全国电子设计大赛一等奖论文音频信号分析仪(
全国电子设计大赛报告一等奖

全国电子设计大赛报告一等奖一、选题背景和目的近年来,随着信息技术的快速发展,电子设计在各个领域得到了广泛应用。
电子设计大赛作为展现学生电子设计能力和创新思维的舞台,对于培养学生的综合技能和创新精神具有重要意义。
本次选题旨在设计一款智能家居控制系统,通过利用物联网技术将家电设备连接到一起,实现远程控制和智能化管理,提高家居生活的便捷性和舒适度。
二、设计思路智能家居控制系统主要包括三个部分:传感器节点、控制中心和手机客户端。
其中,传感器节点用于感知环境信息,将其传输给控制中心;控制中心负责接收传感器数据、处理控制指令,并向相应的家电设备发送指令;手机客户端作为用户界面,用于实现用户对家电设备的远程控制和管理。
本次设计选择的传感器节点主要包括温度传感器、湿度传感器和人体红外传感器。
温度传感器用于实时感知环境温度,湿度传感器用于感知环境湿度,人体红外传感器则用于感知人体的存在与否。
在控制中心方面,使用单片机作为主控制芯片,通过串口通信模块与传感器节点和手机客户端进行数据交互。
当控制中心接收到温度传感器和湿度传感器的数据时,会根据用户事先设置的温度和湿度范围来控制空调和加湿器开关状态。
同时,当红外传感器检测到有人在家时,控制中心会自动打开照明系统。
手机客户端则通过与控制中心的无线通信模块进行连接,实现远程控制和智能化管理。
用户可以通过手机客户端设置温度、湿度、照明等参数,也可以实时查看家居环境数据。
三、设计过程本次设计过程中,首先进行了技术调研和需求分析。
在技术调研中,对物联网技术、传感器和控制芯片进行了深入了解,帮助确定最合适的技术解决方案。
在需求分析中,了解用户对智能家居系统的需求和期望,确定了系统的功能和性能指标。
接下来进行了硬件设计和软件开发。
硬件设计方面,根据系统需求选取了合适的传感器和控制芯片,并进行了电路设计、原理图绘制和PCB设计。
软件开发方面,采用C语言编写控制中心程序,并使用Android开发工具进行手机客户端的开发。
音频信号分析仪的设计

输
入
图 1 系统总 体框 图
l 系统 硬 件 电路 设 计
本系统 的硬件 电路 主要 由信号 预 处理 模块 、 号采 集 信 模块 、 号 的频 谱分 析模 块 、 钟触 发信 号 、 信 时 系统控 制模 块 和键 盘显示 模块 6 部分组 成 。系统组 成框 图如 图 1 所示 。
Ke w rs a do fe u n ysg a; FF y o d : u i rq e c in l T; a ay i ffe u n y n lsso we n lsso rq e c ;a ay i fp o r
O 引
言
音频信 号分析 仪是 一种 用来 对 被测 信 号进 行 频率 、 频 谱及 波形分 析 的 重要 测 量 工 具 。它 主要 利 用 频 谱 分 析 原 理, 频谱 分析是 把 信 号 的能 量 用 频 率 的 函数 显 示 出来 , 该 仪器广 泛应用 于 电声 测 量 、 频 制 作 、 号 分 析 乃 至 振 动 音 信
维普资讯
电
子
测
量
技
术
第3卷 第 9 1 期
20 年 9 08 月
E LEC TR0NI C M EAS URE E M NT TE CH N0L0GY
音 频 信 号 分 析 仪ቤተ መጻሕፍቲ ባይዱ的 设 计
王金庭 夏春华
40 0 ) 3 2 5 ( 北经济学院电子3 程 系 武汉 湖 - 摘
要:本文介绍 了音频信号频谱分析的原理以及音频分析仪的硬件结 构和软件设计 。该设计是基于快速傅立叶变
换( F 的方法对采集 的音频信号进行频谱分析 , 到音频信号 的频率及功率 。F T算 法采用凌 阳 S C 0 1 F T) 得 F P E 6 A单片 机 C语 言实现 , 以完成 2 6 的 F T运算 , 可 5点 F 频率 分辨率达 到 10 Hz输入 信号 电压 ( 0 , 峰峰值 ) 以达 到 10mV~ 可 0 4V, 检测 出的各频率分量的功率之和不小于总功率值 的 9 , 6 单个频率功率误 差小 于 8 可测量被测正弦信号的失 %,
电子设计竞赛信号分析类题目赛前训练

组成原理
第八届: A题 音频信号分析仪
通信 接口
信号 变换 调理 信号 采集 存储 信号 分析 处理 信号 产生 变换 信号 缓冲 调理
电源
人机 接口
2018/12/9
《电子设计竞赛信号处理类题目训练》
郭万有
组成原理
第八届:C题 数字示波器
2018/12/9
《电子设计竞赛信号处理类题目训练》
郭万有
组成原理
第三届: B题 简易数字频率计
通信 接口
信号 变换 调理 信号 采集 存储 信号 分析 处理 信号 产生 变换 信号 缓冲 调理
电源
人机 接口
2018/12/9
《电子设计竞赛信号处理类题目训练》
郭万有
组成原理
第四届: B题 数字式工频有效值多用表
郭万有
组成原理
第六届:D题 简易逻辑分析仪
通信 接口
信号 变换 调理 信号 采集 存储 信号 分析 处理 信号 产生 变换 信号 缓冲 调理
电源
人机 接口
2018/12/9
《电子设计竞赛与学生创新能力培养》
郭万有
