BP神经网络通常是指基于误差反向传播算法的多层前向神经网络,神经元

合集下载

bp神经网络实例分析

bp神经网络实例分析

数据集划分
01
02
03
训练集
用于训练神经网络,占总 数据的70%-90%。
验证集
用于调整超参数和选择最 佳模型,占估模型的性能,占 总数据的10%-30%。
03
BP神经网络模型构建
神经元模型
神经元模型
神经元是神经网络的基本单元, 它模拟了生物神经元的基本功能,
误差计算
根据实际输出与期望输出计算误差。
权值调整
根据误差反向传播算法调整各层的权值和阈值。
迭代训练
重复前向传播和权值调整过程,直到达到预设的迭代次 数或误差要求。
02
BP神经网络实例选择与数据准备
实例选择
选择一个具有代表性的问题
为了展示BP神经网络的应用,选择一个具有代表性的问题,例如 分类、回归或聚类等。
成。
节点数量
02
每一层的节点数量需要根据具体问题来确定,过多的节点可能
导致过拟合,而节点过少则可能无法充分提取数据特征。
连接权重
03
连接权重是神经网络中非常重要的参数,它决定了神经元之间
的连接强度和信息传递方式。
激活函数选择
激活函数的作用
激活函数用于引入非线性特性,使得神经网络能够更好地处理复 杂的非线性问题。
误差反向传播
当实际输出与期望输出不符时,进入 误差反向传播阶段,误差信号从输出 层开始逐层向输入层传播,并根据误 差调整各层的权值和阈值。
训练过程
数据准备
准备训练数据和测试数据,并对数据进行预 处理,如归一化等。
网络初始化
为各层神经元设置初始权值和阈值。
前向传播
输入样本数据,通过正向传播计算每一层的输出 值。
3

BP神经网络模型分析

BP神经网络模型分析

BP神经网络模型分析自动化1001 31002369 潘飞摘要:本文介绍了BP网络模型、基本原理、算法以及研究现状。

关键词:BP网络基本原理结构模型1引言BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一2BP神经网络的基本原理BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。

输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。

当实际输出与期望输出不符时,进入误差的反向传播阶段。

误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。

周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止。

BP神经网络模型BP网络模型包括其输入输出模型、作用函数模型、误差计算模型和自学习模型。

(1)节点输出模型隐节点输出模型:Oj=f(∑Wij×Xi-qj) (1)输出节点输出模型:Yk=f(∑Tjk×Oj-qk) (2)f-非线形作用函数;q -神经单元阈值。

图1 典型BP网络结构模型图表 1 BP网络结构(2)作用函数模型作用函数是反映下层输入对上层节点刺激脉冲强度的函数又称刺激函数,一般取为(0,1)内连续取值Sigmoid函数: f(x)=1/(1+e) (3)(3)误差计算模型误差计算模型是反映神经网络期望输出与计算输出之间误差大小的函数:Ep=1/2×∑(tpi-Opi) (4)tpi- i节点的期望输出值;Opi-i节点计算输出值。

BP神经网络算法原理

BP神经网络算法原理

隐藏层节点数
合理选择隐藏层节点数 可以提高像识别、语音识别、自然语言处理等领域有广泛应用,并且不断发展和完善。
隐含层
通过多层神经元的计算和传 递信息,提取输入数据的特 征。
输出层
输出神经元将经过计算后的 结果作为最终预测或分类的 结果。
前向传播算法
前向传播是从输入层到输出层的信息流传递过程,各层神经元依次计算并传 递信息,最终得到预测结果。
反向传播算法
反向传播是通过计算输出误差对权值和偏置进行更新,以最小化输出与实际值之间的误差。
权值更新与训练过程
1
初始化权值
随机初始化权值和偏置,开始训练过程。
2
前向传播计算
通过前向传播算法计算输出结果。
3
反向传播更新
根据误差计算反向传播梯度并更新权值和偏置。
优化技巧与常见问题
学习率
学习率的选择会影响算 法的收敛速度和稳定性。
过拟合
过拟合问题可能导致训 练集表现良好但测试集 表现不佳,需要采取正 则化等方法进行处理。
BP神经网络算法原理
BP神经网络算法是一种基于误差反向传播原理的机器学习算法,用于解决复 杂的非线性问题。
BP神经网络算法的基本思想
BP神经网络通过输入层、隐含层和输出层构成,利用前向传播和反向传播的 机制不断调整权值以减小输出与真实值之间的误差。
BP神经网络的结构
输入层
负责接收外部输入数据的层 级。

