2013公卫助理医师考试辅导:蛋白质的一级结构
蛋白质的一级二级三级结构

蛋白质的一级二级三级结构蛋白质是生命体内最基本的有机物之一,不仅构成了生物体的主要组成部分,还在细胞功能、代谢调控和信号传导等方面发挥着重要作用。
蛋白质的功能与其结构密切相关,而蛋白质的结构又可分为一级、二级和三级结构。
本文将从这三个层次来探讨蛋白质的结构。
一级结构是蛋白质最基本的结构层次,是由氨基酸的线性排列顺序所决定的。
在一级结构中,不同的氨基酸通过肽键连接在一起,形成多肽链。
氨基酸的种类和排列顺序决定了蛋白质的功能和特性。
一级结构的表达方式常常使用蛋白质的序列,即将蛋白质的氨基酸序列按照其排列顺序进行表示。
二级结构是蛋白质中部分氨基酸之间的空间排列方式。
常见的二级结构有α-螺旋和β-折叠。
α-螺旋是一种紧密的螺旋结构,其中的肽键呈螺旋形排列,螺旋结构的稳定性来自于氢键的形成。
β-折叠是由两个或多个β-片段通过氢键连接而成的结构,这些β-片段可以平行或反平行排列。
二级结构的稳定性和形状对蛋白质的功能和稳定性起着重要作用。
三级结构是蛋白质中各个二级结构之间的空间排列方式。
蛋白质的三级结构决定了其功能和空间构型。
蛋白质的三级结构通常由非共价作用力(如氢键、静电相互作用和疏水效应)所稳定。
蛋白质的三级结构可以是紧密的球状结构,也可以是更加松散的链状结构。
具体的三级结构与蛋白质的功能密切相关,例如酶的活性通常与其活性位点的三级结构相关。
蛋白质的一级、二级和三级结构相互作用,共同决定了蛋白质的功能和稳定性。
其中,一级结构的序列决定了二级结构的形成,而二级结构的排列方式又可以进一步影响到三级结构的形成。
蛋白质的结构可通过X射线晶体学、核磁共振和质谱等技术进行研究和解析。
除了一级、二级和三级结构外,蛋白质还存在着更高级别的结构,如四级结构和五级结构。
四级结构是由多个多肽链或蛋白质互相组装而成的复合体,例如由四个亚基组成的四聚体。
五级结构是指蛋白质与其他分子的相互作用,如蛋白质与DNA、RNA或小分子配体的结合。
蛋白质的结构层级

蛋白质的结构层级蛋白质是生物体中最基本的大分子之一,它在维持生命活动中发挥着重要作用。
蛋白质的结构层级描述了蛋白质分子从原子级别到整体结构的组织和排列方式。
本文将从最基本的一级结构开始,逐层介绍蛋白质的结构层级。
一级结构:氨基酸序列蛋白质的一级结构是指由氨基酸组成的线性序列。
氨基酸是蛋白质的构建单元,共有20种不同的氨基酸。
它们以特定的顺序连接在一起,形成多肽链,通过脱水缩合反应形成肽键。
不同的氨基酸序列决定了蛋白质的功能和特性。
二级结构:α-螺旋和β-折叠蛋白质的二级结构是指多肽链中氨基酸的局部排列方式。
其中最常见的二级结构包括α-螺旋和β-折叠。
α-螺旋是一种螺旋状的结构,多肽链围绕中心轴形成螺旋,每转一圈约有 3.6个氨基酸残基。
β-折叠是由多个β-折叠片段相互连接而成,形成一种折叠的结构。
α-螺旋和β-折叠是由氢键和内部相互作用力稳定的。
三级结构:立体构型蛋白质的三级结构是指整个多肽链的立体构型。
它是由一级结构中相邻氨基酸残基之间的相互作用力和二级结构之间的相互作用力所决定的。
蛋白质的三级结构可以是球状、螺旋状或片状等不同的立体构型。
这种立体构型的形成主要依赖于静电相互作用、氢键、疏水效应和范德华力等力的作用。
四级结构:多个多肽链的组装一些蛋白质由多个多肽链组装而成,这种组装形成了蛋白质的四级结构。
四级结构的形成是通过多个多肽链之间的非共价相互作用力,如离子键、氢键和范德华力等稳定的。
四级结构可以使蛋白质形成复杂的功能结构,例如酶和抗体等。
蛋白质的结构层级是相互关联、相互作用的。
一级结构决定了二级结构的形成,而二级结构决定了三级结构的形成,最终四级结构决定了蛋白质的整体功能和特性。
蛋白质的结构层级对于理解蛋白质的功能和性质具有重要意义。
总结:蛋白质的结构层级包括一级结构、二级结构、三级结构和四级结构。
一级结构是指氨基酸的线性序列,二级结构是指氨基酸的局部排列方式,三级结构是指整个多肽链的立体构型,四级结构是指多个多肽链的组装。
蛋白质的一二三四结构