组成原理
第七届:C题 简易频谱分析仪
信号处 理电路 输入 显示 电路
fL fx
混 频 器 放 大 器 本机振荡器 滤 波 器 检 波 器 扫频发生器
电源
人机 接口
2018/12/9
《电子设计竞赛信号处理类题目训练》
郭万有
相关知识
现代信号产生技术
锁相频率合成:
PLL+VCO+m/n,用于产生较高频率的正弦信 号,如本振信号。
全国大学生电子设计竞赛历届题目

全国大学生电子设计竞赛历届题目第一届(1994年)全国大学生电子设计竞赛题目 (4)题目一简易数控直流电源 (4)题目二多路数据采集系统 (5)第二届(1995年)全国大学生电子设计竞赛题目 (6)题目一实用低频功率放大器 (6)题目二实用信号源的设计和制作 (7)题目三简易无线电遥控系统 (7)题目四简易电阻、电容和电感测试仪 (9)第三届(1997年)全国大学生电子设计竞赛题目 (9)A题直流稳定电源 (9)B题简易数字频率计 (10)C题水温控制系统 (11)D题调幅广播收音机* (12)第四届(1999年)全国大学生电子设计竞赛题目 (13)A题测量放大器 (13)B题数字式工频有效值多用表 (14)C题频率特性测试仪 (16)D题短波调频接收机 (17)E题数字化语音存储与回放系统 (18)第五届(2001年)全国大学生电子设计竞赛题目 (19)A题波形发生器 (19)B题简易数字存储示波器 (20)C题自动往返电动小汽车 (21)D题高效率音频功率放大器 (22)E题数据采集与传输系统 (23)F题调频收音机 (24)第六届(2003年)全国大学生电子设计竞赛题目 (25)电压控制LC振荡器(A题) (25)宽带放大器(B题) (26)低频数字式相位测量仪(C题) (28)简易逻辑分析仪(D题) (29)简易智能电动车(E题) (30)液体点滴速度监控装置(F题) (32)第七届(2005年)全国大学生电子设计竞赛题目 (33)正弦信号发生器(A题) (33)集成运放参数测试仪(B题) (34)简易频谱分析仪(C题) (36)单工无线呼叫系统(D题) (37)悬挂运动控制系统(E题) (38)数控直流电流源(F题) (39)三相正弦波变频电源(G题) (40)第八届(2007年)全国大学生电子设计竞赛题目 (41)音频信号分析仪(A题)【本科组】 (41)无线识别装置(B题)【本科组】 (42)数字示波器(C题)【本科组】 (44)程控滤波器(D题)【本科组】 (46)开关稳压电源(E题)【本科组】 (47)电动车跷跷板(F题)【本科组】 (48)积分式直流数字电压表(G题)【高职高专组】 (50)信号发生器(H题)【高职高专组】 (51)可控放大器(I题)【高职高专组】 (52)电动车跷跷板(J题)【高职高专组】 (53)第一届(1994年)全国大学生电子设计竞赛题目题目一简易数控直流电源一、设计任务设计出有一定输出电压范围和功能的数控电源。
全国大学生电子设计竞赛

3、推荐参考书与网站
技术资料
4、芯片选择
查找前人的设计 尽量选用常用、便于购买的芯片 关键芯片(如单片机)要备用
4、芯片选择
常用处理器
单片机:PIC系列、AVR系列、STC系列…… ARM:STM32F103、ARM7 CPLD:EPM1270、EPM7128 FPGA:EP2C5T144C8、EP2C8T144C8、EP2C8Q2 08C8
全国大学生电子竞赛
主要内容
1 全国电子竞赛简介 2 历届考题分类 3 推荐参考书与网站 4 芯片的选择 5 竞赛前的准备工作 6 竞赛题目解析 7 竞赛注意事项 8 竞赛时间安排
1、 全国电子竞赛简介
➢ 组织机构:教育部高等教育司和信息部人事司 ➢ 举办时间:9月份,赛期为4天3夜。 ➢ 一般时间为9月4日8:00~9月7日20:00。 ➢ 竞赛流程 ➢ 竞赛分为国家奖和省奖 ➢ 一般为6个题,题目以电子技术应用设计为主要内容,
3、推荐参考书与网站
2 全国大学生电子设计竞赛作品选编
3、推荐参考书与网站
3 准备内容 电路、模电、数电 C语言、单片机接口技术 高频电子、PLC 微弱信号检测 电力电子技术 数字信号处理 传感器与检测技术 Mutisim软件仿真、Proteus软件仿真 常用模块电路、常用仪器仪表等
3、推荐参考书与网站
建议采用16位的单片机(AD、PWM、捕获),
5、竞赛前的准备工作
4 仪器仪表类及数电类
程控增益、各种运放电路、模拟滤波器、锁相环电 路、乘法器电路、滞回比较器、液晶波形描绘、AD、D A、信号发生器、verilog(VHDL)语言等。
FFT、数字滤波、PID,各种仪器原理。 此类题建议使用32位处理器,芯片选择很关键。
历年电子设计大赛电赛题型汇总

第一部分电源与信号源类
课题1 简易数控直流电源
课题2 直流稳定电源
课题3 数控直流电流源
课题4 实用信号源的设计和制作
课题5 三相正弦波变频电源
课题6 开关稳压电源
第二类仪器仪表及放大器类
课题1 实用低频功率放大器
课题2 简易电阻、电容和电感测试仪课题3 简易数字频率计
课题4 测量放大器
课题5 数字式工频有效值多用表
课题6 频率特性测试仪
课题7 波形发生器
课题8 高效率音频功率放大器
