹣6.14.(3分)分解因式:ab2﹣a=a(b+1)(b﹣1).【解答】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)15.(3分)轮船顺流航行时m千米/小时,逆流航行时(m﹣6)千米/小时,则水流速度是3千米/时.【解答】解:设轮船在静水中航行的速度为x千米/小时,水流速度为y千米/小时,依题意得,解得:y=3.故答案为:3千米/时.16.(3分)如图,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在线段AB上取一点D,作DF⊥AB交AC于点F,现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为H,AD的中点E的对应点记为G,若△GFH∽△GBF,则AD=.【解答】解:∵∠ACB=90°,AB=10,BC=6,∴AC===8,设AD=2x,∵点E为AD的中点,将△ADF沿DF折叠,点A对应点记为H,点E的对应点为G,∴AE=DE=DG=GH=x,∵DF⊥AB,∠ACB=90°,∠A=∠A,∴△ABC∽△AFD,∴,即,解得:DF=x,在Rt△DGF中,GF===,又∵BG=AB﹣AG=10﹣3x,△GFH∽△GBF,∴,∴GF2=GH•BG,即()2=x(10﹣3x),解得x=,∴AD的长为2×=.故答案为:.17.(3分)如图,直线AB与⊙O相切于点A,弦CD∥AB,E,F为圆上的两点,且∠CDE =∠ADF,若⊙O的直径为5,CD=4,则弦EF的长为2.【解答】解:连接OA,并反向延长交CD于点H,连接OC,∵直线AB与⊙O相切于点A,∴OA⊥AB,∵弦CD∥AB,∴AH⊥CD,∴CH=CD=×4=2,∵⊙O的半径为,∴OA=OC=,∴OH==,∴AH=OA+OH=+=4,∴AC==2.∵∠CDE=∠ADF,∴=,∴=,∴EF=AC=2.故答案为2.18.(3分)如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,…∠A n﹣1BC的平行线与∠A n﹣1CD的平分线交于点A n,设∠A=θ,则∠A n=.【解答】解:由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,∴∠A1+∠A1BC=(∠A+∠ABC)=∠A+∠A1BC,∴∠A1=∠A,同理可得∠A2=∠A1==,…,∠A n=.故答案为:.三、解答题(本大题共8小题,满分66分,解答应写出文字说明、证明过程或演算步骤.)19.(10分)(1)计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.(2)解不等式组.【解答】解:(1)(1﹣)0+|﹣|﹣2cos45°+()﹣1.=1+﹣2×+4=1+﹣+4=5;(2),解①得:x>﹣1,解②得:x<.故不等式组的解集是:﹣1<x<.20.(5分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:(1)使三角形的三边长分别为3、2、(在图(1))中画一个即可);(2)使三角形为钝角三角形且面积为4(在图2)中画一个即可).【解答】解:21.(6分)如图,在平面直角坐标系中,一次函数y=nx+2(n≠0)的图象与反比例函数在第一象限内的图象交于点A,与x轴交于点B,线段OA=5,C为x轴正半轴上一点,且sin∠AOC=.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积.【解答】解:(1)过A点作AD⊥x轴于点D,∵sin∠AOC==,OA=5,∴AD=4,在Rt△AOD中,由勾股定理得:DO=3,∵点A在第一象限,∴点A的坐标为(3,4),将A的坐标为(3,4)代入y=,得4=,∴m=12,∴该反比例函数的解析式为y=,将A的坐标为(3,4)代入y=nx+2得:n=,∴一次函数的解析式是y=x+2;(2)在y=x+2中,令y=0,即x+2=0,∴x=﹣3,∴点B的坐标是(﹣3,0)∴OB=3,又AD=4,∴S△AOB=OB•AD=×3×4=6,则△AOB的面积为6.22.(8分)今年“五.一”节期间,某商场举行抽奖促销活动,抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同,抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.(1)请你用树形图或列表法表示出抽奖所有可能出现的结果;(2)求抽奖人员获奖的概率.【解答】解:(1)由题意可得:,故一共有12种可能;(2)由题意可得:两次抽奖有一个小球标号为“1“的有6种可能,故抽奖人员获奖的概率为:=.23.(8分)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?【解答】解:(1)由题意得,y=把y=120代入y=,得x=3把y=180代入y=,得x=2,∴自变量的取值范围为:2≤x≤3,∴y=(2≤x≤3);(2)设原计划平均每天运送土石方x万米3,则实际平均每天运送土石方(x+0.5)万米3,根据题意得:﹣=24,解得:x=2.5或x=﹣3经检验x=2.5或x=﹣3均为原方程的根,但x=﹣3不符合题意,故舍去,答:原计划每天运送2.5万米3,实际每天运送3万米3.24.(8分)如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点E.(1)求证:DE⊥AC;(2)连接OC交DE于点F,若sin∠ABC=,求的值.【解答】(1)证明:连接OD.∵DE是⊙O的切线,∴DE⊥OD,即∠ODE=90°.∵AB是⊙O的直径,∴O是AB的中点.又∵D是BC的中点,.