一、蛋白质的一级结构蛋白质的一级结构(primary structure)就是蛋白质多肽链中氨基酸残基的排列顺序(sequence),也是蛋白质最基本的结构。
它是由基因上遗传密码的排列顺序所决定的。
各种氨基酸按遗传密码的顺序,通过肽键连接起来,成为多肽链,故肽键是蛋白质结构中的主键。
迄今已有约一千种左右蛋白质的一级结构被研究确定,如胰岛素,胰核糖核酸酶、胰蛋白酶等。
蛋白质的一级结构决定了蛋白质的二级、三级等高级结构,成百亿的天然蛋白质各有其特殊的生物学活性,决定每一种蛋白质的生物学活性的结构特点,首先在于其肽链的氨基酸序列,由于组成蛋白质的20种氨基酸各具特殊的侧链,侧链基团的理化性质和空间排布各不相同,当它们按照不同的序列关系组合时,就可形成多种多样的空间结构和不同生物学活性的蛋白质分子。
二、蛋白质的空间结构蛋白质分子的多肽链并非呈线形伸展,而是折叠和盘曲构成特有的比较稳定的空间结构。
蛋白质的生物学活性和理化性质主要决定于空间结构的完整,因此仅仅测定蛋白质分子的氨基酸组成和它们的排列顺序并不能完全了解蛋白质分子的生物学活性和理化性质。
例如球状蛋白质(多见于血浆中的白蛋白、球蛋白、血红蛋白和酶等)和纤维状蛋白质(角蛋白、胶原蛋白、肌凝蛋白、纤维蛋白等),前者溶于水,后者不溶于水,显而易见,此种性质不能仅用蛋白质的一级结构的氨基酸排列顺序来解释。
蛋白质的空间结构就是指蛋白质的二级、三级和四级结构。
(一)蛋白质的二级结构蛋白质的二级结构(secondary structure)是指多肽链中主链原子的局部空间排布即构象,不涉及侧链部分的构象。
1.肽键平面(或称酰胺平面,amide plane)。
Pauling等人对一些简单的肽及氨基酸的酰胺等进行了X线衍射分析,得出图1-2所示结构,从一个肽键的周围来看,得知:(1)中的C-N键长0.132nm,比相邻的N-C单键(0.147nm)短,而较一般C=N双键(0.128nm)长,可见,肽键中-C-N-键的性质介于单、双键之间,具有部分双键的性质,因而不能旋转,这就将固定在一个平面之内。
蛋白质的一级结构(共价结构)

1.蛋白质的一级结构(共价结构)蛋白质的一级结构也称共价结构、主链结构。
2.蛋白质结构层次一级结构(氨基酸顺序、共价结构、主链结构)↓是指蛋白质分子中氨基酸残基的排列顺序二级结构↓超二级结构↓构象(高级结构)结构域↓三级结构(球状结构)↓四级结构(多亚基聚集体)3.一级结构的要点.4.蛋白质测序的一般步骤祥见 P116(1)测定蛋白质分子中多肽链的数目。
(2)拆分蛋白质分子中的多肽链。
(3)测定多肽链的氨基酸组成。
(4)断裂链内二硫键。
(5)分析多肽链的N末端和C末端。
(6)多肽链部分裂解成肽段。
(7)测定各个肽段的氨基酸顺序(8)确定肽段在多肽链中的顺序。
(9)确定多肽链中二硫键的位置。
5.蛋白质测序的基本策略对于一个纯蛋白质,理想方法是从N端直接测至C端,但目前只能测60个N端氨基酸。
6. 直接法(测蛋白质的序列)两种以上特异性裂解法 N CA 法裂解 A1 A2 A3 A4B 法裂解 B1 B2 B3 B4用两种不同的裂解方法,产生两组切点不同的肽段,分离纯化每一个肽段,分离测定两个肽段的氨基酸序列,拼接成一条完整的肽链。
7. 间接法(测核酸序列推断氨基酸序列)核酸测序,一次可测600-800bp8. 测序前的准备工作9. 蛋白质的纯度鉴定纯度要求,97%以上,且均一,纯度鉴定方法。
(两种以上才可靠)⑴聚丙烯酰胺凝胶电泳(PAGE)要求一条带⑵DNS —cl (二甲氨基萘磺酰氯)法测N 端氨基酸10. 测定分子量用于估算氨基酸残基n=方法:凝胶过滤法、沉降系数法11. 确定亚基种类及数目多亚基蛋白的亚基间有两种结合方式:⑴非共价键结合8mol/L 尿素,SDS SDS-PAGE 测分子量⑵二硫键结合过甲酸氧化:—S —S —+HCOOOH → SO 3Hβ巯基乙醇还原:举例:: 血红蛋白 (α2β2)(注意,人的血红蛋白α和β的N 端相同。
)分子量: M拆亚基: M 1 、M 2 两条带拆二硫键: M 1 、M 2 两条带分子量关系: M = 2M 1 + 2M 212. 测定氨基酸组成主要是酸水解,同时辅以碱水解。
蛋白质一二三四级结构名词解释