bp算法原理

bp算法原理

bp算法原理BP算法原理。

BP神经网络算法是一种常见的人工神经网络训练算法,它是由Rumelhart和McCelland等人提出的,也是目前应用最为广泛的一种神经网络学习算法。

BP算法的全称是“误差反向传播算法”,它主要用于训练多层前馈神经网络,通过不断调整网络中的权值和阈值,使得网络的输出结果与期望结果尽可能接近。

在本文中,我们将详细介绍BP算法的原理及其实现过程。

首先,我们需要了解BP算法的基本原理。

BP算法的核心思想是通过计算输出值和期望值之间的误差,然后将误差反向传播到网络中的各个神经元,根据误差大小来调整各个神经元之间的连接权值和阈值,从而不断优化网络的性能。

具体而言,BP算法包括两个主要的过程,即前向传播和反向传播。

在前向传播过程中,输入样本通过网络的输入层,经过隐藏层的处理,最终得到输出层的输出结果。

然后,将输出结果与期望输出进行比较,计算误差值。

接着,在反向传播过程中,将误差值从输出层开始逐层向前传播,根据误差值调整连接权值和阈值。

这样,通过不断迭代训练,网络的输出结果将逐渐接近期望输出,从而实现对神经网络的训练。

BP算法的实现过程可以分为以下几个步骤:1. 初始化网络,确定网络的结构,包括输入层、隐藏层和输出层的神经元数量,以及他们之间的连接权值和阈值。

2. 输入样本,将训练样本输入到网络中,通过前向传播计算得到输出结果。

3. 计算误差,将网络输出结果与期望输出进行比较,计算误差值。

4. 反向传播,根据误差值,从输出层开始逐层向前传播,调整连接权值和阈值。

5. 更新权值和阈值,根据误差值的大小,利用梯度下降法更新连接权值和阈值,使得误差逐渐减小。

6. 重复迭代,重复以上步骤,直到网络的输出结果与期望输出尽可能接近,或者达到预定的训练次数。

需要注意的是,BP算法的训练过程可能会受到一些因素的影响,比如局部最小值、过拟合等问题。

为了解决这些问题,可以采用一些改进的BP算法,比如动量法、学习率衰减等方法,来提高网络的训练效果。

bp网络原理

bp网络原理

bp网络原理BP网络,即反向传播神经网络(Backpropagation Neural Network),是一种基于梯度下降算法的前馈神经网络。

它是一种常用的人工神经网络模型,被广泛应用于模式识别、预测和分类等任务中。

BP网络的基本原理是建立一个多层的神经网络结构,包括输入层、隐藏层和输出层。

每个神经元都与下一层的所有神经元连接,并通过权重连接进行信息传递。