∴OD∥AC.∴∠DEC=∠ODE=90°.∴DE⊥AC;(2)解:连接AD.∵OD∥AC,∴.∵AB为⊙O的直径,∴∠ADB=∠ADC=90°.又∵D为BC的中点,∴AB=AC.∵sin∠ABC==,故设AD=3x,则AB=AC=4x,OD=2x.∵DE⊥AC,∴∠ADC=∠AED=90°.∵∠DAC=∠EAD,∴△ADC∽△AED.∴.∴AD2=AE•AC.∴.∴.∴.25.(11分)如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k 经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.【解答】解:(1)∵直线y=﹣3x+3与x轴、y轴分别交于点A、B,∴A(1,0),B(0,3).又∵抛物线y=a(x﹣2)2+k经过点A(1,0),B(0,3),∴,解得,故a,k的值分别为1,﹣1;(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.在Rt△AQF中,AQ2=AF2+QF2=1+m2,在Rt△BQE中,BQ2=BE2+EQ2=4+(3﹣m)2,∵AQ=BQ,∴1+m2=4+(3﹣m)2,∴m=2,∴Q点的坐标为(2,2);(3)当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线.又∵对称轴x=2是AC的中垂线,∴M点与顶点P(2,﹣1)重合,N点为点P关于x轴的对称点,其坐标为(2,1).此时,MF=NF=AF=CF=1,且AC⊥MN,∴四边形AMCN为正方形.在Rt△AFN中,AN==,即正方形的边长为.26.(10分)如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.(1)求证:AE⊥BF;(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP到BA的延长线于点Q,求sin ∠BQP的值;(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.【解答】(1)证明:如图1,∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在Rt△ABE和Rt△BCF中,∴Rt△ABE≌Rt△BCF(SAS),∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF.(2)解:如图2,根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin∠BQP===.(3)解:∵正方形ABCD的面积为4,∴边长为2,∵∠BAE=∠EAM,AE⊥BF,∴AN=AB=2,∵∠AHM=90°,∴GN∥HM,∴=,∴=,∴S△AGN=,∴S四边形GHMN=S△AHM﹣S△AGN=1﹣=,∴四边形GHMN的面积是.。

2016-2017学年广西贵港市港南区九年级(上)期中数学试卷

2016-2017学年广西贵港市港南区九年级(上)期中数学试卷

2016-2017学年广西贵港市港南区九年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分) 1. ( 3 分)方程(x -2) (x+3) =0 的解是()A . x=2B . x= - 3C . x i = - 2, x 2=3D . x i =2, x 2= - 3 2 2. ( 3分)抛物线y=2 (x - 3) +1的顶点坐标是( ) A . ( 3, 1)B . (4,- 1) C . (- 3, 1) D . (- 3,- 1) 3. ( 3分)下列图形中,既是轴对称图形又是中心对称图形的是()A •有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定25. ( 3分)若n (n 丰0)是关于x 的方程x +mx+2n=0的根,贝V m+n 的值为()A . 1B . 2C .- 1D .6. ( 3分)下列说法正确的是( A .长度相等的两条弧是等弧 C .直径是同一个圆中最长的弦7 . (3分)若点P (m , - m+3)关于原点的对称点 Q 在第三象限,那么m 的取值范围是( )A . 0v m v 3B . m v 0C . m >0D . m >0 & (3分)某超市一月份的营业额为 36万元,三月份的营业额为 48万元,设每月的平均增长率为x ,则可列方程为()2 2 2 2A . 48 (1 - x ) =36B . 48 (1+x ) =36C . 36 (1 - x ) =48D . 36 (1+x ) =489. ( 3分)若两个连续整数的积是 56,则它们的和为()A . 11B . 15C . - 15D . ± 1510 . ( 3分)如图,圆弧形桥拱的跨度 AB=12米,拱高CD=4米,则拱桥的半径为()A . 6.5 米B . 9 米C . 13 米D . 15 米等边三角形4. ( 3分)一兀二次方程 2x 2 - 5x+1=0的根的情况是(-2 )B .平分弦的直径垂直于弦D .过三点能确定一个圆11. (3分)如图,已知O O是厶ABD的外接圆,AB是O O的直径,CD是OO的弦,/ ABD=58 ° 则/ BCD等于()A. 16°B. 32°C. 58°D. 64°12. (3分)如图所示,已知△ ABC与厶CDA关于点0对称,过0任作直线EF分别交AD、BC于点E、F,下面的结论:①点E和点F,点B和点D是关于中心0对称点;②直线BD必经过点0;③四边形DE0C与四边形BF0A的面积必相等;④△ A0E与厶C0F成中心对称.其中正确的个数为()A . 