课题9 电压控制LC振荡器
课题10 宽带放大器
课题11 低频数字式相位测量仪
课题12 简易逻辑分析仪
课题13 正弦信号发生器
课题14 集成运放参数测试仪
课题15 简易频谱分析仪
课题16 音频信号分析仪
课题17 数字示波器
课题18 程控滤波器
第三类数据采集与处理类
课题1 多路数据采集系统
课题2 简易数字存储示波器
课题3 数据采集与传输系统
第四类高频电子线路(无线电)类课题1 简易无线电遥控系统
课题2 调幅广播收音机
课题3 短波调频接收机
课题4 调频收音机
课题5 单工无线呼叫系统
课题6 无线识别装置
第五类控制类
课题1 水温控制系统
课题2 自动往返电动小汽车课题3 简易智能电动车
课题4 液体点滴速度监控装置课题5 悬挂运动控制系统
课题6 电动车跷跷板。
全国大学生电子设计竞赛综合测评题论文报告

放大器的应用摘要集成运放裨上是一种高增益直流放大、直流放大器既能放大变化极其缓慢的直流信号,下限频率可到零;又能放大交流信号,上限频率与普通放大器一样,受限于电路中的电容或电感等电抗性元器件;集成运放和外部反馈网络相配置后,能够在它的输出和输入之间建立起种种特定的函数关系,故而称它为“运算”放大器;本课程设计的基本目标:使用一片通用四运放芯片LM324组成预设的电路,电路包括三角波产生器、加法器、滤波器、比较器四个设计模块,每个模块均采用一个运放及一定数目的电容、电阻搭建,通过理论计算分析,最终实现规定的电路要求;关键词运算放大器LM324、加法器、滤波器、比较器目录一、设计任务使用一片通用四运放芯片LM324 组成电路框图见图1a,实现下述功能:使用低频信号源产生Hz f V t f u i 500)(2sin 1.0001==π的正弦波信号, 加至加法器的输入端,加法器的另一输入端加入由自制振荡器产生的信号1o u ,1o u 如图1b 所示,1T =,允许1T 有±5%的误差;图中要求加法器的输出电压11210o i i u u u +=;2i u 经选频滤波器滤除1o u 频率分量,选出0f 信号为2o u ,2o u 为峰峰值等于9V 的正弦信号,用示波器观察无明显失真;2o u 信号再经比较器后在1k Ω 负载上得到峰峰值为2V 的输出电压3o u ;电源只能选用+12V 和+5V 两种单电源,由稳压电源供给;不得使用额外电源和其它型号运算放大器;要求预留1i u 、2i u 、2o u 、2o u 和3o u 的测试端子;二、设计方案及比较设计有五个部分,其中低频信号源使用信号发生器,其余四部分设计方案如下:1.三角波产生器初始方案:根据模拟电子技术基础书上的方波发生器产生方波,然后再采用微分电路对信号处理,输出即为三角波;图图中:R 1 = ,R 2 = 10k,R 3 = 30k,R 0 = ,R 4 = 10k,R 5 = 20k,C = F, D Z1和D Z2采用稳压管;运算放大器A 1与R 1、R 2、R 3及R 0、D Z1、D Z2组成电压比较器;当积分器的输入为方波时,输出是一个上升速率与下降速率相等的三角波,比较器与积分器首尾相连形成闭环电路,能自动产生方波与三角波;三角波或方波的频率为:改进方案:由于LM324只有四个运算放大器,如果三角波产生使用两个,则后面的三个电路中有一个无法实现,所以只能采用一个运算放大器产生;同时由于器件不提供稳压二极管,所以电阻电容的参数必须设计合理,用直流电压源代替稳压管;对方波放生电路进行分析发现,如果将输出端改接运放的负输入端,出来的波形近似为三角波;设计电路如图图2.加法器方案:由于加法器输出11210o i i u u u +=,所以采用求和运算电路,计算电阻电容的参数值,电路见图图3.滤波器初始方案:由于正弦波信号1i u 的频率为500Hz,三角波1o u 的频率为2KHz,滤波器需要滤除1o u ,所以采用二阶的有缘低通滤波器;见电路图图改进方案:根据仿真的波形看出电路对2KHz 的信号衰减不大,导致输出信号中仍然残留的有三角波成分,波形失真较严重;考虑要增大对三角波的衰减程度,而且要已知三角波的频率为2KHz,所以采用中心频率为2KHz 的带阻滤波器;电路见图图4.比较器初始方案:采用一般的单限比较器,见电路图图改进方案:在单限比较器中,输入电压在阀值电压附近的任何微小变化,都将引起输出电压的跃变,不管这种微小变化是来源于输入信号还是外部干扰,抗干扰能力差.所以采用滞回比较器;见图图三、电路设计及理论分析1.总电路图2.三角波发生器根据RC 充放电过渡过程的分析,电容电压编号应符合下面公式式中 U C 0初始电压;)(∞C U 充电终了电压;τ充电时间常数;解方程式可得所以该电路振荡周期有3R ,C 和21R R 决定,改变这些元件参数可以调节方波的周期; 由要求可知,电路的输出波形应为三角波,峰值为2V,振荡周期为;电路振荡周期为经过计算R3=10K Ω,R2=Ω,R1=1K Ω,C=理论波形为3.加法器加法器输入输出满足11210o i i u u u +=;根据“虚短”和“虚断”的原则,节点的电流方程为fo i i R u R u R u -=+2211,所以输出的表达式为 计算取R1=1K Ω,R2=10K Ω,Rf=10K Ω.