小庙中学八年级月考数学检测题
第一学期八年级数学第二次月考试卷(含解析)

第一学期八年级数学第二次月考试卷(含解析) 一、选择题1.下列志愿者标识中是中心对称图形的是( ).A .B .C .D .2.下列实数中,无理数是( )A .227B .3πC .4-D .3273.在平面直角坐标系中,点P (﹣3,2)在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列运算正确的是( )A .=2B .|﹣3|=﹣3C .=±2D .=3 5.满足下列条件的△ABC ,不是直角三角形的是( )A .a :b :3c =:4:5B .A ∠:B ∠:9C ∠=:12:15 C .C A B ∠=∠-∠D .222b a c -= 6.能表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 是常数且m ≠0)的图象的是( )A .B .C .D .7.如图,在△ABC 中,分别以点A ,B 为圆心,大于12AB 长为半径画弧,两弧相交于点E ,F ,连接AE ,BE ,作直线EF 交AB 于点M ,连接CM ,则下列判断不正确...的是A .AM =BMB .AE =BEC .EF ⊥ABD .AB =2CM8.如图,正方形OACB 的边长是2,反比例函数k y x=图像经过点C ,则k 的值是( )A .2B .2-C .4D .4-9.一辆货车从甲地匀速驶往乙地用了2.7h ,到达后用了0.5h 卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y (km )关于时间x (h )的函数图象如图所示,则a 等于( )A .4.7B .5.0C .5.4D .5.810.为了解我区八年级学生的身高情况,教育局抽查了1000名学生的身高进行了统计分析所抽查的1000名学生的身高是这个问题的( )A .总体B .个体C .样本D .样本容量二、填空题11.将一次函数y =2x 的图象向上平移1个单位,所得图象对应的函数表达式为__________.12.在平面直角坐标系xOy 中,点P 在第四象限内,且点P 到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标是_____.13.如果点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为______.14.已知,点(,1)A a 和点(3,)B b 关于原点O 对称,则+a b 的值为__________.15.在平面直角坐标系中,把直线y=-2x+3沿y 轴向上平移两个单位后,得到的直线的函数关系式为_____.16.如图,在ABC ∆和EDB ∆中,90C EBD ∠=∠=︒,点E 在AB 上.若ABC EDB ∆∆≌,4AC =,3BC =,则DE =______.17.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点F ,过F 作//DE BC ,交AB 于点D ,交AC 于点E .若3,5BD DE ==,则线段EC 的长为______.18.若某个正数的两个平方根分别是21a +与25a -,则a =_______.19.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.20.若函数(y x a a =-为常数)与函数2(y x b b =-+为常数)的图像的交点坐标是(2, 1),则关于x 、y 的二元一次方程组2x y a x y b -=⎧⎨+=⎩的解是________.三、解答题21.小红驾车从甲地到乙地,她出发第xh 时距离乙地ykm ,已知小红驾车中途休息了1小时,图中的折线表示她在整个驾车过程中y 与x 之间的函数关系.(1)B 点的坐标为( , );(2)求线段AB 所表示的y 与x 之间的函数表达式;(3)小红休息结束后,以60km/h 的速度行驶,则点D 表示的实际意义是 .22.如图,ABC ∆为等边三角形,D 为ABC ∆内一点,且ABD DAC ∠=∠,过点C 作AD 的平行线,交BD 的延长线于点E ,BD EC =,连接AE .(1)求证:ABD ACE ∆∆≌;(2)求证:ADE ∆为等边三角形.23.已知:如图,点B ,D 在线段AE 上,AD=BE ,AC ∥EF ,∠C=∠H.求证:BC=DH.24.某学校是乒乓球体育传统项目校,为进一步推动该项目的发展.学校准备到体育用品店购买甲、乙两种型号乒乓球若干个,已知3个甲种乒乓球和5个乙种乒乓球共需50元,2个甲种乒乓球和3个乙种乒乓球共需31元.(1)求1个甲种乒乓球和1个乙种乒乓球的售价各是多少元?(2)学校准备购买这两种型号的乒乓球共200个,要求甲种乒乓球的数量不超过乙种乒乓球的数量的3倍,请设计出最省钱的购买方案,并说明理由.25.如图,等边三角形ABC的边长为8,点E是边BC上一动点(不与点,B C重合),以AE CD.BE为边在BC的下方作等边三角形BDE,连接,(1)在运动的过程中,AE与CD有何数量关系?请说明理由.∠的度数.(2)当BE=4时,求BDC四、压轴题26.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点 P 在线段 AB 上以1/cm s的速度由点 A 向点 B 运动,同时,点 Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为t(s).(1)若点 Q 的运动速度与点 P 的运动速度相等,当t=1 时,△ACP 与△BPQ 是否全等,请说明理由,并判断此时线段 PC 和线段 PQ 的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他cm s,是否存在实数x,使得△ACP 与△BPQ 全等?若条件不变.设点 Q 的运动速度为x/存在,求出相应的x、t的值;若不存在,请说明理由.27.已知在△ABC中,AB=AC,∠BAC=α,直线l经过点A(不经过点B或点C),点C关于直线l的对称点为点D,连接BD,CD.(1)如图1, ①求证:点B ,C ,D 在以点A 为圆心,AB 为半径的圆上;②直接写出∠BDC 的度数(用含α的式子表示)为 ;(2)如图2,当α=60°时,过点D 作BD 的垂线与直线l 交于点E ,求证:AE =BD ;(3)如图3,当α=90°时,记直线l 与CD 的交点为F ,连接BF .将直线l 绕点A 旋转的过程中,在什么情况下线段BF 的长取得最大值?若AC =22a ,试写出此时BF 的值.28.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC =∠DAE ,AB =AC ,AD =AE ,则△ABD ≌△ACE .(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC 和△AED 是等边三角形,连接BD ,EC 交于点O ,连接AO ,下列结论:①BD =EC ;②∠BOC =60°;③∠AOE =60°;④EO =CO ,其中正确的有 .(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB =BC ,∠ABC =∠BDC =60°,试探究∠A 与∠C 的数量关系.29.在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 是ABC 的角平分线,DE AB ⊥于点E .(1)如图1,连接EC ,求证:EBC 是等边三角形;(2)如图2,点M 是线段CD 上的一点(不与点,C D 重合),以BM 为一边,在BM 下方作60BMG ∠=︒,MG 交DE 延长线于点G .求证:AD DG MD =+;(3)如图3,点N 是线段AD 上的点,以BN 为一边,在BN 的下方作60BNG ∠=︒,NG 交DE 延长线于点G .直接写出ND ,DG 与AD 数量之间的关系.30.如图,在平面直角坐标系中,直线y =2x +6与x 轴交于点A ,与y 轴交于点B ,过点B 的直线交x 轴于点C ,且AB =BC .(1)求直线BC 的解析式;(2)点P 为线段AB 上一点,点Q 为线段BC 延长线上一点,且AP =CQ ,设点Q 横坐标为m ,求点P 的坐标(用含m 的式子表示,不要求写出自变量m 的取值范围); (3)在(2)的条件下,点M 在y 轴负半轴上,且MP =MQ ,若∠BQM =45°,求直线PQ 的解析式.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,故选项错误;B、不是中心对称图形,故选项错误;C、是中心对称图形,故选项正确;D、不是中心对称图形,故选项错误.故选:C.【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.B解析:B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】A.227是有理数,不符合题意;B.3π是无理数,符合题意;C.=-2,是有理数,不符合题意;是有理数,不符合题意.故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.3.B解析:B【解析】【分析】根据各象限的点的坐标的符号特征判断即可.【详解】∵-3<0,2>0,∴点P(﹣3,2)在第二象限,故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),记住各象限内点的坐标的符号是解决的关键.4.A解析:A【解析】【分析】根据算术平方根和立方根的定义、绝对值的性质逐一计算可得结论.