1 B. 2 C. 3 D. 4二、填空题(共6小题,每小题3分,满分18分)213. __________________________________________________________ (3分)把方程(2x+1)2- x= (x+1)(x- 1)化成一般形式是______________________________ .14. _________________________________________________________________________(3分)若x= - 2是关于x的一元二次方程x - mx+8=0的一个解,则m的值是_____________ .15 . (3分)若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是 ________ .16 . (3分)正三角形中心旋转___ 度的整倍数之后能和自己重合.17 . (3分)如图,/ A0B=30 ° 0M=6,那么以M为圆心,4为半径的圆与直0A的位置关18. (3分)如图①,在△ A0B中,/ AOB=90 ° 0A=3 , 0B=4 .将△ A0B沿x轴依次以点A、B、0为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为_____ .、解答题(共8小题,满分66 分)19. ( 5 分)(1) 7x ( 5x+2) =6 ( 5x+2)(2)关于x 的一元二次方程x 2+3x+m -仁0有两个实数根,求 m 的取值范围.20. (10分)如图,△ ABC 三个顶点的坐标分别为 A (1, 1) , B (4, 2) , C (3, 4). (1) 请画出△ ABC 向左平移5个单位长度后得到的△ A 1B 1C 1; (2) 请画出△ ABC 关于原点对称的厶 A 2B 2C 2;(3) 在x 轴上求作一点 卩,使厶PAB 的周长最小,请画出厶 PAB ,并直接写出P 的坐标. 21. ( 7分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为 400 平方米的三个大小相同的矩形羊圈,求羊圈的边长AB ,BC 各为多少米?22. ( 8分)如图,PA 、PB 是O O 的切线,A 、B 为切点,/ OAB=30度. (1) 求/ APB 的度数;(2 )当OA=3时,求AP 的长.23.( 8分)某商场在销售中发现:某名牌衬衣平均每天可售出20件,每件衬衣盈利40元.为 了迎接元旦节,扩大销售量,减少库存,商场决定采取适当的降价措施,经市场调查发现,如果每件衬衣降价 1元,商场平均每天可多售出 2件.要想平均每天盈利 1200元,每件衬衣应降价多少元?24. (7分)如图,在 Rt △ ABC 中,/ ACB=90 ° / B=30 °将厶ABC 绕点C 按顺时针方向 旋转n 度后,得到△ DEC ,点D 刚好落在AB 边上. (1 )求n 的值;r:4合—r E:15-B-2 1L-1IHI-II-IIpiHHI fil(BHIH HIll-l-ll珂II_3[M ■■ -I- :1 -8 I- g ■■ ■! ■■ -f-l- i! ■I.-l- »■ -s !12 3 4■ ■a4J i' i ■ L ■ ■ ■ jt ■ ■ ■■■■■■■I(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.225. (11分)已知抛物线C i:y=ax +4ax+4a+b (0, b>0)的顶点为M,经过原点O且与x轴另一交点为A .(1)求点A的坐标;)若厶AMO为等腰直角三角形,求抛物线C i的解析式;(3)现将抛物线C i绕着点P (m, 0)旋转180°后得到抛物线C2,若抛物线C2的顶点为N , 当b=1,且顶点N在抛物线C1上时,求m的值.26. (10分)如图1,在△ ABC中,/ ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF .(提示:正方形的四条边都相等,四个角都是直角)(1)如果AB=AC,/ BAC=90 °,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为_______ , 线段CF、BD的数量关系为_____ ;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)_______________________________________________________________ 如果AB丰AC,/ BAC是锐角,点D在线段BC上,当/ ACB满足________________________ 条件时,CF 丄BC (点C、F不重合),不用说明理由.團32016-2017学年广西贵港市港南区九年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1. (3 分)(2013?河南)方程(x - 2)(x+3)=0 的解是()A . x=2 B. x= - 3 C. x i= - 2, x2=3 D . x i=2, x2= - 3【分析】根据已知得出两个一元一次方程,求出方程的解即可.【解答】解:(x- 2)(x+3)=0,x- 2=0 , x+3=0 ,x i=2 , X2= - 3,故选D .【点评】本题考查了解一元关键是能把一元一次方程和解一元二次方程的应用,关键是能把一元二次方程转化成一元一次方程.2 一2. (3分)(2016秋?港南区期中)抛物线y=2 (x - 3)+1的顶点坐标是()A . (3, 1)B . (4,- 1)C . (- 3, 1)D . (- 3, - 1)【分析】由抛物线解析式可求得其顶点坐标.