输入信号从输入层经过权重连接传递到隐藏层,再经过隐藏层的激活函数作用后传递到输出层。

BP网络的训练过程主要分为前向传播和反向传播两个阶段。

在前向传播阶段,输入样本经过网络的各层神经元,得到输出结果。

每个神经元将输入信号与权重相乘并累加,然后经过激活函数进行非线性转换,得到该神经元的输出。

在反向传播阶段,通过计算输出层和期望输出之间的误差,按照梯度下降的方法不断调整每个神经元的权重,以最小化误差。

误差通过链式法则从输出层回传到隐藏层和输入层,根据权重的梯度进行更新。

反复迭代上述的前向传播和反向传播过程,直到网络的输出误差满足要求或训练次数达到指定值为止。

BP网络具有较好的非线性拟合能力和学习能力。

它的优点在于能够通过训练样本自动调整权重,从而对输入样本进行分类和预测。

然而,BP网络也存在一些问题,如容易陷入局部最小值、训练速度慢等。

为了克服BP网络的局限性,研究者们提出了一些改进方法,如改进的激活函数、正则化技术、自适应学习率等。

这些方法在提高网络性能和加速训练过程方面起到了积极的作用。

总结起来,BP网络是一种基于梯度下降算法的前馈神经网络,通过前向传播和反向传播的方式不断调整神经元的权重,以实现输入样本的分类和预测。

虽然存在一些问题,但通过改进方法可以提高其性能和训练速度。

贝叶斯优化的bpnn模型python代码-概述说明以及解释

贝叶斯优化的bpnn模型python代码-概述说明以及解释

贝叶斯优化的bpnn模型python代码-概述说明以及解释1.引言1.1 概述在这个部分,你可以描述贝叶斯优化和BP神经网络模型的基本概念和背景。

可以简要介绍贝叶斯优化是一种基于概率和贝叶斯理论的优化方法,用于在给定的限制条件下寻找最优解。

同时也可以介绍BP神经网络是一种常用的人工神经网络模型,用于解决分类和回归等问题。

你可以讨论贝叶斯优化和BP神经网络在不同领域的应用,以及它们之间结合起来的潜在优势。

可以指出这种结合可以帮助优化神经网络的超参数,提高训练效率和准确性。

最后,可以强调本文旨在探讨如何使用贝叶斯优化优化BP神经网络的参数,以提高其性能和应用范围。

1.2文章结构1.2 文章结构本文主要分为引言、正文和结论三部分。

具体结构安排如下:引言部分将会首先概述贝叶斯优化和BP神经网络,并介绍本文的研究目的。

正文部分主要分为三个小节。

首先是贝叶斯优化简介,介绍这一优化方法的原理和应用场景;接着是BP神经网络模型概述,解释BP神经网络的基本原理和结构;最后是结合贝叶斯优化和BP神经网络的优势,探讨将两者结合应用的好处和可行性。