三角波和正弦波经过加法电路后理论波形为4.带阻滤波器因为需要滤去三角波成分,所以选取的带阻滤波器的中心频率f 0=2KHz; 中心频率为RCf π210=,计算得R=Ω,C=1uF; 理论上对于2KHz 的信号衰减程度最大,其他频率几乎不衰减;信号为500Hz,5V 时信号为2KHz,5V 时5.滞回比较器当集成运放的输出为+U OM 时,通过正反馈支路加到同相输入端的电压为: 则同相输入端的合成电压为: REF OM U R R R U R R R U 212211+++=+ = U H 上门限电压 7 当u i 由小到大,达到或大于上门限电压U H 的时刻,输出电压u o 才从+U OM 跃变到U OM ,并保持不变;此时,通过正反馈支路加到同相输入端的电压为:此时同相输入端的合成电压为: REF OM U R R R U R R R U 212211+++-=+ = U L 下门限电压 理论波形为四、电路仿真结果及分析仿真结果如下:1.1o U 端口由仿真图可知,波形近似为三角波;Um=2V,T=2KHz,波形稳定;2.1i U 端口因为由低频信号源产生,所以波形无失真;Um=,T=500Hz3.2i U 端口与理论波形有一定的偏差,三角波与正弦波相加时,三角波波峰、波谷有失真; 4.2o U 端口理论应为正弦波,可以看出经过滤波后,波形的波峰、波谷有失真,高频部分没有滤掉;Um=略大于9V,T 约为500Hz;5.3o U 端口可以看出近似为高低电平交替,在跳变过程中波形有失真,部分部分由于不稳定信号产生毛刺;五、总结1.电源提供的电压对波形的影响:波形幅度变化必须在电源提供的电压范围之内,若不在,则底部或顶部会出现失真,因此采用+12V电源而不用+5V;2.单电源和双电源的区别及其对电路的影响:运放采用单电源供电时,加法电路、滤波电路不能工作,必须采用双电源式供电,正极4接+12V,负极11反接+12到地;模块与模块之间的链接存在相互影响;3、模块与模块之间的链接存在相互影响:虽然单个模块运行仿真成功,但是连接为整个的电路图时,各功能模块的波形会受到其他模块的影响,失真交严重;处理办法是在各模块之间加入耦合电容或电容电阻组成的低通网路作为接口电路;通过这次课程设计,不仅对于模拟电子线路有了新的认识,对电子电路的专业知识得到了很大的提高,加深了理论与实际之间的联系,同时学习到了书本上没有的知识,如怎样运用软件搭建电路,如何结合理论计算的参数和实际仿真结果对电路的元件参数进行调整;。
基于Lab VIEW的声音信号分析器

办公自动化杂志0概述声音(Sound)是由物体的振动产生,其以声波的形式通过介质(空气或固体、液体)传播并能被人或动物听觉器官所感知。
从听觉角度来说,声音具有音调、音强和音色三种属性,而从信号处理角度来看,声音可视为一维的波动信号,能够分解为不同频率的正弦信号,并进行采样、放大、滤波、运算和编码等一系列处理。
事实上,声音作为多媒体中一种主要媒体,具有重要的研究意义和广泛的应用领域。
其在语音识别、情感分析、语音合成和音响设计等方面有着各类应用。
传统的音频分析,需要搭建专门的硬件系统。
该类系统通常以DSP 处理器或者FPGA 作为信号处理平台。
分析音频信号时,首先通过信号采集电路、调理电路和AD 转换电路,将所采集声音信号进行预处理,随之将预处理后的声音信号转为离散的数字信号,再传至信号处理平台。
数据处理平台,对所传入信号进行测量、存储和变换等一系列操作,得到相应的参数。
信号分析的结果,需要FPGA 或者DSP 驱动外围的显示设备,以显示屏或者数码管的方式展示。
这种方法,对设计者的软硬件能力有较高要求,需要完成模拟电路设计制作、数字电路设计制作、芯片编程等一系列工序,并且受限于信号处理平台,其用户界面和交互性都难以达到很好效果。
因此,本文采取NI 公司的虚拟仪器软件LabVIEW,配合通用的计算机平台,来实现声音信号的分析。
在硬件方面,该系统利用电脑的声卡获取外界声音信号,不需其它的硬件电路,大大简化了硬件设计流程;在软件方面,该方案采取图形化的编程方法,并利用软件中已有的各类功能模块,最大限度地减少编程量。
在结果展示和用户交互方面,该方案利用电脑屏幕,可以很好地展示波形和数据信息,用户也可以利用鼠标和键盘,快速修改系统参数,调整信号采集、信号处理和结果展示中的任一环节。
1系统整体设计整个系统可以分为硬件和软件两方面,系统的硬件平台为电脑。
如图1所示,利用电脑上的声卡,实现声音信号的采集,借助电脑上运行的LabVIEW 软件完成声音信号的读取、存储、变换处理等功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目名称:音频信号分析仪(A题)华南理工大学电子与信息学院参赛队员:陈旭张洋林士明摘要:本音频信号分析仪由32位MCU为主控制器,通过AD转换,对音频信号进行采样,把连续信号离散化,然后通过FFT快速傅氏变换运算,在时域和频域对音频信号各个频率分量以及功率等指标进行分析和处理,然后通过高分辨率的LCD对信号的频谱进行显示。
该系统能够精确测量的音频信号频率范围为20Hz-10KHz,其幅度范围为5mVpp-5Vpp,分辨力分为20Hz和100Hz两档。