蛋白质一二三四级结构名词解释一级结构:一级结构是指蛋白质的线性序列,即由一系列氨基酸
残基按照特定的顺序组成的链。
每个氨基酸残基与下一个氨基酸残基
通过肽键相连,形成蛋白质的主链。
一级结构决定了蛋白质的化学性
质和生物活性。
二级结构:二级结构是指蛋白质主链的局部区域所呈现的稳定立
体结构。
常见的二级结构包括α-螺旋和β-折叠。
α-螺旋是一种右
旋螺旋状的结构,由主链上相邻的氨基酸残基之间发生氢键作用形成;β-折叠是一种折叠成片状的结构,由主链上不相邻的氨基酸残基之间
发生氢键作用形成。
三级结构:三级结构是指蛋白质在三维空间中的整体折叠结构。
在三级结构中,蛋白质的二级结构会通过氢键、疏水相互作用、静电
相互作用等力相互作用力作用使得主链折叠成特定的三维形态。
三级
结构决定了蛋白质的功能和稳定性。
四级结构:四级结构是指由两个或多个蛋白质聚集在一起形成的
功能完整的复合物结构。
多个蛋白质通过相互作用力作用形成稳定的
复合物,实现特定的生物功能。
常见的四级结构包括蛋白质亚单位、
蛋白质配体结合等。
总的来说,蛋白质一二三四级结构是蛋白质在空间结构上的不同
层次的组织。
一级结构是蛋白质的线性序列,二级结构是局部区域的
稳定立体结构,三级结构是整体折叠结构,而四级结构是由多个蛋白
质组合形成的复合物结构。
这些结构相互作用,共同决定了蛋白质的
功能和性质。
蛋白质的结构和功能

蛋白质的结构和功能蛋白质是生物体内重要的有机物质,其在细胞功能和生物体机体过程中发挥着关键作用。
蛋白质的结构和功能密不可分,下面将从蛋白质的结构以及其所承担的功能两个方面进行探讨。
一、蛋白质的结构蛋白质的结构可分为四个层次,分别是一级结构、二级结构、三级结构和四级结构。
1. 一级结构蛋白质的一级结构指由氨基酸残基的线性排列方式所决定的序列。
氨基酸的种类和顺序决定了蛋白质的特定功能和结构。
在水溶液中,氨基酸残基以离子形式存在,通过胺基和羧基之间的肽键连接起来形成多肽链。
2. 二级结构蛋白质的二级结构是指蛋白质中局部区域的空间构象,主要包括α-螺旋和β-折叠两种常见的结构。
α-螺旋是由多肽链的螺旋形状而成,通过氢键的形成保持稳定。
β-折叠则是由多个β折叠片段组合而成,也是通过氢键的形成维持稳定。
3. 三级结构蛋白质的三级结构是指蛋白质中整个多肽链的立体构象。
多肽链在二级结构的基础上进一步折叠和组装,形成复杂的三维结构。
这个结构的形成主要由各个氨基酸残基之间的相互作用所决定,包括疏水相互作用、氢键、电离相互作用、范德华力和二硫键等。
4. 四级结构蛋白质的四级结构是指由多个多肽链通过相互作用而形成的功能完整的蛋白质分子。
这些多肽链可以是相同的或不同的,它们之间通过各种各样的键连接在一起,形成复杂的结构。
二、蛋白质的功能蛋白质的结构决定了其功能。
蛋白质在生物体内扮演着多种重要的角色,包括酶、结构蛋白、运输蛋白和抗体等。
1. 酶酶是一类催化生物化学反应的蛋白质,可以加速化学反应发生的速率。
酶的活性与其结构密切相关,酶的活性位点具有与底物相互作用的特定结构。
2. 结构蛋白结构蛋白是细胞中的主要组成部分,为细胞提供了稳定的支持和形状。
它们形成了细胞的骨架,维持细胞的稳定性和形态。
3. 运输蛋白运输蛋白可以将物质从细胞内部输送到细胞外部,或者从细胞外部运输到细胞内部。
例如,血红蛋白可以运输氧气到全身各个组织和器官。
蛋白质一二三四级结构的概念和特点