【解答】解:2•/y=2 (x - 3)2+1,•••抛物线顶点坐标为(3, 1),故选A .【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x -h)2+k中,对称轴为x=h,顶点坐标为(h, k).3. (3分)(2016?青神县模拟)下列图形中,既是轴对称图形又是中心对称图形的是()【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形, 以及轴对称图形的定义即可判断出.【解答】解:A、•••此图形旋转180。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年广西贵港市中考数学试卷一、(共12小题,每小题3分,满分36分)每小题都给出标号为(A)、(B)、(C)、(D)的四个选项,其中只有一个是正确的.请考生用2B铅笔在答题卡上将选定的答案标号涂黑. 1.﹣2的绝对值是()A.2 B.﹣2 C.0 D.12.下列运算正确的是()A.3a+2b=5ab B.3a•2b=6ab C.(a3)2=a5D.(ab2)3=ab63.用科学记数法表示的数是1.69×105,则原来的数是()A.169 B.1690 C.16900 D.1690004.在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为()A.35° B.40° C.45° D.50°5.式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥16.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)7.从﹣,0,,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是()A.B.C.D.8.下列命题中错误的是()A.两组对角分别相等的四边形是平行四边形B.矩形的对角线相等C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分且相等的四边形是正方形9.若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2﹣ab+b2=18,则+的值是()A.3 B.﹣3 C.5 D.﹣510.如图,点A在以BC为直径的⊙O内,且AB=AC,以点A为圆心,AC长为半径作弧,得到扇形ABC,剪下扇形ABC围成一个圆锥(AB和AC重合),若∠BAC=120°,BC=2,则这个圆锥底面圆的半径是()A.B.C.D.11.如图,抛物线y=﹣x2+x+与x轴交于A,B两点,与y轴交于点C.若点P是线段AC上方的抛物线上一动点,当△ACP的面积取得最大值时,点P的坐标是()A.(4,3)B.(5,)C.(4,)D.(5,3)12.如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①∠ACD=30°;②S▱ABCD=AC•BC;③OE:AC=:6;④S△OCF=2S△OEF成立的个数有()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,满分18分)13.8的立方根是.14.分解因式:a2b﹣b= .15.如图,已知直线a∥b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则∠2的度数是.16.如图,AB是半圆O的直径,C是半圆O上一点,弦AD平分∠BAC,交BC于点E,若AB=6,AD=5,则DE的长为.17.如图,在Rt△ABC中,∠C=90°,∠BAC=60°,将△ABC绕点A逆时针旋转60°后得到△ADE,若AC=1,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是(结果保留π).18.已知a1=,a2=,a3=,…,a n+1=(n为正整数,且t≠0,1),则a2016= (用含有t的代数式表示).三、解答题(本大题共8小题,满分66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(1)计算:()﹣1﹣﹣(π﹣2016)0+9tan30°;(2)解分式方程: +1=.20.如图,在▱ABCD中,AC为对角线,AC=BC=5,AB=6,AE是△ABC的中线.(1)用无刻度的直尺画出△ABC的高CH(保留画图痕迹);(2)求△ACE的面积.21.如图,已知一次函数y=x+b的图象与反比例函数y=(x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.(1)当△ABC的周长最小时,求点C的坐标;(2)当x+b<时,请直接写出x的取值范围.22.在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是;(2)扇形统计图中,“了解”所对应扇形的圆心角的度数为,m的值为;(3)若该校共有学生1500名,请根据上述调查结果估算该校学生对足球的了解程度为“基本了解”的人数.23.为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.(1)求2014至2016年该市投入科研经费的年平均增长率;(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a万元,请求出a的取值范围.24.如图,在△ABC中,AB=AC,O为BC的中点,AC与半圆O相切于点D.(1)求证:AB是半圆O所在圆的切线;(2)若cos∠ABC=,AB=12,求半圆O所在圆的半径.25.