【详解】A .=2,此选项计算正确; B .|﹣3|=3,此选项计算错误;C .=2,此选项计算错误; D .不能进一步计算,此选项错误. 故选A .【点睛】本题考查了算术平方根,解题的关键是掌握算术平方根和立方根的定义、绝对值性质. 5.B解析:B【解析】分析:根据三角形的内角和定理及勾股定理的逆定理进行分析,进而得到答案.详解:A.设三边分别为3k ,4k ,5k ,因为(3k)2+(4k )2=(5k )2,所以是直角三角形;B.因为∠C=0015180909+12+15⨯<,所以不是直角三角形; C. ∠C=∠A ﹣∠B ,即∠B+∠C=∠A ,故∠A=090,所以是直角三角形;D.因为b 2﹣a 2=c 2,所以c 2+a 2= b 2,所以是直角三角形.故答案为B.点睛:此题考查勾股定理的逆定理的应用.判断三角形是不是直角三角形,已知三角形的三边的长,只要利用勾股定理的逆定理加以判断即可.6.C解析:C【解析】【分析】对于各选项:先通过一次函数的性质确定m 、n 的符合,从而得到mn 的符合,然后根据正比例函数的性质对正比例函数图象进行判断,从而可确定该选项是否正确.【详解】A 、由一次函数图象得m >0,n >0,所以mn >0,则正比例函数图象过第一、三象限,所以A 选项错误;B 、由一次函数图象得m >0,n <0,所以mn <0,则正比例函数图象过第二、四象限,所以B 选项错误;C 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以C 选项正确;D 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以D 选项错误.故选:C .【点睛】本题考查了正比例函数图象:正比例函数y =kx 经过原点,当k >0,图象经过第一、三象限;当k <0,图象经过第二、四象限.也考查了一次函数的性质.7.D解析:D【解析】【分析】由作图可知EF 是AB 的垂直平分线,据此对各项进行分析可得答案.【详解】解:由作图可知EF 是AB 的垂直平分线,所以AM =BM ,AE =BE ,EF ⊥AB ,即选项A,B,C 均正确,CM 是AB 边上的中线,AB =2CM 错误.故选:D【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.8.C解析:C【解析】【分析】根据正方形的性质,即可求出点C 的坐标,然后代入反比例函数解析式里即可.【详解】解:∵正方形OACB 的边长是2,∴点C 的坐标为(2,2)将点C 的坐标代入k y x=中,得 22k = 解得:4k =故选C .【点睛】此题考查的是求反比例函数的比例系数,掌握用待定系数法求反比例函数的比例系数是解决此题的关键.9.B解析:B【解析】【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t,进而求得a的值.【详解】解:设甲乙两地的路程为s,从甲地到乙地的速度为v,从乙地到甲地的时间为t,则2.71.5v svt s=⎧⎨=⎩解得,t=1.8∴a=3.2+1.8=5(小时),故选B.【点睛】本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.10.C解析:C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.二、填空题11.y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.解析:y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为故答案为y=2x+1.12.(3,﹣2).【解析】【分析】根据点到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值,可得答案.【详解】设P(x ,y),∵点P 到x 轴的距离为2,到y 轴的距离为3,∴,∵点P解析:(3,﹣2).【解析】【分析】根据点到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值,可得答案.【详解】设P(x ,y),∵点P 到x 轴的距离为2,到y 轴的距离为3, ∴32x y ==,, ∵点P 在第四象限内,即:00x y ><,∴点P 的坐标为(3,﹣2),故答案为:(3,﹣2).【点睛】本题主要考查平面直角坐标系中,点的坐标,掌握“点到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值”,是解题的关键.13.【解析】试题分析:由点P 在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x 轴的距离是4,到y 轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P 的坐标为(-3,4).考点:象限内点的坐标解析:()3,4-【解析】试题分析:由点P 在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x 轴的距离是4,到y 轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P 的坐标为(-3,4). 考点:象限内点的坐标特征.14.【解析】根据关于原点对称的点坐标的特点,即可得到答案.【详解】解:∵点和点关于原点对称,∴,,∴;故答案为:.【点睛】本题考查了关于原点对称的点坐标特点,解题的关键是熟记解析:4-【解析】【分析】根据关于原点对称的点坐标的特点,即可得到答案.【详解】解:∵点(,1)A a 和点(3,)B b 关于原点O 对称,∴3a =-,1b =-,∴3(1)4a b +=-+-=-;故答案为:4-.【点睛】本题考查了关于原点对称的点坐标特点,解题的关键是熟记平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数,比较简单.15.y=-2x+5.【解析】【分析】根据平移法则上加下减可得出平移后的解析式.【详解】解:由题意得:平移后的解析式为:y=-2x+3+2=-2x+5.故答案为y=-2x+5.【点睛】本题解析:y=-2x+5.【解析】【分析】根据平移法则上加下减可得出平移后的解析式.【详解】解:由题意得:平移后的解析式为:y=-2x+3+2=-2x+5.故答案为y=-2x+5.【点睛】本题考查一次函数图形的平移变换和函数解析式之间的关系,解题关键是在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.16.5【解析】【分析】先根据勾股定理求得AB的长度,再由全等三角形的性质可得DE的长度.【详解】解:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌解析:5【解析】【分析】先根据勾股定理求得AB的长度,再由全等三角形的性质可得DE的长度.【详解】解:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌△EDB,∴DE=AB=5.【点睛】本题考查勾股定理,全等三角形的性质.熟记全等三角形对应边相等是解决此题的关键. 17.2【解析】【分析】根据角平分线的定义可得∠DBF=∠FBC,∠ECF=∠FCB,由平行线的性质可得∠DFB=∠FBC,∠EFC=∠FCB,等量代换可得∠DFB=∠DBF,∠EFC=∠ECF,根解析:2【解析】【分析】根据角平分线的定义可得∠DBF=∠FBC,∠ECF=∠FCB,由平行线的性质可得∠DFB=∠FBC,∠EFC=∠FCB,等量代换可得∠DFB=∠DBF,∠EFC=∠ECF,根据等角对等边可得到DF=DB,EF=EC,再由ED=DF+EF结合已知即可求得答案.【详解】∵BF、CF分别是∠ABC和∠ACB的角平分线,∴∠DBF=∠FBC ,∠ECF=∠FCB ,∵DE ∥ BC ,∴∠DFB=∠FBC ,∠EFC=∠FCB ,∴∠DFB=∠DBF ,∠EFC=∠ECF ,∴DF=DB ,EF=EC ,∵ED=DF+EF ,3,5BD DE ==,∴EF=2,∴EC=2故答案为:2【点睛】本题考查了等腰角形的判定与性质,平行线的性质,角平分线的定义等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.18.1【解析】【分析】根据一个正数的两个平方根互为相反数可得2a+1+2a-5=0,解方程求出a 值即可.【详解】∵某个正数的两个平方根分别是2a+1与2a-5,∴2a+1+2a-5=0,解解析:1【解析】【分析】根据一个正数的两个平方根互为相反数可得2a+1+2a-5=0,解方程求出a 值即可.【详解】∵某个正数的两个平方根分别是2a+1与2a-5,∴2a+1+2a-5=0,解得:a=1故答案为:1【点睛】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.19.27【解析】【分析】把代入多项式,得到的式子进行移项整理,得,根据平方的非负性把和求出,再代入求多项式的值.【详解】解:将代入,得:移项得:,,即,时,故答案为:27【点睛解析:27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键.20.【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解即可解答.