结论部分将总结贝叶斯优化在BP神经网络中的应用情况,展望未来研究方向,并对整个文章进行总结概括。

1.3 目的:本文旨在探讨贝叶斯优化在BP神经网络中的应用,并分析结合两者的优势。

通过对贝叶斯优化和BP神经网络的简介,以及它们各自的优势进行论述,旨在为读者提供一个全面的了解和认识。

同时,本文也将总结贝叶斯优化在BP神经网络中的实际应用和未来研究方向,为相关领域的研究者和从业者提供参考和启发。

通过本文的阐述,希望能够为贝叶斯优化和BP神经网络的进一步研究和应用提供一定的指导和帮助。

2.正文2.1 贝叶斯优化简介:贝叶斯优化是一种通过在可能的目标函数空间中建立高斯过程来优化目标函数的方法。

其主要思想是在探索和利用之间进行权衡,通过不断地试验目标函数来找到最优解。

贝叶斯优化通常用于处理黑箱函数,即目标函数的具体形式未知,只能通过输入输出的对应关系进行观测。

bp神经网络的原理

bp神经网络的原理BP神经网络(也称为反向传播神经网络)是一种基于多层前馈网络的强大机器学习模型。

它可以用于分类、回归和其他许多任务。

BP神经网络的原理基于反向传播算法,通过反向传播误差来调整神经网络的权重和偏差,从而使网络能够学习和适应输入数据。

BP神经网络的基本结构包括输入层、隐藏层和输出层。

每个层都由神经元组成,每个神经元都与上一层的所有神经元连接,并具有一个权重值。

神经元的输入是上一层的输出,通过加权和和激活函数后得到输出。

通过网络中的连接和权重,每层的输出被传递到下一层,最终得到输出层的结果。

BP神经网络的训练包括两个关键步骤:前向传播和反向传播。

前向传播是指通过网络将输入数据从输入层传递到输出层,计算网络的输出结果。

反向传播是基于网络输出结果与真实标签的误差,从输出层向输入层逆向传播误差,并根据误差调整权重和偏差。

在反向传播过程中,通过计算每个神经元的误差梯度,我们可以使用梯度下降算法更新网络中的权重和偏差。

误差梯度是指误差对权重和偏差的偏导数,衡量了误差对于权重和偏差的影响程度。

利用误差梯度,我们可以将误差从输出层反向传播到隐藏层和输入层,同时更新每层的权重和偏差,从而不断优化网络的性能。

通过多次迭代训练,BP神经网络可以逐渐减少误差,并提高对输入数据的泛化能力。

然而,BP神经网络也存在一些问题,如容易陷入局部最优解、过拟合等。

为了克服这些问题,可以采用一些技巧,如正则化、随机初始权重、早停等方法。

总结而言,BP神经网络的原理是通过前向传播和反向传播算法来训练网络,实现对输入数据的学习和预测。

通过调整权重和偏差,网络可以逐渐减少误差,提高准确性。

BP神经网络及深度学习研究-综述(最新整理)

BP神经网络及深度学习研究摘要:人工神经网络是一门交叉性学科,已广泛于医学、生物学、生理学、哲学、信息学、计算机科学、认知学等多学科交叉技术领域,并取得了重要成果。

BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

本文将主要介绍神经网络结构,重点研究BP神经网络原理、BP神经网络算法分析及改进和深度学习的研究。

关键词:BP神经网络、算法分析、应用1 引言人工神经网络(Artificial Neural Network,即ANN ),作为对人脑最简单的一种抽象和模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是20世纪80 年代以来人工智能领域兴起的研究热点。

人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,旨在模仿人脑结构及其功能的信息处理系统。

人工神经网络最有吸引力的特点就是它的学习能力。

因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。

最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。

因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用[1]人工神经网络模型对问题进行研究优化解决。

人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。

现在分别介绍人工神经元模型及人工神经网络模型。

1.1 人工神经元模型仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的仿生模拟,用来模拟人工神经网络[2]。

人们提出的神经元模型有很多,其中最早提出并且影响较大的是1943年心理学家McCulloch和数学家W. Pitts在分析总结神经元基本特性的基础上首先提出的MP模型。

毕业设计论文基于遗传算法的BP神经网络的优化问题研究.doc

编号:审定成绩:重庆邮电大学毕业设计(论文)设计(论文)题目:基于遗传算法的BP神经网络的优化问题研究学院名称:学生姓名:专业:班级:学号:指导教师:答辩组负责人:填表时间:2010年06月重庆邮电大学教务处制摘要本文的主要研究工作如下:1、介绍了遗传算法的起源、发展和应用,阐述了遗传算法的基本操作,基本原理和遗传算法的特点。

2、介绍了人工神经网络的发展,基本原理,BP神经网络的结构以及BP算法。

3、利用遗传算法全局搜索能力强的特点与人工神经网络模型学习能力强的特点,把遗传算法用于神经网络初始权重的优化,设计出混合GA-BP算法,可以在一定程度上克服神经网络模型训练中普遍存在的局部极小点问题。

4、对某型导弹测试设备故障诊断建立神经网络,用GA直接训练BP神经网络权值,然后与纯BP算法相比较。

再用改进的GA-BP算法进行神经网络训练和检验,运用Matlab软件进行仿真,结果表明,用改进的GA-BP算法优化神经网络无论从收敛速度、误差及精度都明显高于未进行优化的BP神经网络,将两者结合从而得到比现有学习算法更好的学习效果。