如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.26.如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.①求证:△AGE≌△AFE;②若BE=2,DF=3,求AH的长.(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.2016年广西贵港市中考数学试卷参考答案与试题解析一、(共12小题,每小题3分,满分36分)每小题都给出标号为(A)、(B)、(C)、(D)的四个选项,其中只有一个是正确的.请考生用2B铅笔在答题卡上将选定的答案标号涂黑. 1.﹣2的绝对值是()A.2 B.﹣2 C.0 D.1【考点】绝对值.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣2的绝对值是2.故选:A.2.下列运算正确的是()A.3a+2b=5ab B.3a•2b=6ab C.(a3)2=a5D.(ab2)3=ab6【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方.【分析】分别利用单项式乘以单项式以及合并同类项法则以及积的乘方运算法则、幂的乘方运算法则分别计算得出答案.【解答】解:A、3a+2b无法计算,故此选项错误;B、3a•2b=6ab,正确;C、(a3)2=a6,故此选项错误;D、(ab2)3=a3b6,故此选项错误;故选:B.3.用科学记数法表示的数是1.69×105,则原来的数是()A.169 B.1690 C.16900 D.169000【考点】科学记数法—原数.【分析】根据科学记数法的表示方法,n是几小数点向右移动几位,可得答案.【解答】解:1.69×105,则原来的数是169000,故选:D.4.在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为()A.35° B.40° C.45° D.50°【考点】三角形内角和定理.【分析】在△ABC中,根据三角形内角和是180度来求∠C的度数.【解答】解:∵三角形的内角和是180°,又∠A=95°,∠B=40°∴∠C=180°﹣∠A﹣∠B=180°﹣95°﹣40°=45°,故选C.5.式子在实数范围内有意义,则x的取值范围是()【考点】二次根式有意义的条件.【分析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得x的取值范围.【解答】解:依题意得:x﹣1>0,解得x>1.故选:C.6.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【考点】坐标与图形变化-平移.【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可.【解答】解:∵将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,∴点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,∴A′的坐标为(﹣1,1).故选:A.7.从﹣,0,,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是()A.B.C.D.【考点】概率公式;无理数.【分析】先求出无理数的个数,再根据概率公式即可得出结论.【解答】解:∵﹣,0,,π,3.5这五个数中,无理数有2个,∴随机抽取一个,则抽到无理数的概率是,故选:B.8.下列命题中错误的是()A.两组对角分别相等的四边形是平行四边形B.矩形的对角线相等C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分且相等的四边形是正方形【考点】命题与定理.【分析】直接利用平行四边形以及矩形、菱形、正方形的判定方法分别分析得出答案.【解答】解:A、两组对角分别相等的四边形是平行四边形,正确,不合题意;B、矩形的对角线相等,正确,不合题意;C、对角线互相垂直的平行四边形是菱形,故此选项错误,符合题意;D、对角线互相垂直平分且相等的四边形是正方形,正确,不合题意.故选:C.9.若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2﹣ab+b2=18,则+的值是()【考点】根与系数的关系.【分析】根据方程的解析式结合根与系数的关系找出a+b=3、ab=p,利用完全平方公式将a2﹣ab+b2=18变形成(a+b)2﹣3ab=18,代入数据即可得出关于p的一元一次方程,解方程即可得出p的值,经验证p=﹣3符合题意,再将+变形成﹣2,代入数据即可得出结论.【解答】解:∵a、b为方程x2﹣3x+p=0(p≠0)的两个不相等的实数根,∴a+b=3,ab=p,∵a2﹣ab+b2=(a+b)2﹣3ab=32﹣3p=18,∴p=﹣3.当p=﹣3时,△=(﹣3)2﹣4p=9+12=21>0,∴p=﹣3符合题意.+===﹣2=﹣2=﹣5.故选D.10.如图,点A在以BC为直径的⊙O内,且AB=AC,以点A为圆心,AC长为半径作弧,得到扇形ABC,剪下扇形ABC围成一个圆锥(AB和AC重合),若∠BAC=120°,BC=2,则这个圆锥底面圆的半径是()A.B.C.D.【考点】圆锥的计算.【分析】根据扇形的圆心角的度数和直径BC的长确定扇形的半径,然后确定扇形的弧长,根据圆锥的底面周长等于扇形的弧长列式求解即可.【解答】解:如图,连接AO,∠BAC=120°,∵BC=2,∠OAC=60°,∴OC=,∴AC=2,设圆锥的底面半径为r,则2πr==π,解得:r=,故选B.11.如图,抛物线y=﹣x2+x+与x轴交于A,B两点,与y轴交于点C.