测量功率精确度高达1%,并且能够准确的测量周期信号的周期,是理想的音频信号分析仪的解决方案。
关键词:FFT MCU 频谱功率Abstract: The audio signal analyzer is based on a 32-bit MCU controller, through the AD converter for audio signal sampling, the continuous signal discrete, and then through the FFT fast Fourier transform computing, in the time domain and frequency domain of the various audio frequency signal weight and power, and other indicators for analysis and processing, and then through the high-resolution LCD display signals in the spectrum. The system can accurately measure the audio signal frequency range of 20 Hz-10KHz, the range of 5-5Vpp mVpp, resolution of 20 Hz and 100 Hz correspondent. Power measurement accuracy up to 1%, and be able to accurately measuring the periodic signal cycle is the ideal audio signal analyzer solution.Keyword:FFT MCU Spectrum Power1 方案论证与比较 (3)1.1采样方法方案论证...................................................................................... 错误!未定义书签。
1.2处理器的选择方案论证.............................................................................. 错误!未定义书签。
1.3周期性判别与测量方法方案论证.............................................................. 错误!未定义书签。
2 系统设计 (4)2.1总体设计 (4)2.2单元电路设计 (5)2.2.1 前级阻抗匹配和放大电路设计 (5)2.2.2 AD转换及控制模块电路设计 (6)2.2.3 功率谱测量单元电路设计 (6)3 软件设计 (7)4系统测试 (8)5 结论 (9)参考文献: (9)附录: (9)附1:元器件明细表: (9)附2:仪器设备清单 (9)附3:电路图图纸 (10)附4:程序清单 (11)1方案论证与比较1.1 采样方法比较与选择方案一、用DDS芯片配合FIFO对信号进行采集,通过DDS集成芯片产生一个频率稳定度和精度相当高的信号作为FIFO的时钟,然后由FIFO对A/D转换的结果进行采集和存储,最后送MCU处理。
方案二、直接由32位MCU的定时中断进行信号的采集,然后对信号分析。
由于32位MCU -LPC2148是60M的单指令周期处理器,所以其定时精确度为16.7ns,已经远远可以实现我们的40.96KHz的采样率,而且控制方便成本便宜,所以我们选择由MCU直接采样。
1.2 处理器的比较与选择由于快速傅立叶变换FFT算法设计大量的浮点运算,由于一个浮点占用四个字节,所以要占用大量的内存,同时浮点运算时间很慢,所以采用普通的8位MCU一般难以在一定的时间内完成运算,所以综合内存的大小以及运算速度,我们采用Philips 的32位的单片机LPC2148,它拥有32K的RAM,并且时钟频率高达60M,所以对于浮点运算不论是在速度上还是在内存上都能够很快的处理。
1.3 周期性判别与测量方法比较与选择对于普通的音频信号,频率分量一般较多,它不具有周期性。
测量周期可以在时域测量也可以在频域测量,但是由于频域测量周期性要求某些频率点具有由规律的零点或接近零点出现,所以对于较为复杂的,频率分量较多且功率分布较均匀且低信号就无法正确的分析其周期性。
而在时域分析信号,我们可以先对信号进行处理,然后假定具有周期性,然后测出频率,把采样的信号进行周期均值法和定点分析法的分析后即可以判别出其周期性。
综上,我们选择信号在时域进行周期性分析和周期性测量。
对于一般的音频信号,其时域变化是不规则的,所以没有周期性。
而对于单频信号或者由多个具有最小公倍数的频率组合的多频信号具有周期性。
这样我们可以在频域对信号的频谱进行定量分析,从而得出其周期性。
而我们通过先假设信号是周期的,然后算出频率值,然后在用此频率对信号进行采样,采取连续两个周期的信号,对其值进行逐次比较和平均比较,若相差太远,则认为不是周期信号,若相差不远(约5%),则可以认为是周期信号。