【关键词】神经网络BP算法遗传算法ABSTRACTThe main research work is as follows:1. Describing the origin of the genetic algorithm, development and application, explain the basic operations of genetic algorithm, the basic principles and characteristics of genetic algorithms.2. Describing the development of artificial neural network, the basic principle, BP neural network structure and BP.3. Using the genetic algorithm global search capability of the characteristics and learning ability of artificial neural network model with strong features, the genetic algorithm for neural network initial weights of the optimization, design hybrid GA-BP algorithm, to a certain extent, overcome nerves ubiquitous network model training local minimum problem.4. A missile test on the fault diagnosis of neural network, trained with the GA directly to BP neural network weights, and then compared with the pure BP algorithm. Then the improved GA-BP algorithm neural network training and testing, use of Matlab software simulation results show that the improved GA-BP algorithm to optimize neural network in terms of convergence rate, error and accuracy were significantly higher than optimized BP neural network, a combination of both to be better than existing learning algorithm learning.Key words:neural network back-propagation algorithms genetic algorithms目录第一章绪论 (1)1.1 遗传算法的起源 (1)1.2 遗传算法的发展和应用 (1)1.2.1 遗传算法的发展过程 (1)1.2.2 遗传算法的应用领域 (2)1.3 基于遗传算法的BP神经网络 (3)1.4 本章小结 (4)第二章遗传算法 (5)2.1 遗传算法基本操作 (5)2.1.1 选择(Selection) (5)2.1.2 交叉(Crossover) (6)2.1.3 变异(Mutation) (7)2.2 遗传算法基本思想 (8)2.3 遗传算法的特点 (9)2.3.1 常规的寻优算法 (9)2.3.2 遗传算法与常规寻优算法的比较 (10)2.4 本章小结 (11)第三章神经网络 (12)3.1 人工神经网络发展 (12)3.2 神经网络基本原理 (12)3.2.1 神经元模型 (12)3.2.2 神经网络结构及工作方式 (14)3.2.3 神经网络原理概要 (15)3.3 BP神经网络 (15)3.4 本章小结 (21)第四章遗传算法优化BP神经网络 (22)4.1 遗传算法优化神经网络概述 (22)4.1.1 用遗传算法优化神经网络结构 (22)4.1.2 用遗传算法优化神经网络连接权值 (22)4.2 GA-BP优化方案及算法实现 (23)4.3 GA-BP仿真实现 (24)4.3.1 用GA直接训练BP网络的权值算法 (25)4.3.2 纯BP算法 (26)4.3.3 GA训练BP网络的权值与纯BP算法的比较 (28)4.3.4 混合GA-BP算法 (28)4.4 本章小结 (31)结论 (32)致谢 (33)参考文献 (34)附录 (35)1 英文原文 (35)2 英文翻译 (42)3 源程序 (47)第一章绪论1.1 遗传算法的起源从生物学上看,生物个体是由细胞组成的,而细胞则主要由细胞膜、细胞质、和细胞核构成。

基于PCA_BP神经网络的股票价格预测

基于PCA-BP神经网络的股票价格预测李振东王振兴(兰州商学院)一、引言股票的价格预测,是股票界和学术界一直关注的问题。

人们通过各种方法对股票的价格进行预测:多元回归分析、时间序列分析、指数平滑等是最常见的方法。

然而由于股票市场的非线性,时变性的特点,传统的统计方法很难给出满意的结果。

神经网络系统是一个高度复杂的非线性动力学系统,不但具有一般非线性系统的共性,更主要的是它还具有自己的特点。

当前应用较多的是多层前馈式神经网络,其典型的网络训练算法是反向传输算法(BP算法)。

但是,由于人们对类似股票这样的非线性系统的内部运行机制缺乏深刻的认识,因此无法判断哪些变量对预测目标有较大的影响,哪些变量又无关紧要。

为了解决输入变量过多的问题,文中使用主成分BP神经网络的股票价格预测模型。

它将原来较多的输入变量利用线性变换后得到一组个数较少的彼此不相关的新输入变量,并且包含原输入变量的大部分信息,再用这些个数较少的新输入变量作为BP神经网络的输入进行预测。