若点P是线段AC上方的抛物线上一动点,当△ACP的面积取得最大值时,点P的坐标是()A.(4,3)B.(5,)C.(4,)D.(5,3)【考点】抛物线与x轴的交点;二次函数的最值.【分析】连接PC、PO、PA,设点P坐标(m,﹣),根据S△PAC=S△PCO+S△POA﹣S△A OC 构建二次函数,利用函数性质即可解决问题.【解答】解:连接PC、PO、PA,设点P坐标(m,﹣)令x=0,则y=,点C坐标(0,),令y=0则﹣x2+x+=0,解得x=﹣2或10,∴点A坐标(10,0),点B坐标(﹣2,0),∴S△PAC=S△PCO+S△POA﹣S△AOC=××m+×10×(﹣)﹣××10=﹣(m ﹣5)2+,∴x=5时,△PAC面积最大值为,此时点P坐标(5,).故点P坐标为(5,).12.如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①∠ACD=30°;②S▱ABCD=AC•BC;③OE:AC=:6;④S△OCF=2S△OEF成立的个数有()A.1个B.2个C.3个D.4个【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据角平分线的定义得到∠DCE=∠BCE=60°推出△CBE是等边三角形,证得∠ACB=90°,求出∠ACD=∠CAB=30°,故①正确;由AC⊥BC,得到S▱ABCD=AC•BC,故②正确,及直角三角形得到AC=BC,根据三角形的中位线的性质得到OE=BC,于是得到OE:AC=:6;故③正确;根据相似三角形的性质得到=,求得S△OCF=2S△OEF;故④正确.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵CE平分∠BCD交AB于点E,∴∠DCE=∠BCE=60°∴△CBE是等边三角形,∴BE=BC=CE,∵AB=2BC,∴AE=BC=CE,∴∠ACB=90°,∴∠ACD=∠CAB=30°,故①正确;∵AC⊥BC,∴S▱ABCD=A C•BC,故②正确,在Rt△ACB中,∠ACB=90°,∠CAB=30°,∴AC=BC,∵AO=OC,AE=BE,∴OE=BC,∴OE:AC=,∴OE:AC=:6;故③正确;∵AO=OC,AE=BE,∴OE∥BC,∴△OEF∽△BCF,∴=,∴S△OCF:S△OEF==,∴S△OCF=2S△OEF;故④正确;故选D.二、填空题(共6小题,每小题3分,满分18分)13.8的立方根是 2 .【考点】立方根.【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.14.分解因式:a2b﹣b= b(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式b,进而利用平方差公式分解因式得出答案.【解答】解:a2b﹣b=b(a2﹣1)=b(a+1)(a﹣1).故答案为:b(a+1)(a﹣1).15.如图,已知直线a∥b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则∠2的度数是54°.【考点】平行线的性质.【分析】过点C作CF∥a,由平行线的性质求出∠ACF的度数,再由余角的定义求出∠BCF 的度数,进而可得出结论.【解答】解:过点C作CF∥a,∵∠1=36°,∴∠1=∠ACF=36°.∵∠C=90°,∴∠BCF=90°﹣36°=54°.∵直线a∥b,∴CF∥b,∴∠2=∠BCF=54°.故答案为:54°.16.如图,AB是半圆O的直径,C是半圆O上一点,弦AD平分∠BAC,交BC于点E,若AB=6,AD=5,则DE的长为.【考点】相似三角形的判定与性质;勾股定理;圆周角定理.【分析】连接BD,由勾股定理先求出BD的长,再判定△ABD∽△BED,根据对应边成比例列出比例式,可求得DE的长.【解答】解:如图,连接BD,∵AB为⊙O的直径,AB=6,AD=5,∴∠ADB=90°,∴BD==,∵弦AD平分∠BAC,∴,∴∠DBE=∠DAB,在△ABD和△BED中,,∴△ABD∽△BED,∴,即BD2=ED×AD,∴()2=ED×5,解得DE=.故答案为:.17.如图,在Rt△ABC中,∠C=90°,∠BAC=60°,将△ABC绕点A逆时针旋转60°后得到△ADE,若AC=1,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是(结果保留π).【考点】扇形面积的计算;旋转的性质.【分析】根据阴影部分的面积是:S扇形DAB+S△ABC﹣S△ADE﹣S扇形ACE,分别求得:扇形BAD的面积、S△ABC以及扇形CAE的面积,即可求解.【解答】解:∵∠C=90°,∠BAC=60°,AC=1,∴AB=2,扇形BAD的面积是: =,在直角△ABC中,B C=AB•sin60°=2×=,AC=1,∴S△ABC=S△ADE=AC•BC=×1×=.扇形CAE的面积是: =,则阴影部分的面积是:S扇形DAB+S△ABC﹣S△ADE﹣S扇形ACE=﹣=.故答案为:.18.已知a1=,a2=,a3=,…,a n+1=(n为正整数,且t≠0,1),则a2016= (用含有t的代数式表示).【考点】规律型:数字的变化类.【分析】把a1代入确定出a2,把a2代入确定出a3,依此类推,得到一般性规律,即可确定出a2016的值.【解答】解:根据题意得:a1=,a2=,a3=,…,2016÷3=672,∴a2016的值为,故答案为三、解答题(本大题共8小题,满分66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(1)计算:()﹣1﹣﹣(π﹣2016)0+9tan30°;(2)解分式方程: +1=.