蛋白质一二三四级结构的概念和特点结构的基本概念:1、一级结构:氨基酸排列顺序;2、二级结构:指蛋白质多肽链本身的折叠和盘绕的方式。
二级结构主要有α-螺旋、β-折叠、β-转角.常见的二级结构有α-螺旋和β-折叠。
二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的,氢键是稳定二级结构的主要作用力。
3、三级结构:蛋白质分子处于它的天然折叠状态的三维构象。
三级结构是在二级结构的基础上进一步盘绕,折叠形成的,指一条多肽链在二级结构的基础上,进一步盘绕,折叠,从而产生特定的空间结构。
三级结构主要是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力和静电作用维持的.4、四级结构:在体内有许多蛋白质含有2条或2条以上多肽链,才能全面地执行功能.没一条多肽链都有其完完整的三级结构,称为亚基(subunit)。
亚基与亚基之间呈特定的三维空间分布,并以非共价键相链接,这种蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。
蛋白质的氨基酸序列是由对应基因所编码。
除了遗传密码所编码的20种基本氨基酸,在蛋白质中,某些氨基酸残基还可以被翻译后修饰而发生化学结构的变化,从而对蛋白质进行激活或调控。
多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,折叠或螺旋构成一定的空间结构,从而发挥某一特定功能。
合成多肽的细胞器是细胞质中糙面型内质网上的核糖体。
蛋白质的不同在于其氨基酸的种类、数目、排列顺序和肽链空间结构的不同。
食入的蛋白质在体内经过消化被水解成氨基酸被吸收后,合成人体所需蛋白质,同时新的蛋白质又在不断代谢与分解,时刻处于动态平衡中。
因此,食物蛋白质的质和量、各种氨基酸的比例,关系到人体蛋白质合成的量,尤其是青少年的生长发育、孕产妇的优生优育、老年人的健康长寿,都与膳食中蛋白质的量有着密切的关系。
蛋白质又分为完全蛋白质和不完全蛋白质。
富含必需氨基酸,品质优良的蛋白质统称完全蛋白质,如奶、蛋、鱼、肉类等属于完全蛋白质,植物中的大豆亦含有完全蛋白质。
执业药师考试生理学:蛋白质的分子结构

执业药师考试生理学:蛋白质的分子结构(一)蛋白质的一级结构概念:蛋白质的一级结构指多肽链中氨基酸的排列顺序。
基本化学键:肽键(二)蛋白质的二级结构概念:蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。
局部主链!主要的化学键:氢键基本结构形式:α-螺旋、β-折叠、β-转角、无规卷曲1.α-螺旋结构特点(1)右手螺旋;(2)螺旋稳定的化学键为氢键;(3)R基团伸向螺旋外侧;(4)每3.6个氨基酸残基螺旋上升一圈。
螺距为0.54nm,所以每个氨基酸残基上升的高度为0.15nm。
2.β-折叠(1)多肽链相邻肽键平面折叠成锯齿状,夹角为110°;(2)氨基酸侧链交替地位于锯齿状结构的上、下方;(3)两条以上肽链或一条肽链内的若干肽段平行排列,通过链间羰基氧和亚氨基氢形成氢键,从而稳固β-折叠结构;(4)肽链有顺式平行和反式平行两种。
结构特点:①常发生于肽链180°回折时的转角上;②由四个连续的氨基酸残基组成。
第一个氨基酸残基的CO与第四个氨基酸残基的NH 形成氢键,以稳定转折的构象。
(三)蛋白质的三级结构概念:一条多肽链内所有原子的空间排布,包括主链、侧链构象内容。
一条所有!化学键:疏水作用力、离子键、氢键和范德华力(四)蛋白质的四级结构亚基:有些蛋白质由两条或两条以上具有独立三级结构的多肽链组成,其中每条多肽链称为一个亚基。
亚基单独存在没有生物学功能。
由亚基构成的蛋白质称为寡聚蛋白。
蛋白质四级结构:蛋白质分子中各亚基之间的空间排布及相互接触关系。
亚基之间的结合力主要是疏水作用,其次是氢键和离子键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蛋白质的一级结构(primarystructure)就是蛋白质多肽链中氨基酸残基的排列顺序(sequence),也是蛋白质最基本的结构。
它是由基因上遗传密码的排列顺序所决定的。
各种氨基酸按遗传密码的顺序,通过肽键连接起来,成为多肽链,故肽键是蛋白质结构中的主键。
迄今已有约一千种左右蛋白质的一级结构被研究确定,如胰岛素,胰核糖核酸酶、胰蛋白酶等。
蛋白质的一级结构决定了蛋白质的二级、三级等高级结构,成百亿的天然蛋白质各有其特殊的生物学活性,决定每一种蛋白质的生物学活性的结构特点,首先在于其肽链的氨基酸序列,由于组成蛋白质的20种氨基酸各具特殊的侧链,侧链基团的理化性质和空间排布各不相同,当它们按照不同的序列关系组合时,就可形成多种多样的空间结构和不同生物学活性的蛋白质分子。