2 系统设计2.1 总体设计音频信号经过一个由运放和电阻组成的50 Ohm阻抗匹配网络后,经由量程控制模块进行处理,若是一般的100mV-5V的电压,我们选择直通,也就是说信号没有衰减或者放大,但是若信号太小,12位的A/D转换器在2.5V参考电压的条件下的最小分辨力为1mV左右,所以如果选择直通的话其离散化处理的误差将会很大,所以若是采集到信号后发现其值太小,在20mV-250mV之间的话,我们可以将其认定为小信号,从而选择信号经过20倍增益的放大器后再进行A/D采样。
经过12位A/D转换器ADS7819转换后的数字信号经由32位MCU进行FFT变换和处理,分析其频谱特性和各个频率点的功率值,然后将这些值送由Atmega16进行显示。
信号由32 位MCU分析后判断其周期性,然后由Atmegal6进行测量,然后进行显示。
总体设计框架图2.2 单元电路设计2.2.1 前级阻抗匹配和放大电路设计信号输入后通过R5,R6两个100Ohm的电阻和一个高精度仪表运放AD620实现跟随作用,由于理想运放的输入阻抗为无穷大,所以输入阻抗即为:R5//R6=50Ohm,阻抗匹配后的通过继电器控制是对信号直接送给AD转换还是放大20倍后再进行AD转换。
在这道题目里,需要检测各频率分量及其功率,并且要测量正弦信号的失真度,这就要求在对小信号进行放大时,要尽可能少的引入信号的放大失真。
正弦信号的理论计算失真度为零,对引入的信号失真非常灵敏,所以对信号的放大,运放的选择是个重点。
我们选择的运放是TI公司的低噪声、低失真的仪表放大器INA217,其失真度在频率为1KHz,增益为20dB(100倍放大)时仅为0.004%,其内部原理图如下图所示。
其中放大器A1的输出电压计算公式为OUT1=1+(R1/RG)*VIN+同理, OUT2=1+(R2/RG)*VIN--R3、R4、R5、R6及A3构成减法器,最后得到输出公式VOUT=(VIN2-VIN1)*[1+(R1+R2)/RG]R1=R2=5K,取RG=526,从而放大倍数为20。
2.2.2AD转换及控制模块电路设计采用12位AD转换器ADS7819进行转换,将转换的数据送32位控制器进行处理。
2.2.3 功率谱测量功率谱测量主要通过对音频信号进行离散化处理,通过FFT运算,求出信号各个离散频率点的功率值,然后得到离散化的功率谱。
由于题目要求频率分辨力为100Hz和20Hz两个档,这说明在进行FFT运算前必须通过调整采样频率(fK)和采样的点数(N),使其基波频率f为100Hz和20Hz。
根据频率分辨率与采样频率和采样点数的关系:f=fk/N;可以得知,fk=N*f;又根据采样定理,采样频率fk必须不小于信号频率fm的2倍,即:fk>=2fm;题目要求的最大频率为10KHz,所以采样频率必须大于20KHz,考虑到FFT运算在2的次数的点数时的效率较高,所以我们在20Hz档时选择40.96KHz采样率,采集2048个点,而在100档时我们选择51.2KHz采样率,采集512个点。
通过FFT 分析出不同的频率点对应的功率后,就可以画出其功率谱,并可以在频域计算其总功率。
3 软件设计主控制芯片为LPC2148,测量周期为Atmega16实现,由于处理器速度较快,所以采用c语言编程方便简单.软件流程图如下:主流程图周期性分析和测量流程图4系统测试4.1 总功率测量(室温条件下)结果分析:由于实验室提供的能够模仿音频信号的且能方便测量的信号只有正弦信号,所以我们用一款比较差点的信号发生器产生信号,然后进行测量,发现误差不达,在+-5%以内。
我们以音频信号进行测量,由于其实际值无法测量,所以我们只能根据时域和频域以及估计其误差,都在5%以内。
4.2 单个频率分量测量(室温条件下)结果分析:我们首先以理论上单一频率的正弦波为输入信号,在理想状况下,其频谱只在正弦波频率上有值,而由于有干扰,所以在其他频点也有很小的功率。
音频信号由于有多个频点,所以没有一定的规律性。
由于音频信号波动较大,没有一定的规律,且实验室没有专门配置测量仪器,所以我们只好以正弦波和三角波作为信号进行定量分析测量,以及对音频信号进行定性的分析和测量。
我们发现其数字和用电脑模拟的结果符合得很近。
5 结论由于系统架构设计合理,功能电路实现较好,系统性能优良、稳定,较好地达到了题目要求的各项指标。