【考点】解分式方程;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)原式利用零指数幂、负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2﹣3﹣1+9×=2﹣3﹣1+3=1;(2)去分母得:x﹣3+x﹣2=3,解得:x=4,经检验x=4是分式方程的解.20.如图,在▱ABCD中,AC为对角线,AC=BC=5,AB=6,AE是△ABC的中线.(1)用无刻度的直尺画出△ABC的高CH(保留画图痕迹);(2)求△ACE的面积.【考点】平行四边形的性质;作图—复杂作图.【分析】(1)连接BD,BD与AE交于点F,连接CF并延长到AB,与AB交于点H,则CH为△ABC的高;(2)首先由三线合一,求得AH的长,再由勾股定理求得CH的长,继而求得△ABC的面积,又由AE是△ABC的中线,求得△ACE的面积.【解答】解:(1)如图,连接BD,BD与AE交于点F,连接CF并延长到AB,则它与AB的交点即为H.理由如下:∵BD、AC是▱ABCD的对角线,∴点O是AC的中点,∵AE、BO是等腰△ABC两腰上的中线,∴AE=BO,AO=BE,∵AO=BE,∴△ABO≌△BAE(SSS),∴∠ABO=∠BAE,△ABF中,∵∠FAB=∠FBA,∴FA=FB,∵∠BAC=∠ABC,∴∠EAC=∠OBC,由可得△AFC≌BFC(SAS)∴∠ACF=∠BCF,即CH是等腰△ABC顶角平分线,所以CH是△ABC的高;(2)∵AC=BC=5,AB=6,CH⊥AB,∴AH=AB=3,∴CH==4,∴S△ABC=AB•CH=×6×4=12,∵AE是△ABC的中线,∴S△ACE=S△ABC=6.21.如图,已知一次函数y=x+b的图象与反比例函数y=(x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.(1)当△ABC的周长最小时,求点C的坐标;(2)当x+b<时,请直接写出x的取值范围.【考点】反比例函数与一次函数的交点问题;待定系数法求一次函数解析式;反比例函数图象上点的坐标特征;轴对称-最短路线问题.【分析】(1)作点A关于y轴的对称点A′,连接A′B交y轴于点C,此时点C即是所求.由点A为一次函数与反比例函数的交点,利用待定系数法和反比例函数图象点的坐标特征即可求出一次函数与反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点A、B的坐标,再根据点A′与点A关于y轴对称,求出点A′的坐标,设出直线A′B的解析式为y=mx+n,结合点的坐标利用待定系数法即可求出直线A′B的解析式,令直线A′B解析式中x为0,求出y的值,即可得出结论;(2)根据两函数图象的上下关系结合点A、B的坐标,即可得出不等式的解集.【解答】解:(1)作点A关于y轴的对称点A′,连接A′B交y轴于点C,此时点C即是所求,如图所示.∵反比例函数y=(x<0)的图象过点A(﹣1,2),∴k=﹣1×2=﹣2,∴反比例函数解析式为y=﹣(x<0);∵一次函数y=x+b的图象过点A(﹣1,2),∴2=﹣+b,解得:b=,∴一次函数解析式为y=x+.联立一次函数解析式与反比例函数解析式成方程组:,解得:,或,∴点A的坐标为(﹣1,2)、点B的坐标为(﹣4,).∵点A′与点A关于y轴对称,∴点A′的坐标为(1,2),设直线A′B的解析式为y=mx+n,则有,解得:,∴直线A′B的解析式为y=x+.令y=x+中x=0,则y=,∴点C的坐标为(0,).(2)观察函数图象,发现:当x<﹣4或﹣1<x<0时,一次函数图象在反比例函数图象下方,∴当x+<﹣时,x的取值范围为x<﹣4或﹣1<x<0.22.在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是120 ;(2)扇形统计图中,“了解”所对应扇形的圆心角的度数为30°,m的值为25 ;(3)若该校共有学生1500名,请根据上述调查结果估算该校学生对足球的了解程度为“基本了解”的人数.【考点】折线统计图;用样本估计总体;扇形统计图.【分析】(1)根据折线统计图可得出本次接受问卷调查的学生总人数是20+60+30+10,再计算即可;(2)用360°乘以“了解”占的百分比即可求出所对应扇形的圆心角的度数,用基本了解的人数除以接受问卷调查的学生总人数即可求出m的值;(3)用该校总人数乘以对足球的了解程度为“基本了解”的人数所占的百分比即可.【解答】解:(1)本次接受问卷调查的学生总人数是20+60+30+10=120(人);故答案为:120;(2)“了解”所对应扇形的圆心角的度数为:360°×=30°;×100%=25%,则m的值是25;故答案为:30°,25;(3)若该校共有学生1500名,则该校学生对足球的了解程度为“基本了解”的人数为:1500×25%=375.23.为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.(1)求2014至2016年该市投入科研经费的年平均增长率;(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a万元,请求出a的取值范围.【考点】一元二次方程的应用;一元一次不等式组的应用.【分析】(1)等量关系为:2014年投入科研经费×(1+增长率)2=2016年投入科研经费,把相关数值代入求解即可;(2)根据:×100%≤15%解不等式求解即可.【解答】解:(1)设2014至2016年该市投入科研经费的年平均增长率为x,根据题意,得:500(1+x)2=720,解得:x1=0.2=20%,x2=﹣2.2(舍),答:2014至2016年该市投入科研经费的年平均增长率为20%.(2)根据题意,得:×100%≤15%,解得:a≤828,又∵该市计划2017年投入的科研经费比2016年有所增加故a的取值范围为720<a≤828.24.