【详解】解:因为函数y=x-a(a 为常数)与函数y=-2x+b(b 为常数)的图像的交点坐标是(2, 1),所以解析:21x y =⎧⎨=⎩【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解即可解答.【详解】解:因为函数y=x-a(a 为常数)与函数y=-2x+b(b 为常数)的图像的交点坐标是(2, 1), 所以方程组2x y a x y b -=⎧⎨+=⎩ 的解为21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩. 【点睛】 本题考查一次函数与二元一次方程(组):满足函数解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.三、解答题21.(1)点B 的坐标为(3,120);(2)y 与x 之间的函数表达式:y=-100x+420;(3)D 点表示此时小红距离乙地0km ,即小红到达乙地.【解析】分析:(1)由图象可知C 点坐标,根据小红驾车中途休息了1小时可得B 点坐标; (2)利用待定系数法,由A 、B 两点坐标可求出函数关系式;(3)D 点表示小红距离乙地0km ,即小红到达乙地.本题解析:(1)由图象可知,C (4,120),∵小红驾车中途休息了1小时,∴点B 的坐标为(3,120);(2)设y 与x 之间的函数表达式为y=kx+b .根据题意,当x=0时,y=420;当x=3时,y=120.∴42001203k b k b =+⎧⎨=+⎩ ,∴100420k b =-⎧⎨=⎩, ∴y 与x 之间的函数表达式:y=-100x+420.(3)D 点表示此时小红距离乙地0km ,即小红到达乙地.点睛:本题主要考查学生结合题意读懂图象的基本能力和待定系数法求函数表达式的技能,属基础题.22.(1)见解析(2)见解析【解析】【分析】(1)先证明∠ACE=∠CAD=∠ABD ,再根据SAS 证明ABD ACE ∆∆≌即可;(2)由ADB AEC ∆∆≌可得AD AE =,BAD CAE ∠=∠再证明60DAE ︒∠=即可.【详解】(1)ABC ∆为等边三角形,,60AB AC BAC ︒∴=∠=//AD ECDAC ACE ∴∠=∠又ABD DAC ∠=∠ABD ACE ∴∠=∠ 在BAD ∆与CAE ∆中,AB AC ABD ACE BD EC =⎧⎪∠=∠⎨⎪=⎩()ADB AEC SAS ∴∆∆≌(2)()ADB AEC SAS ∆∆≌,AD AE BAD CAE ∴=∠=∠CAE DAC BAD DAC ∴∠+∠=∠+∠60DAE BAC ︒∴∠=∠=ADE ∴∆为等边三角形.【点睛】此题主要考查了全等三角形的判定与性质以及等边三角形的判定,熟练掌握定理与性质是解此题的关键.23.证明见解析.【解析】【分析】利用AAS 证明△ABC ≌△EDH ,再根据全等三角形的性质即可得.【详解】∵AD=BE ,∴AD-BD=BE-BD ,即AB=DE.∵AC ∥EH ,∴∠A=∠E ,在△ABC 和△EDH 中C H A E AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△EDH(AAS),∴BC=DH.【点睛】本题考查了全等三角形的送定与性质,熟练掌握全等三角形的判定方法是解题的关键.24.(1)1个甲种乒乓球的售价是5元,乙种售价是7元;(2)当购买甲种乒乓球150只,乙种乒乓球50只时最省钱.【解析】【分析】(1)设1个甲种乒乓球的售价是x 元,1个乙种乒乓球的售价是y 元,根据题意列出二元一次方程组,解方程组即可;(2)设购买甲种乒乓球a 只,则购买乙种乒乓球()200a -只,费用为w 元,根据题意列出费用关于a 的一次函数,根据一次函数的性质解答即可.【详解】(1)设1个甲种乒乓球的售价是x 元,1个乙种乒乓球的售价是y 元,35502331x y x y +=⎧⎨+=⎩,解得,57x y =⎧⎨=⎩, 答:1个甲种乒乓球的售价是5元,乙种售价是7元;(2)设购买甲种乒乓球a 只,则购买乙种乒乓球()200a -只,费用为w 元,()5720021400w a a a =+-=-+,∵()3200a a -,∴150a ≤,∴当150a =时,w 取得最小值,此时1100w =,20050a -=,答:当购买甲种乒乓球150只,乙种乒乓球50只时最省钱.【点睛】本题考查的是列二元一次方程组、一元一次不等式解实际问题/一次函数的性质等知识,解题的关键是学会利用一次函数的性质解决最值问题.25.(1)AE=CD ,理由见解析;(2)90°【解析】【分析】(1)如图,证明△ABE ≌△CBD ,即可解决问题.(2)证明AE ⊥BC ,证明∠BDC=∠AEB ,即可解决问题.【详解】解:(1)AE=CD ;理由如下:∵△ABC 和△BDE 等边三角形∴AB=BC ,BE=BD ,∠ABC=∠EBD=60°;在△ABE 与△CBD 中,AB BC ABE CBD BE BD =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CBD (SAS ),∴AE=CD .(2)∵BE=4,BC=8∴E 为BC 的中点;又∵等边三角形△ABC ,∴AE ⊥BC ;由(1)知△ABE ≌△CBD ,∴∠BDC=∠AEB=90°.【点睛】本题考查全等三角形的判定及其性质的应用问题;解题关键是观察图形,准确找出图形中隐含的等量关系、全等关系.四、压轴题26.(1)全等,垂直,理由详见解析;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)在t =1的条件下,找出条件判定△ACP 和△BPQ 全等,再根据全等三角形的性质和直角三角形的两个锐角互余的性质,可证∠CPQ= 90°,即可判断线段 PC 和线段 PQ 的位置关系;(2)本题主要在动点的条件下,分情况讨论,利用三角形全等时对应边相等的性质进行解答即可.【详解】(1)当t=1时,AP= BQ=1, BP= AC=3,又∠A=∠B= 90°,在△ACP 和△BPQ 中,{AP BQA B AC BP=∠=∠=∴△ACP ≌△BPQ(SAS).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP = 90*.∴∠CPQ= 90°,即线段PC 与线段PQ 垂直;(2)①若△ACP ≌△BPQ ,则AC= BP ,AP= BQ ,34t t xt =-⎧⎨=⎩解得11t x =⎧⎨=⎩; ②若△ACP ≌△BQP ,则AC= BQ ,AP= BP ,34xt t t =⎧⎨=-⎩解得:232t x =⎧⎪⎨=⎪⎩ 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题主要考查三角形全等与动点问题,熟练掌握三角形全等的性质与判定定理,是解决本题的关键.27.(1)①详见解析;②12α;(2)详见解析;(3)当B 、O 、F 三点共线时BF 最长,)a【解析】【分析】(1)①由线段垂直平分线的性质可得AD=AC=AB ,即可证点B ,C ,D 在以点A 为圆心,AB 为半径的圆上;②由等腰三角形的性质可得∠BAC=2∠BDC ,可求∠BDC 的度数;(2)连接CE ,由题意可证△ABC ,△DCE 是等边三角形,可得AC=BC ,∠DCE=60°=∠ACB ,CD=CE ,根据“SAS”可证△BCD ≌△ACE ,可得AE=BD ;(3)取AC 的中点O ,连接OB ,OF ,BF ,由三角形的三边关系可得,当点O ,点B ,点F 三点共线时,BF最长,根据等腰直角三角形的性质和勾股定理可求BO =,OF OC ==,即可求得BF【详解】(1)①连接AD ,如图1.∵点C与点D关于直线l对称,∴AC = AD.∵AB= AC,∴AB= AC = AD.∴点B,C,D在以A为圆心,AB为半径的圆上.②∵AD=AB=AC,∴∠ADB=∠ABD,∠ADC=∠ACD,∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,∴∠BAM=2∠ADB,∠MAC=2∠ADC,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α∴∠BDC=12α故答案为:12α.(2连接CE,如图2.∵∠BAC=60°,AB=AC,∴△ABC是等边三角形,∴BC=AC,∠ACB=60°,∵∠BDC=12α,∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°,∵点C关于直线l的对称点为点D,∴DE=CE,且∠CDE=60°∴△CDE是等边三角形,∴CD=CE=DE,∠DCE=60°=∠ACB,∴∠BCD=∠ACE,且AC=BC,CD=CE,∴△BCD≌△ACE(SAS)∴BD=AE ,(3)如图3,取AC 的中点O ,连接OB ,OF ,BF ,,F 是以AC 为直径的圆上一点,设AC 中点为O ,∵在△BOF 中,BO+OF≥BF ,当B 、O 、F 三点共线时BF 最长; 如图,过点O 作OH ⊥BC ,∵∠BAC=90°,2a ,∴24BC AC a ==,∠ACB=45°,且OH ⊥BC ,∴∠COH=∠HCO=45°,∴OH=HC , ∴2OC HC =, ∵点O 是AC 中点,AC 2a ,∴2OC a =, ∴OH HC a ==,∴BH=3a ,∴10BO a =,∵点C 关于直线l 的对称点为点D ,∴∠AFC=90°,∵点O 是AC 中点, ∴2OF OC a ==,∴102BF a =, ∴当B 、O 、F 三点共线时BF 最长;最大值为102)a .