参考文献:《信号与系统》,ALAN V.OPPENHEIM著,西安:西安交通大学出版社,1997年;《数字图像处理学》,元秋奇著,北京:电子工业出版社,2000年;《模拟电子线路基础》,吴运昌著,广州:华南理工大学出版社,2004年;《数字电子技术基础》,阎石著,北京:高等教育出版社,1997年;《数据结构与算法》,张晓丽等著,北京:机械工业出版社,2002年;《ARM&Linux嵌入式系统教程》,马忠梅等著,北京:北京航空航天大学出版社,2004年;《单片机原理及应用》,李建忠著,西安:西安电子科技大学,2002年;附录:附1:元器件明细表:1、LPC21482、ATMEGA163、AD6204、ADS78195、液晶320*240附2:仪器设备清单1、低频信号发生器2、数字万用表3、失真度测量仪4、数字示波器5、稳压电源附3:电路图图纸电源系统前级放大和AD转换Atmega16控制板附4:程序清单/*///////////////////////////////////////////////////////////////////////////////////////////////// FFT转换函数,dataR:实部,datai:虚部,////////////////////////////////////////////////////////////////////////////////////////////////*/ void FFT(float *dataR,float *dataI,int n){int i,L,j,k,b,p,xx,qq;int x[11]={0};float TR,TI,temp;float QQ;//////////////////////////////////位倒置//////////////////////////////////////////////////// for(i=0;i<count[n];i++){ xx=0;for(j=0;j<n;j++)x[j]=0;for(j=0;j<n;j++){x[j]=(i/count[j])&0x01;}for(j=0;j<n;j++){xx=xx+x[j]*count[n-j-1];}dataI[xx]=dataR[i];}for(i=0;i<count[n];i++){ dataR[i]=dataI[i];dataI[i]=0;////////////////////////////////////蝶形运算////////////////////////////////////////for(L=1;L<=n;L++){b=1; i=L-1;while(i>0){ b=b*2;i--;}for(j=0;j<=b-1;j++){ p=1; i=n-L;while(i>0){ p=p*2; i--;}p=p*j;for(k=j;k<count[n];k=k+2*b){TR=dataR[k];TI=dataI[k];temp=dataR[k+b];QQ=2*pi*p/count[n];qq=p*count[11-n];dataR[k]=dataR[k]+dataR[k+b]*cos_tab[qq]+dataI[k+b]*sin_tab[qq];dataI[k]=dataI[k]-dataR[k+b]*sin_tab[qq]+dataI[k+b]*cos_tab[qq];dataR[k+b]=TR-dataR[k+b]*cos_tab[qq]-dataI[k+b]*sin_tab[qq]; //查表运算dataI[k+b]=TI+temp*sin_tab[qq]-dataI[k+b]*cos_tab[qq];}}}for(i=0;i<count[n];i++){w[i]=sqrt(dataR[i]*dataR[i]+dataI[i]*dataI[i]);w[i]=w[i]/count[n-1];}w[0]=w[0]/2;}///////////////////////////回放数据/////////////////////////void viewdata(void){unsigned int key,page,i;page=0;LCD_PenColor=0x1F; //红色LCD_WriteChineseString(font5,2,40,0);LCD_PenColor=0xFC; //蓝色while(1){key=getkey();if(key!=0xFF){if(key==4) {SystemState=fft_mode;return;} //返回if(key==2) {LCD_ClearScreen();LCD_WriteChineseString(font3,2,10,0);LCD_WriteChineseString(font4,2,60,0);i=page*4+1;p3510(Re[i],0,15); print3510(Im[i]*mode,50,15);p3510(Re[i+1],0,26); print3510(Im[i+1]*mode,50,25);p3510(Re[i+2],0,38); print3510(Im[i+2]*mode,50,35);p3510(Re[i+3],0,50); print3510(Im[i+3]*mode,50,50);if(page>0) page--;delay_nms(8000000);} //上翻页if(key==1) {LCD_ClearScreen();LCD_WriteChineseString(font3,2,10,0);LCD_WriteChineseString(font4,2,60,0);i=page*4+1;p3510(Re[i],0,15); print3510(Im[i]*mode,50,15);p3510(Re[i+1],0,26); print3510(Im[i+1]*mode,50,25);p3510(Re[i+2],0,38); print3510(Im[i+2]*mode,50,35);p3510(Re[i+3],0,50); print3510(Im[i+3]*mode,50,50);page++;if(page>=SampleNum/4) page=0;delay_nms(8000000);} //下翻页}}}////////////////////////////失真度计算///////////////////////void