二、主成分-BP神经网络预测过程1.主成分分析主成分分析是利用降维的思想,在损失很少的前提下把多个指标化为几个综合指标的多元统计方法。

主成分分析的步骤:(1)将原始数据进行标准化处理:x*ij=x ij-x js j其中,x*ij是x ij的标准化数据,x j和s j分别是第j个指标的样本均值和样本标准差。

(2)建立标准化数据的相关系数矩阵R,求出相关矩阵R的特征值λ1≥λ2....≥λp>0,及对应的特征向量u1,u2,....,u n,于是得到p个主成分。

则第i个主成分为:y i=u1i x*1+u2i x*2+...+u pi x*p,Yi,的特征值λ2即为该主成分的方差,方差越大,对总变差的贡献也越大,其贡献率为αi=λi/pk=1Σλk,αi反映了第i个主成分综合原始变量信息的百分比。

(3)确定主成分。

根据主成分的累计方差贡献率来确定,这里我们选择pk=1Σαi≥85%的最小整数m,就确定了前m个主成分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用BP 神经网络对大直径SHPB 杆弥散效应的修正研究
朱 励
BP 神经网络采用Sigmoid 型可微函数作为传递函数,可以实现输入和输出间的任意非线性映射,这使得它在函数逼近、模式识别、数据压缩等领域有着广泛的应用。

常规SHPB(Split Hopkinson Pressure Bar)技术是研究材料动态响应的重要实验手段,但一维应力加载是其最基本的假定,这实际上忽视了杆中质点横向运动的惯性作用,即忽视了横向惯性引起的弥散效应。

近年来,为了研究一些低阻抗非均质材料,大直径的SHPB 应用越来越多。

大直径杆中应力脉冲在杆中传播时,波形上升沿时间延长,波形振荡显著增强,脉冲峰值随传播距离而衰减。

因此大直径SHPB 杆中的弥散效应将影响到实验结果可靠性,在数据处理时必须加以修正。

利用BP 算法的数学原理,得到修整权值调整公式为:
a) 调整隐含层到输出层的权值
q j p i t w d b t w ij j i ij ,...,2,1,,...,2,1),()1(==∆+=+∆αη (1)
其中η为学习率,α为动量率,它的引入有利于加速收敛和防止振荡。

b) 调整输入层到隐含层的权值
p i n h t v e a t v hi i h hi ,...,2,1,,...,2,1),()1(==∆+=+∆αη (2)
按照上面公式(1)和(2)来反复计算和调整权值,直到此误差达到预定的值为止。

在实验修正过程中,通过测量SHPB 杠上某一位置点的应力波信号,然后由公式(1)和(2)确定的修整权值推算样品端的信号。

本文确定的方法网络收敛速度快,在训练迭代至100步时,训练误差即可接近0.0001,神经网络的学习效果好。

采用BP 神经网络和瞬态有限元计算相结合,对大直径SHPB 杆几何弥散效应的修正问题进行了探索。

研究表明:采用瞬态有限元计算结果,对网络进行训练和仿真,训练效果和预示结果都比较好;BP 神经网络可以很方便地进行正分析和反分析,确定杆中弥散效应的隐式传递函数,即能方便地对弥散效应进行修正。

Modification of the Stress Wave Dispersion in Large-Diameter SHPB
by BP Neural Network
ZHU Li, WANG Yong-gang, HAO Jun
注:此文已在四川师范大学学报(自然科学版)2005.3期上发表。

相关文档
最新文档