【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理,三角形的三边关系,灵活运用相关的性质定理、综合运用知识是解题的关键.28.(1)证明见解析;(2)①②③;(3)∠A +∠C =180°.【解析】【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;(2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论;(3)先判断出△BDP是等边三角形,得出BD=BP,∠DBP=60°,进而判断出△ABD≌△CBP (SAS),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,AB ACBAD CAEAD AE⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△ACE;(2)如图2,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,AB ACBAD CAEAD AE⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△ACE,∴BD=CE,①正确,∠ADB=∠AEC,记AD与CE的交点为G,∵∠AGE=∠DGO,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB上取一点F,使OF=OC,∴△OCF是等边三角形,∴CF=OC,∠OFC=∠OCF=60°=∠ACB,∴∠BCF=∠ACO,∵AB=AC,∴△BCF≌△ACO(SAS),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正确,连接AF,要使OC=OE,则有OC=12 CE,∵BD=CE,∴CF=OF=12 BD,∴OF=BF+OD,∴BF<CF,∴∠OBC>∠BCF,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而没办法判断∠OBC大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等边三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A ,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.29.(1)证明见解析;(2)证明见解析;(3)结论:AD DG ND =-,证明见解析.【解析】【分析】(1)先根据直角三角形的性质得出60ABC ∠=︒,再根据角平分线的性质可得CD ED =,然后根据三角形的判定定理与性质可得BC BE =,最后根据等边三角形的判定即可得证;(2)如图(见解析),延长ED 使得DF MD =,连接MF ,先根据直角三角形的性质、等边三角形的判定得出MDF ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,F MDB MF MD FMG DMB ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证;(3)如图(见解析),参照题(2),先证HDN ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,H NDG NH ND HNB DNG ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证.【详解】(1)3,090A ACB ∠=︒∠=︒9060ABC A ∴∠=︒-∠=︒ BD 是ABC ∠的角平分线,DE AB ⊥CD ED ∴=在BCD ∆和BED ∆中,CD ED BD BD =⎧⎨=⎩()BCD BED HL ∴∆≅∆BC BE ∴=EBC ∴∆是等边三角形;(2)如图,延长ED 使得DF MD =,连接MF3,090A ACB ∠=︒∠=︒,BD 是ABC ∠的角平分线,DE AB ⊥60,ADE BDE AD BD ∴∠=∠=︒=60,18060MDF ADE MDB ADE BDE ∴∠=∠=︒∠=︒-∠-∠=︒MDF ∴∆是等边三角形,60MF DM F DMF ∴=∠=∠=︒60BMG ∠=︒DMF DM B M G G D M G ∴∠+∠=+∠∠,即FMG DMB ∠=∠。
初二月考数学试卷答案

一、选择题(每题3分,共30分)1. 下列选项中,不是有理数的是()A. -2B. √2C. 0.25D. -π答案:B解析:有理数是可以表示为两个整数之比的数,包括整数、小数和分数。
√2是无理数,因为它不能表示为两个整数之比。
2. 下列函数中,是奇函数的是()A. y = x^2B. y = |x|C. y = x^3D. y = x^4答案:C解析:奇函数满足f(-x) = -f(x)。
在选项中,只有y = x^3满足这个条件。
3. 已知二次函数y = ax^2 + bx + c(a≠0)的顶点坐标为(1,-2),则a+b+c 的值为()A. 1B. 0C. -1D. -2答案:B解析:二次函数的顶点坐标为(-b/2a,c-b^2/4a)。
将顶点坐标(1,-2)代入,得到-2 = c - b^2/4a,且1 = -b/2a。
解这个方程组,得到a+b+c=0。
4. 下列方程中,无解的是()A. 2x - 5 = 0B. 3x + 4 = 2x + 8C. 5x - 3 = 0D. 4x + 7 = 0答案:D解析:方程无解意味着方程左边和右边的表达式在实数范围内没有相同的值。
在选项D中,4x + 7 = 0,无论x取什么值,等式左边都不会等于0,因此无解。
5. 下列数列中,是等差数列的是()A. 1, 3, 5, 7, 9B. 1, 4, 9, 16, 25C. 2, 6, 12, 18, 24D. 1, 2, 4, 8, 16答案:A解析:等差数列是指相邻两项之差相等的数列。
在选项A中,相邻两项之差均为2,因此是等差数列。
二、填空题(每题5分,共25分)6. 若a > b > 0,则a - b的倒数是______。
答案:1/(a - b)解析:a - b的倒数是1/(a - b),因为倒数是分子分母互换。
7. 二项式(a + b)^5的展开式中,a^3b^2的系数是______。
初二月考试卷数学及答案

一、选择题(每题5分,共30分)1. 下列各数中,不是有理数的是()A. 3B. -5C. √2D. 0答案:C2. 下列等式中,正确的是()A. a + b = b + aB. ab = baC. a^2 = b^2D. a^3 = b^3答案:B3. 若m和n是方程2x^2 - 5x + 3 = 0的两个根,则m + n的值是()A. 5B. 3C. 2D. 1答案:A4. 已知函数f(x) = x^2 - 4x + 4,那么f(x)的图像是()A. 开口向上,顶点在x轴上B. 开口向下,顶点在x轴上C. 开口向上,顶点在y轴上D. 开口向下,顶点在y轴上答案:A5. 在直角坐标系中,点A(2, 3)关于原点对称的点是()A. (-2, -3)B. (-2, 3)C. (2, -3)D. (2, 3)答案:A二、填空题(每题5分,共25分)6. 若a和b是方程x^2 - 5x + 6 = 0的两个根,则a^2 + b^2的值是______。
答案:257. 已知函数f(x) = 3x - 2,那么f(-1)的值是______。
答案:-58. 在等差数列{an}中,a1 = 3,公差d = 2,那么a5的值是______。
答案:119. 在等比数列{bn}中,b1 = 2,公比q = 3,那么b4的值是______。
答案:16210. 若函数y = kx + b(k ≠ 0)的图像经过点(1, 3),则k的值是______。
答案:2三、解答题(每题15分,共60分)11. (15分)解下列方程:(1)2x - 5 = 3x + 1(2)5(x - 2) = 3(2x + 1)答案:(1)x = -6(2)x = -112. (15分)已知函数f(x) = 2x^2 - 3x + 1,求:(1)函数的顶点坐标(2)函数的对称轴答案:(1)顶点坐标为(3/4, -1/8)(2)对称轴为x = 3/413. (15分)已知数列{an}的通项公式为an = 2n + 1,求:(1)数列的前5项(2)数列的求和公式答案:(1)a1 = 3, a2 = 5, a3 = 7, a4 = 9, a5 = 11(2)S_n = n^2 + n14. (15分)已知函数y = kx + b(k ≠ 0)的图像经过点A(1, 2)和点B(3, 4),求:(1)函数的解析式(2)函数图像与x轴的交点坐标答案:(1)k = 1/2,b = 3/2,函数解析式为y = 1/2x + 3/2(2)交点坐标为(3, 0)。
第一学期八年级数学第二次月考试卷(含解析)