distortion(void){LCD_ClearScreen();LCD_WriteChineseString(font6,3,10,20);unsigned int key;int fr;while(1){////////////获取频率////////////////////log_2_N=11;SampleNum=SampleTab[log_2_N];reset_timer(0);init_timer0(40960);New_Flag=0;enable_timer(0);////////////////////等待采样完成///////////////////////////while(!FFT_Flag);disable_timer(0); //关定时器0//////////////////////FFT运算/////////////////////////////////FFT(Re,Im,log_2_N);////////////////频域功率////////////////////////////////////for(i=1;i<SampleNum/2;i++) {Re[i]=Re[i]*Re[i];Re[i]=Re[i]/2;}////////////////////总功率/////////////////////////////////Fp=0;for(i=1;i<SampleNum/2;i++) Fp+=Re[i];sort(&Re[1],&Im[1],SampleNum/2-1);fr=1000000/fre;if(Tflag) {LCD_WriteChineseString(font7,1,50,20);LCD_WriteEnglishString(" ",0,38);print3510(fr,10,38);LCD_WriteEnglishString("US",58,38);}else{LCD_WriteEnglishString(" ",0,38);LCD_WriteChineseString(font8,1,50,20);}////////////////////按键扫描/////////////////////////////key=getkey();if(key!=0xFF){if(key==1) {SystemState=fft_mode;mode=20;break;} //返回if(key==2) {SystemState=fft_mode;mode=100;break;} //返回}}}/////////////////按键扫描//////////////////////////////unsigned char getkey(void){if(IO1PIN_bit.P1_21==0) {delay_nms(200000);if(IO1PIN_bit.P1_21==0) return 1;}if(IO1PIN_bit.P1_22==0) {delay_nms(2000000);if(IO1PIN_bit.P1_22==0) return 2;}if(IO1PIN_bit.P1_23==0) {delay_nms(2000000);if(IO1PIN_bit.P1_23==0) return 3;}if(IO1PIN_bit.P1_24==0) {delay_nms(2000000);if(IO1PIN_bit.P1_24==0) return 4;}return 0xFF;}//////////////////排序处理//////////////////////////////void sort(float *a,float *b,int n) //a为待排序的量,b为起位置{int i,j,temp;for(i=0;i<n;i++) b[i]=i+1;for(j=0;j<=n-1;j++){for (i=0;i<n-j;i++)if (a[i]<a[i+1]){temp=a[i];a[i]=a[i+1];a[i+1]=temp;temp=b[i];b[i]=b[i+1];b[i+1]=temp;}}}//////////////////////显示/////////////////// void p3510(int v,int x,int y){int x0;x0=v*157;x0=x0/100000000;LCD_WriteEnglishChar(x0+'0',x,y); x0=v*157;x0=x0/100;x0+=1000000;print3510(x0,x+6,y);LCD_WriteEnglishChar('.',x+6,y); }。