如图,在△ABC中,AB=AC,O为BC的中点,AC与半圆O相切于点D.(1)求证:AB是半圆O所在圆的切线;(2)若cos∠ABC=,AB=12,求半圆O所在圆的半径.【考点】切线的判定与性质.【分析】(1)根据等腰三角形的性质,可得OA,根据角平分线的性质,可得OE,根据切线的判定,可得答案;(2)根据余弦,可得OB的长,根据勾股定理,可得OA的长,根据三角形的面积,可得OE 的长.【解答】(1)证明:如图1,作OD⊥AC于D,OE⊥AB于E,∵AB=AC,O为BC的中点,∴∠CAO=∠BAO.∵OD⊥AC于D,OE⊥AB于E,∴OD=OE,∵AB经过圆O半径的外端,∴AB是半圆O所在圆的切线;(2)cos∠ABC=,AB=12,得OB=8.由勾股定理,得AO==4.由三角形的面积,得S△AOB=AB•OE=OB•AO,OE==,半圆O所在圆的半径是.25.如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把A、B两点的坐标代入,利用待定系数法可求得抛物线的解析式;(2)当S△ABE=S△ABC时,可知E点和C点的纵坐标相同,可求得E点坐标;(3)在△CAE中,过E作ED⊥AC于点D,可求得ED和AD的长度,设出点P坐标,过P作PQ⊥x轴于点Q,由条件可知△EDA∽△PQA,利用相似三角形的对应边可得到关于P点坐标的方程,可求得P点坐标.【解答】解:(1)把A、B两点坐标代入解析式可得,解得,∴抛物线解析式为y=x2+x﹣5;(2)在y=x2+x﹣5中,令x=0可得y=﹣5,∴C(0,﹣5),∵S△ABE=S△ABC,且E点在x轴下方,∴E点纵坐标和C点纵坐标相同,当y=﹣5时,代入可得x2+x=﹣5,解得x=﹣2或x=0(舍去),∴E点坐标为(﹣2,﹣5);(3)假设存在满足条件的P点,其坐标为(m, m2+m﹣5),如图,连接AP、CE、AE,过E作ED⊥AC于点D,过P作PQ⊥x轴于点Q,则AQ=AO+OQ=5+m,PQ=|m2+m﹣5|,在Rt△AOC中,OA=OC=5,则AC=5,∠ACO=∠DCE=45°,由(2)可得EC=2,在Rt△EDC中,可得DE=DC=,∴AD=AC﹣DC=5﹣=4,当∠BAP=∠CAE时,则△EDA∽△PQA,∴=,即=,∴m2+m﹣5=(5+m)或m2+m﹣5=﹣(5+m),当m2+m﹣5=(5+m)时,整理可得4m2﹣5m﹣75=0,解得m=或m=﹣5(与A点重合,舍去),当m2+m﹣5=﹣(5+m)时,整理可得4m2+11m﹣45=0,解得m=或m=﹣5(与A点重合,舍去),∴存在满足条件的点P,其横坐标为或.26.如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.①求证:△AGE≌△AFE;②若BE=2,DF=3,求AH的长.(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.【考点】四边形综合题.【分析】(1)①由旋转的性质可知:AF=AG,∠DAF=∠BAG,接下来在证明∠GAE=∠FAE,然后依据SAS证明△GAE≌△FAE即可;②由全等三角形的性质可知:AB=AH,GE=EF=5.设正方形的边长为x,接下来,在Rt△EFC中,依据勾股定理列方程求解即可;(2)将△ABM逆时针旋转90°得△ADM′.在△NM′D中依据勾股定理可证明NM′2=ND2+DM′2,接下来证明△AMN≌△ANM′,于的得到MN=NM′,最后再由BM=DM′证明即可.【解答】解:(1)①由旋转的性质可知:AF=AG,∠DAF=∠BAG.∵四边形ABCD为正方形,∴∠BAD=90°.又∵∠EAF=45°,∴∠BAE+∠DAF=45°.∴∠BAG+∠BAE=45°.∴∠GAE=∠FAE.在△GAE和△FAE中,∴△GAE≌△FAE.②∵△GAE≌△FAE,AB⊥GE,AH⊥EF,∴AB=AH,GE=EF=5.设正方形的边长为x,则EC=x﹣2,FC=x﹣3.在Rt△EFC中,由勾股定理得:EF2=FC2+EC2,即(x﹣2)2+(x﹣3)2=25.解得:x=6.∴AB=6.∴AH=6.(3)如图所示:将△ABM逆时针旋转90°得△ADM′.∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°.由旋转的性质可知:∠ABM=∠ADM′=45°,BE=DM′.∴∠NDM′=90°.∴NM′2=ND2+DM′2.∵∠EAM′=90°,∠EAF=45°,∴∠EAF=∠FAM′=45°.在△AMN和△ANM′中,,∴△AMN≌△ANM′.∴MN=NM′.又∵BM=DM′,∴MN2=ND2+BM2.古今名言敏而好学,不耻下问——孔子业精于勤,荒于嬉;行成于思,毁于随——韩愈兴于《诗》,立于礼,成于乐——孔子己所不欲,勿施于人——孔子读书破万卷,下笔如有神——杜甫读书有三到,谓心到,眼到,口到——朱熹立身以立学为先,立学以读书为本——欧阳修读万卷书,行万里路——刘彝黑发不知勤学早,白首方悔读书迟——颜真卿书卷多情似故人,晨昏忧乐每相亲——于谦书犹药也,善读之可以医愚——刘向莫等闲,白了少年头,空悲切——岳飞发奋识遍天下字,立志读尽人间书——苏轼鸟欲高飞先振翅,人求上进先读书——李苦禅立志宜思真品格,读书须尽苦功夫——阮元非淡泊无以明志,非宁静无以致远——诸葛亮熟读唐诗三百首,不会作诗也会吟——孙洙《唐诗三百首序》书到用时方恨少,事非经过不知难——陆游问渠那得清如许,为有源头活水来——朱熹旧书不厌百回读,熟读精思子自知——苏轼书痴者文必工,艺痴者技必良——蒲松龄声明访问者可将本资料提供的内容用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律的规定,不得侵犯本文档及相关权利人的合法权利。

相关文档
最新文档