第一学期八年级数学第二次月考试卷(含解析)一、选择题1.下列长度的三条线段能组成直角三角形的是( ) A .3,4,4 B .3,4,5 C .3,4,6 D .3,4,8 2.在平面直角坐标系中,点P (﹣3,2)在( )A .第一象限B .第二象限C .第三象限D .第四象限3.如图,∠A =30°,∠C ′=60°,△ABC 与△A′B′C′关于直线l 对称,则∠B 度数为( )A .30B .60︒C .90︒D .120︒4.如图,∠AOB=60°,OA=OB ,动点C 从点O 出发,沿射线OB 方向移动,以AC 为边在右侧作等边△ACD ,连接BD ,则BD 所在直线与OA 所在直线的位置关系是( )A .平行B .相交C .垂直D .平行、相交或垂直 5.下列长度的三条线段不能组成直角三角形的是( )A .1.5,2.5,3B .1,3,2C .6,8,10D .3,4,56.如果0a b -<,且0ab <,那么点(),a b 在( ) A .第一象限B .第二象限C .第三象限D .第四象限7.如图,直线y mx n =+与y kx b =+的图像交于点(3,-1),则不等式组,0mx n kx b mx n +≥+⎧⎨+≤⎩的解集是( )A .3x ≤B .n x m≥-C .3nx m-≤≤ D .以上都不对8.下列各式中,属于分式的是( )A .x ﹣1B .2mC .3b D .34(x+y ) 9.已知正比例函数y =kx 的图象经过点(﹣2,1),则k 的值( )A .﹣2B .﹣12C .2D .1210.若关于x 的分式方程211x ax -=+的解为负数,则字母a 的取值范围为( ) A .a ≥﹣1 B .a ≤﹣1且a ≠﹣2 C .a >﹣1 D .a <﹣1且a ≠﹣2二、填空题11.如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(-1,4).将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C′的坐标是_____.12.如图,在正方形ABCD 的外侧,作等边三角形CDE ,连接,AE BE ,试确定AEB ∠的度数.13.如图,直线483y x =-+与x 轴,y 轴分别交于点A 和B ,M 是OB 上的一点,若将ABM ∆沿AM 折叠,点B 恰好落在x 轴上的点B ′处,则直线AM 的解析式为_____.14.对于分式23x a ba b x++-+,当1x =时,分式的值为零,则a b +=__________.15.如图,在ABC ∆中,90C =∠,AD 平分CAB ∠,交BC 于点D ,若ADC 60∠=,2CD =,则ABC ∆周长等于__________.16.Rt ABC ∆中,90ACB ∠=︒,30A ∠=︒,点D 在边AB 上,连接CD .有以下4种说法:①当DC DB =时,BCD ∆一定为等边三角形 ②当AD CD =时,BCD ∆一定为等边三角形③当ACD ∆是等腰三角形时,BCD ∆一定为等边三角形 ④当BCD ∆是等腰三角形时,ACD ∆一定为等腰三角形 其中错误的是__________.(填写序号即可)17.在一次函数(1)5y k x =-+中,y 随x 的增大而增大,则k 的取值范围__________. 18.等腰三角形的顶角为76°,则底角等于__________.19.如图,在平面直角坐标系中,点A 、B 的坐标分别为()1,4、()3,4,若直线y kx =与线段AB 有公共点,则k 的取值范围为__________.20.函数y 1=x+1与y 2=ax+b 的图象如图所示,那么,使y 1、y 2的值都大于0的x 的取值范围是______.三、解答题21.如图,点C 在线段AB 上,//AD EB ,AC BE =,AD BC =.CF 平分DCE ∠.求证:(1)ACD BEC ≅; (2)CF DE ⊥ .22.如图,在平面直角坐标系中,长方形OABC 的顶点,A B 的坐标分别为()6,0A ,()6,4B ,D 是BC 的中点,动点P 从O 点出发,以每秒1个单位长度的速度,沿着O A B D →→→运动,设点P 运动的时间为t 秒(013t <<).(1)点D 的坐标是______;(2)当点P 在AB 上运动时,点P 的坐标是______(用t 表示);(3)求POD 的面积S 与t 之间的函数表达式,并写出对应自变量t 的取值范围. 23.如图1,已知ED 垂直平分BC ,垂足为D ,AB 与EK 相交于点F ,连接CF .(1)求证:∠AFE =∠CFD ;(2)如图2.在△GMN 中,P 为MN 上的任意一点.在GN 边上求作点Q ,使得∠GQM =∠PQN ,保留作图痕迹,写出作法并作简要证明.24.涟水外卖市场竞争激烈,美团、饿了么等公司订单大量增加,某公司负责招聘外卖送餐员,具体方案如下:每月不超出750单,每单收入4元;超出750单的部分每单收入m 元.(1)若某“外卖小哥”某月送了500单,收入 元;(2)若“外卖小哥”每月收入为y (元),每月送单量为x 单,y 与x 之间的关系如图所示,求y 与x 之间的函数关系式;(3)若“外卖小哥”甲和乙在某个月内共送单1200单,且甲送单量低于乙送单量,共收入5000元,问:甲、乙送单量各是多少?25.如图,在平面直角坐标系xOy 中,已知正比例函数y =34x 与一次函数y =﹣x+7的图象交于点A ,x 轴上有一点P(a ,0). (1)求点A 的坐标;(2)若△OAP 为等腰三角形,则a = ;(3)过点P 作x 轴的垂线(垂线位于点A 的右侧)、分别交y =34x 和y =﹣x+7的图象于点B 、C ,连接OC .若BC =75OA ,求△OBC 的面积.四、压轴题26.如图1所示,直线:5L y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点.(1)当OA OB =时,求点A 坐标及直线L 的解析式.(2)在(1)的条件下,如图2所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM OQ ⊥于M ,BN OQ ⊥于N ,若17AM =,求BN 的长. (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角OBF ∆和等腰直角ABE ∆,连接EF 交y 轴于P 点,如图3.问:当点B 在y 轴正半轴上运动时,试猜想PB 的长是否为定值?若是,请求出其值;若不是,说明理由.27.如图,直线l 1:y 1=﹣x +2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=12x +b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒.①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式; ②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.28.如图,已知A(3,0),B(0,-1),连接AB ,过B 点作AB 的垂线段BC ,使BA=BC ,连接AC(1)如图1,求C 点坐标;(2)如图2,若P 点从A 点出发沿x 轴向左平移,连接BP ,作等腰直角BPQ ,连接CQ ,当点P 在线段OA 上,求证:PA=CQ ;(3)在(2)的条件下若C、P,Q三点共线,直接写出此时∠APB的度数及P点坐标29.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B的另一条直线交x轴正半轴于点C,且OC=3.图1 图2(1)求直线BC的解析式;(2)如图1,若M为线段BC上一点,且满足S△AMB=S△AOB,请求出点M的坐标;(3)如图2,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐标;30.定义:若两个三角形,有两边相等且其中一组等边所对的角对应相等,但不是全等三角形,我们就称这两个三角形为偏差三角形.(1)如图1,已知A(3,2),B(4,0),请在x轴上找一个C,使得△OAB与△OAC是偏差三角形.你找到的C点的坐标是______,直接写出∠OBA和∠OCA的数量关系______.(2)如图2,在四边形ABCD中,AC平分∠BAD,∠D+∠B=180°,问△ABC与△ACD是偏差三角形吗?请说明理由.(3)如图3,在四边形ABCD中,AB=DC,AC与BD交于点P,BD+AC=9,∠BAC+∠BDC=180°,其中∠BDC<90°,且点C到直线BD的距离是3,求△ABC与△BCD的面积之和.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可. 【详解】解:A 、∵2223+44≠,∴三条线段不能组成直角三角形,错误; B 、∵2223+4=5,∴三条线段能组成直角三角形,正确; C 、∵2223+46≠,∴三条线段不能组成直角三角形,错误; D 、∵2223+48≠,∴∴三条线段不能组成直角三角形,错误; 故选:B . 【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.2.B解析:B 【解析】 【分析】根据各象限的点的坐标的符号特征判断即可. 【详解】 ∵-3<0,2>0,∴点P(﹣3,2)在第二象限,故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),记住各象限内点的坐标的符号是解决的关键.3.C解析:C【解析】【分析】由已知条件,根据轴对称的性质可得∠C=∠C′=30°,利用三角形的内角和等于180°可求答案.【详解】∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=30°,∠C=∠C′=60°;∴∠B=180°−30°-60°=90°.故选:C.【点睛】主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.4.A解析:A【解析】【分析】先判断出OA=OB,∠OAB=∠ABO,分两种情况判断出△AOC≌△ABD,进而判断出∠ABD=∠AOB=60°,即可得出结论.【详解】∵∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB,∠OAB=∠ABO=60°①当点C在线段OB上时,如图1,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,OA BAOAC BAD AC AD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA;②当点C在OB的延长线上时,如图2,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,OA BAOAC BADAC AD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选A.【点睛】本题考查了等边三角形的判定和性质,全等三角形的判定和性质,求出∠ABD=60°是解本题的关键.5.A解析:A【解析】【分析】根据勾股定理的逆定理,分别判断即可.【详解】解:A、2221.52.5=8.53+≠,故A不能构成直角三角形;B、22213)2+=,故B能构成直角三角形;C、22268=10+,故C能构成直角三角形;D、22234=5+,故D能构成直角三角形;故选:A.【点睛】本题考查的是勾股定理的逆定理的应用,勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.6.B解析:B【解析】【分析】根据0a b -<,且0ab <可确定出a 、b 的正负情况,再判断出点(),a b 的横坐标与纵坐标的正负性,然后根据各象限内点的坐标特征解答.【详解】解:∵0a b -<,且0ab <,∴a 0,0b <>∴点(),a b 在第二象限故选:B【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7.C解析:C【解析】【分析】 首先根据交点得出3b n m k -=-,判定0,0m k <>,然后即可解不等式组. 【详解】∵直线y mx n =+与y kx b =+的图像交于点(3,-1)∴31,31m n k b +=-+=-∴33m n k b +=+,即3b n m k-=- 由图象,得0,0m k <>∴mx n kx b +≥+,解得3x ≤0mx n +≤,解得n x m≥- ∴不等式组的解集为:3n x m -≤≤ 故选:C.【点睛】此题主要考查根据函数图象求不等式组的解集,利用交点是解题关键.8.B解析:B【解析】【分析】利用分式的定义判断即可.分式的分母中必须含有字母,分子分母均为整式.【详解】解:2m是分式, 故选:B .【点睛】 此题考查了分式的定义,熟练掌握分式的定义是解本题的关键.9.B解析:B【解析】【分析】将点(﹣2,1)代入y =kx 即可求出k 的值.【详解】解:∵正比例函数y =kx 的图象经过点(﹣2,1),∴1=﹣2k ,解得k =﹣12, 故选:B .【点睛】 本题考查了正比例函数,熟练掌握求正比例函数解析式的方法是解题的关键.10.D解析:D【解析】【分析】先求出分式方程的解,由分式方程有意义的条件可知1x ≠-,即方程的解1≠-,由解为负数可知分式方程的解小于0,可得字母a 的取值范围.【详解】解:方程两边同时乘以(x +1),得2x ﹣a =x +1,解得:x =a +1,∵解为负数,∴a +1<0,∴a <﹣1,因为分式有意义,则10x +≠,1x ≠-,即11a +≠-,解得2a ≠-∴a <﹣1且a ≠﹣2,故选:D .【点睛】本题考查了分式方程,根据分式方程解的情况确定参数的取值范围,解题过程中易忽视分式有意义的条件,熟练掌握分式方程的解法是解题的关键.二、填空题11.(3,1)【解析】【分析】关于y 轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C (-3,1)的对应点C′的坐标是(3,1).考点:关于y 轴对称的点的坐标【点睛解析:(3,1)【解析】【分析】关于y 轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C (-3,1)的对应点C′的坐标是(3,1).考点:关于y 轴对称的点的坐标【点睛】本题属于基础题,只需学生熟练掌握关于y 轴对称的点的坐标的特征,即可完成.12.【解析】【分析】由正方形和等边三角形的性质得出∠ADE=150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形中,,,在解析:30AEB ∠=【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形ABCD 中,AD DC =,90ADC ∠=,在等边三角形CDE 中,CD DE =,60CDE DEC ∠=∠=,∴150ADE ADC CDE ∠=∠+∠= ,AD DE =,在等腰三角形ADE 中1801801501522ADE DEA ︒-∠︒-︒∠===︒, 同理得:15BEC ∠=,则60151530AEB DEC DEA BEC ∠=∠-∠-∠=--=.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质是解决问题的关键.13.【解析】【分析】由题意,可求得点A 与B 的坐标,由勾股定理,可求得AB 的值,又由折叠的性质,可求得与的长,BM=,然后设MO=x ,由在Rt△中,,即可得方程,继而求得M 的坐标,然后利用待定系数法 解析:132y x =-+ 【解析】【分析】由题意,可求得点A 与B 的坐标,由勾股定理,可求得AB 的值,又由折叠的性质,可求得'AB 与'OB 的长,BM='B M ,然后设MO=x ,由在Rt △'OMB 中,222OM OB B M ''+=,即可得方程,继而求得M 的坐标,然后利用待定系数法即可求得答案.【详解】令y=0得:x=6,令x=0得y=8,∴点A 的坐标为:(6,0),点B 坐标为:(0,8),∵∠AOB=90°,∴10=,由折叠的性质,得:AB='AB =10,∴OB '=AB '-OA=10-6=4,设MO=x ,则MB=MB '=8-x ,在Rt △OMB '中,222OM OB B M '+=,即2224(8)x x +=-,解得:x=3,∴M(0,3),设直线AM 的解析式为y=km+b ,代入A(6,0),M(0,3)得: 603k b b +=⎧⎨=⎩解得:123k b ⎧=-⎪⎨⎪=⎩∴直线AM 的解析式为:132y x =-+【点睛】本题考查了折叠的性质,待定系数法,勾股定理,解决本题的关键正确理解题意,熟练掌握折叠的性质,能够由折叠得到相等的角和边,能够利用勾股定理求出直角三角形中未知的边.14.-1且.【解析】【分析】根据分式的值为零的条件为0的条件可得且,则可求出的值.【详解】解:∵分式,当时,分式的值为零,∴且,∴,且故答案为:-1且.【点睛】此题主要考查了分式值为解析:-1且5233ab ,. 【解析】【分析】 根据分式的值为零的条件为0的条件可得10a b且230a b ,则可求出+a b 的值.【详解】解:∵分式23x a b a b x ++-+,当1x =时,分式的值为零, ∴10a b 且230a b ,∴1a b +=-,且5233a b , 故答案为:-1且5233ab ,. 【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少.15.6+6【解析】【分析】根据含有30°直角三角形性质求出AD,根据勾股定理求出AC ,再求出AB 和BD 即可.【详解】因为在中,,所以所以AD=2CD=4所以AC=因为平分,所以=2解析:+6【解析】【分析】根据含有30°直角三角形性质求出AD,根据勾股定理求出AC ,再求出AB 和BD 即可.【详解】因为在ABC ∆中,90C =∠,ADC 60∠=所以30DAC ∠=o所以AD=2CD=4所以==因为AD 平分CAB ∠,所以CAB ∠=2o DAC 60∠=所以o B BAD 30∠=∠=所以所以ABC ∆周长=AC+BC+AB=故答案为:【点睛】考核知识点:含有30°直角三角形性质,勾股定理;理解直角三角形相关性质是关键.16.③【解析】【分析】根据题意,将不同情况下的示意图作出,逐一分析即可得解.【详解】如下图:①∵,,∴,∵,∴为等边三角形∴①正确;②∵,,∴,∵,∴,,∴,∴为等边三角形∴②正确;解析:③【解析】【分析】根据题意,将不同情况下的示意图作出,逐一分析即可得解.【详解】如下图:①∵90ACB ∠=︒,30A ∠=︒,∴60B ∠=︒,∵DC DB =,∴BCD ∆为等边三角形 ∴①正确;②∵90ACB ∠=︒,30A ∠=︒,∴60B ∠=︒,∵AD CD =,∴30ACD ∠=︒,903060DCB ∠=︒-︒=︒,∴60CDB ∠=︒,∴BCD ∆为等边三角形∴②正确;③当DA DC =时∵90ACB ∠=︒,30A ∠=︒,ACD ∆是等腰三角形,∴30ACD ∠=︒,903060DCB ∠=︒-︒=︒,∴60CDB ∠=︒,∴BCD ∆为等边三角形;当AC AD =时,易得BCD ∆不为等边三角形∴③错误;④∵90ACB ∠=︒,30A ∠=︒,∴60B ∠=︒,∵BCD ∆是等腰三角形,∴BCD ∆是等边三角形,60DCB ∠=︒∴30ACD ∠=︒,∴ACD ∆为等腰三角形;∴④正确;故答案为:③.【点睛】本题主要考查了等边三角形,等腰三角形的判定及性质,熟练掌握等边三角形、等腰三角形的判定及性质的证明方法是解决本题的关键.17.【解析】【分析】根据一次函数的性质,即可求出k 的取值范围.【详解】解:∵一次函数中,随的增大而增大,∴,∴;故答案为:.【点睛】本题考查了一次函数的性质,解题的关键是熟练掌握一次解析:1k >【解析】【分析】根据一次函数的性质,即可求出k 的取值范围.【详解】解:∵一次函数(1)5y k x =-+中,y 随x 的增大而增大,∴10k ->,∴1k >;故答案为:1k >.【点睛】本题考查了一次函数的性质,解题的关键是熟练掌握一次函数的性质进行解题.18.52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°,∴底角为:,故答案为:52°. 【点睛】本题考查了等腰三角形性解析:52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°, ∴底角为:11=104=5222⨯︒︒⨯︒︒(180-76), 故答案为:52°.【点睛】 本题考查了等腰三角形性质,以及三角形内角和定理,解题的关键是掌握等腰三角形等边对等角计算角度.19.【解析】【分析】由直线与线段AB 有公共点,可得出点B 在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵点A 、B 解析:443k ≤≤ 【解析】【分析】由直线y kx =与线段AB 有公共点,可得出点B 在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵点A 、B 的坐标分别为()1,4、()3,4,∴令y=4时, 解得:4x k= , ∵直线y=kx 与线段AB 有公共点,∴1≤4k≤3, 解得:443k ≤≤. 故答案为:443k ≤≤. 【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于k 的一元一次不等式是解题的关键.20.−1<x<2.【解析】【分析】根据x 轴上方的图象的y 值大于0进行解答.【详解】如图所示,x>−1时,y>0,当x<2时,y>0,∴使y 、y 的值都大于0的x 的取值范围是:−1<x<2.解析:−1<x<2.【解析】【分析】根据x 轴上方的图象的y 值大于0进行解答.【详解】如图所示,x>−1时,y 1>0,当x<2时,y 2>0,∴使y 1、y 2的值都大于0的x 的取值范围是:−1<x<2.故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x 轴上方的图象的y 值大于0三、解答题21.(1)见解析;(2)见解析【解析】试题分析:(1)根据平行线性质求出∠A=∠B ,根据SAS 推出即可.(2)根据全等三角形性质推出CD=CE ,根据等腰三角形性质求出即可.试题解析:()1∵//AD BE ,∴A B ∠=∠,在ACD 和BEC 中AD BC A B AC BE =⎧⎪∠=∠⎨⎪=⎩∴()ACD BEC SAS ≅,()2∵ACD BEC ≅,∴CD CE =,又∵CF 平分DCE ∠,∴CF DE ⊥.22.(1)(3,4);(2)(6,t -6)(3)()()()20632161022621013t t S t t t t ⎧<≤⎪⎪=-+<≤⎨⎪-<<⎪⎩【解析】【分析】(1)根据长方形的性质和A 、B 的坐标,即可求出OA=BC=6,OC=AB=4,再根据中点的定义即可求出点D 的坐标;(2)画出图形,易知:点P 的横坐标为6,然后根据路程=速度×时间,即可求出点P 的运动路程,从而求出AP 的长,即可得出点P 的坐标;(3)分别求出点P 到达A 、B 、D 三点所需时间,然后根据点P 运动到OA 、AB 、BD 分类讨论,并写出t 对应的取值范围,然后画出图形,利用面积公式即可求出各种情况下S 与t 之间的函数表达式.【详解】解:(1)∵长方形OABC 的顶点,A B 的坐标分别为()6,0A ,()6,4B ,∴OA=BC=6,OC=AB=4,BA ⊥x 轴,BC ⊥y 轴∵D 是BC 的中点,∴CD=BD=12BC=3 ∴点D 的坐标为(3,4)故答案为:(3,4);(2)当点P 在AB 上运动时,如下图所示易知:点P 的横坐标为6,∵动点P 从O 点出发,以每秒1个单位长度的速度,时间为t∴点P 运动的路程OA +AP=t∴AP=t -6∴点P 的坐标为(6,t -6)故答案为:(6,t -6);(3)根据点P 的速度可知:点P 到达A 点所需时间为OA ÷1=6s点P 到达B 点所需时间为(OA+AB )÷1=10s点P 到达D 点所需时间为(OA+AB+BD )÷1=13s①当点P 在OA 上运动时,此时06t <≤,过点D 作DE ⊥x 轴于E∴DE=4∵动点P 从O 点出发,以每秒1个单位长度的速度,∴OP=t∴122S OP DE t =•=; ②当点P 在AB 上运动时,此时610t <≤,由(2)知AP=t -6∴BP=AB -AP=10-t∴OCD OAP BDP OABC S S S S S =---△△△长方形=111222OA AB OC CD OA AP BD BP •-•-•-• =()()111644366310222t t ⨯-⨯⨯-⨯⨯--⨯⨯- =3212t -+; ③当点P 在BD 上运动时,此时1013t <<,∵动点P 从O 点出发,以每秒1个单位长度的速度,时间为t∴点P 运动的路程OA +AB +BP=t∴BP=t -OA -AB=t -10∴DP=BD -BP=13-t12S OC DP =• =()14132t ⨯- =262t - 综上所述:()()()20632161022621013t t S t t t t ⎧<≤⎪⎪=-+<≤⎨⎪-<<⎪⎩【点睛】此题考查的是平面直角坐标系与长方形中的动点问题,掌握行程问题公式:路程=速度×时间、数形结合的数学思想和分类讨论的数学思想是解决此题的关键.23.(1)证明见解析;(2)答案见解析.【分析】(1)根据垂直平分线的性质证明三角形CFB是等腰三角形,进而证明∠AFE=∠CFD;(2)作点P关于GN的对称点P′,连接P′M交GN于点Q,结合(1)即可证明∠GQM =∠PQN.【详解】(1)∵ED垂直平分BC,∴FC=FB,∴△FCB是等腰三角形.∵FD⊥BC,由等腰三角形三线合一可知:FD是∠CFB的角平分线,∴∠CFD=∠BFD.∵∠AFE=∠BFD,∴∠AFE=∠CFD.(2)作点P关于GN的对称点P',连接P'M交GN于点Q,点Q即为所求.∵QP=QP',∴△QPP'是等腰三角形.∵QN⊥PP',∴QN是∠PQP'的角平分线,∴∠PQN=∠P'QN.∵∠GQM=∠P'QN,∴∠GQM=∠PQN.【点睛】本题考查了作图−复杂作图,解决本题的关键是掌握线段垂直平分线的性质.24.(1)2000;(2)y=5x﹣750;(3)甲送250单,乙送950单【解析】【分析】(1)根据题意可以求得“外卖小哥”某月送了500单的收入情况;(2)分段函数,运用待定系数法解答即可;(3)根据题意,利用分类讨论的方法可以求得甲、乙送单量各是多少.解:(1)由题意可得,“外卖小哥”某月送了500单,收入为:4×500=2000元,故答案为:2000;(2)当0≤x<750时,y=4x当x≥750时,当x=4时,y=3000设y=kx+b,根据题意得3000750 55001250k bk b=+⎧⎨=+⎩,解得5750kb=⎧⎨=-⎩,∴y=5x﹣750;(3)设甲送a单,则a<600<750,则乙送(1200﹣a)单,若1200﹣a<750,则4a+4(1200﹣a)=4800≠5000,不合题意,∴1200﹣a>750,∴4a+5(1200﹣a)﹣750=5000,∴a=250,1200﹣a=950,故甲送250单,乙送950单.【点睛】本题考查的知识点是一次函数的应用以及二元一次方程组,从函数图象中找出有用的信息是解此题的关键.25.(1)A(4,3);(2)±5或8或278;(3)28【解析】【分析】(1)点A是两直线的交点,其坐标即方程组347y xy x⎧=⎪⎨⎪=-+⎩的解;(2)分OA=PO、OA=AP、AP=OP适中情况,分别求解即可;(3)P(a,0),则分别用含a的式子表示出B、C的坐标,从而表示出BC的长度,用勾股定理求得OA,然后根据BC=75OA求出a的值,从而利用三角形面积公式求解.【详解】解:(1)由题意:347y xy x⎧=⎪⎨⎪=-+⎩解得:43xy=⎧⎨=⎩,故点A(4,3);(2)点A(4,3),则OA=22435,①当OA=PO=P1O时,此时OA=5=PO=P1O,即a=±5②当OA=AP时,如图,过点A做AM⊥x轴于点M此时OM=MP=4∴OP=8则点P(8,0),即a=8;③当AP=OP时,如图所示,连接AP,过点A作AH⊥x轴于点H,AP=PO=a,则PH=4﹣a,则(4﹣a)2+9=a2,解得:a=278;综上,a=±5或8或278;故答案为:±5或8或278;(3)∵P (a ,0),则点B 、C 的坐标分别为:(a ,34a )、(a ,﹣a+7), ∴BC=34a-(-a +7)=34a+a ﹣7=774a -又∵BC =75OA 且OA 5 ∴774a -=75×5=7, 解得:a =8,故点P (8,0),即OP =8;△OBC 的面积=12×BC×OP =12×7×8=28. 【点睛】本题考查的是一次函数综合运用,涉及到等腰三角形的性质、面积的计算等,其中(2),要注意分类求解,避免遗漏. 四、压轴题26.(1)5y x =+;(2)3)PB 的长为定值52 【解析】【分析】(1)先求出A 、B 两点坐标,求出OA 与OB ,由OA= OB ,求出m 即可;(2)用勾股定理求AB ,再证AMO OBN ∆≅∆,BN=OM ,由勾股定理求OM 即可; (3)先确定答案定值,如图引辅助线EG ⊥y 轴于G ,先证AOB EBG ∆≅∆,求BG 再证BFP GEP ∆≅∆,可确定BP 的定值即可.【详解】(1)对于直线:5L y mx m =+.当0y =时,5x =-.当0x =时,5y m =.()5,0A ∴-,()0,5B m .OA OB =.55m ∴=.解得1m =.∴直线L 的解析式为5y x =+.(2)5OA =,AM =∴由勾股定理,OM ==.180AOM AOB BON ∠+∠+∠=︒.90AOB∠=︒.90AOM BON∴∠+∠=︒.90AOM OAM∠+∠=︒.BON OAM∴∠=∠.在AMO∆与OBN∆中,90BON OAMAMO BNOOA OB∠=∠⎧⎪∠=∠=︒⎨⎪=⎩.()AMO OBN AAS∴∆≅∆.22BN OM∴==..(3)如图所示:过点E作EG y⊥轴于G点.AEB∆为等腰直角三角形,AB EB∴=90ABO EBG∠+∠=︒.EG BG⊥,90GEB EBG∴∠+∠=︒.ABO GEB∴∠=∠.AOB EBG∴∆≅∆.5BG AO∴==,OB EG=OBF∆为等腰直角三角形,OB BF∴=BF EG∴=.BFP GEP∴∆≅∆.1522BP GP BG∴===.【点睛】本题考查求解析式,线段的长,判断定值问题,关键是掌握求坐标,利用条件OA= OB,求OM,用勾股定理求AB,再证AMO OBN∆≅∆,构造AOB EBG∆≅∆,求BG,再证BFP GEP∆≅∆.27.(1)b=72;(2)①△APQ 的面积S 与t 的函数关系式为S=﹣32t +272或S=32t ﹣272;②7<t <9或9<t <11,③存在,当t 的值为3或9+或9﹣或6时,△APQ 为等腰三角形.【解析】分析:(1)把P (m ,3)的坐标代入直线1l 的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线2l 的解析式得出C 的坐标,①根据题意得出9AQ t =-,然后根据12P S AQ y =⋅即可求得APQ 的面积S 与t 的函数关系式;②通过解不等式273322t -<或327 3.22t -<即可求得7<t <9或9<t <11.时,APQ 的面积小于3;③分三种情况:当PQ =PA 时,则()()()2222(71)032103,t -++-=++-当AQ =PA 时,则()()222(72)2103,t --=++-当PQ =AQ 时,则()222(71)03(72)t t -++-=--,即可求得.详解:解;(1)∵点P (m ,3)为直线l 1上一点,∴3=−m +2,解得m =−1,∴点P 的坐标为(−1,3),把点P 的坐标代入212y x b =+ 得,()1312b =⨯-+, 解得72b =; (2)∵72b =; ∴直线l 2的解析式为y =12x +72,∴C 点的坐标为(−7,0),①由直线11:2l y x =-+可知A (2,0),∴当Q 在A . C 之间时,AQ =2+7−t =9−t , ∴11273(9)32222S AQ yP t t =⋅=⨯-⨯=-; 当Q 在A 的右边时,AQ =t −9, ∴11327(9)32222S AQ yP t t ;=⋅=⨯-⨯=- 即△APQ 的面积S 与t 的函数关系式为27322S t =-或327.22S t =- ②∵S <3,∴273322t -<或327 3.22t -< 解得7<t <9或9<t <11. ③存在;设Q (t −7,0),当PQ =PA 时,则()()()2222(71)032103,t -++-=++-∴22(6)3t -=,解得t =3或t =9(舍去), 当AQ =PA 时,则()()222(72)2103,t --=++-∴2(9)18,t -=解得9t =+9t =- 当PQ =AQ 时,则()222(71)03(72)t t -++-=--,∴22(6)9(9)t t -+=-, 解得t =6. 故当t 的值为3或9+9-6时,△APQ 为等腰三角形.点睛:属于一次函数综合题,考查了一次函数图象上点的坐标特征,待定系数法求函数解析式,等腰三角形的性质以及三角形的面积,分类讨论是解题的关键.28.(1)(1,-4);(2)证明见解析;(3)()135,1,0APB P ︒∠= 【解析】【分析】(1)作CH ⊥y 轴于H ,证明△ABO ≌△BCH ,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH ,得到C 点坐标;(2)证明△PBA ≌△QBC ,根据全等三角形的性质得到PA=CQ ;(3)根据C 、P ,Q 三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP ,得到P 点坐标.【详解】解:(1)作CH ⊥y 轴于H ,则∠BCH+∠CBH=90°,因为AB BC ⊥,所以.∠ABO+∠CBH=90°,所以∠ABO=∠BCH ,在△ABO 和△BCH 中,ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩ABO BCH ∴∆≅∆:BH=OA=3,CH=OB=1,:OH=OB+BH=4,所以C 点的坐标为(1,-4);(2)因为∠PBQ=∠ABC=90°,,PBQ ABQ ABC ABQ PBA QBC ∴∠-=∠-∠∴∠=∠在△PBA 和△QBC 中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩PBA QBC ∴∆≅∆:.PA=CQ ;(3) ()135,1,0APB P ︒∠= BPQ ∆是等腰直角三角形,:所以∠BQP=45°,当C 、P ,Q 三点共线时,∠BQC=135°,由(2)可知,PBA QBC ∴∆≅∆;所以∠BPA=∠BQC=135°,所以∠OPB=45°,所以.OP=OB=1,所以P 点坐标为(1,0) .【点睛】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.29.(1)443y x =-+;(2)612(,)55M ;(3)23(0,)7G 或(0,-1)G 【解析】【分析】(1)求出点B ,C 坐标,再利用待定系数法即可解决问题;(2)结合图形,由S △AMB =S △AOB 分析出直线OM 平行于直线AB ,再利用两直线相交建立方程组求得交点M 的坐标;(3)分两种情形:①当n >2时,如图2-1中,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .求出Q (n-2,n-1).②当n <2时,如图2-2中,同法可得Q (2-n ,n+1),代入直线BC 的解析式解方程即可解决问题.【详解】解:(1)∵直线y=2x+4与x 轴交于点A ,与y 轴交于点B ,∴A (-2,0),B (0,4),,又∵OC=3,∴C (3,0),设直线BC 的解析式为y=kx+b ,将B 、C 的坐标代入得: 304k b b +=⎧⎨=⎩,解得:434kb⎧=-⎪⎨⎪=⎩,∴直线BC的解析式为443y x=-+;(2)连接OM,∵S△AMB=S△AOB,∴直线OM平行于直线AB,故设直线OM解析式为:2y x=,将直线OM的解析式与直线BC的解析式联立得方程组2443y xy x=⎧⎪⎨=-+⎪⎩,解得:65125xy⎧=⎪⎪⎨⎪=⎪⎩故点612(,)55M;(3)∵FA=FB,A(-2,0),B(0,4),∴F(-1,2),设G(0,n),①当n>2时,如图2-1中,点Q落在BC上时,过G作直线平行于x轴,过点F,Q作该直线的垂线,垂足分别为M,N.∵四边形FGQP是正方形,易证△FMG≌△GNQ,∴MG=NQ=1,FM=GN=n-2,∴Q (n-2,n-1),∵点Q 在直线443y x =-+上, ∴41(2)43n n -=--+, ∴23=7n , ∴23(0,)7G . ②当n <2时,如图2-2中,同法可得Q (2-n ,n+1),∵点Q 在直线443y x =-+上, ∴4+1(2)43n n =--+, ∴n=-1,∴(0,-1)G . 综上所述,满足条件的点G 坐标为23(0,)7G 或(0,-1)G 【点睛】 本题属于一次函数综合题,考查了待定系数法,三角形的面积,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.30.(1)(2,0),∠OBA+∠OCA=180°;(2)△ABC 与△ACD 是偏差三角形,理由见解析;(3)272 【解析】【分析】(1)根据偏差三角形的定义,即可得到C 的坐标,根据等腰三角形的性质和平角的定义,。
八年级上下月考月考试卷及答案--数学

八年级下学期月考 数 学 试 题温馨提示:1.答题前,考生务必将自己的学校、班级、姓名、考号填写在试卷上指定的位置.2.选择题选出答案后,请填写在选择题答题卡中,答在本卷上无效;非选择题的答案直接写在相应的题目位置. 3.本试卷满分120分,考试时间120分钟,考试结束后,只上交第Ⅱ卷.第Ⅰ卷(选择题 30分)一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的,不选、选错或选的代号超过一个,一律得0分) 1.要使1321x x -+-有意义,则x 应满足A .12≤x ≤3 B .x ≤3且x ≠12C .12<x <3 D .12<x ≤32.下列运算错误的是A .235+=B .236⋅=C .6÷23=D .2(22-=)3.一个圆桶底面直径为24cm ,高为32cm ,则桶内所能容下的最长木棒为A .20 cmB .40 cmC .45 cm .D .50 cm4.若△ABC 的三边a b c 、、满足(a b -)222(+=a b -c )0,则△ABC 是 A .等腰三角形 B .等边三角形C .直角三角形D .等腰三角形或直角三角形 5.如图所示,已知四边形ABCD 为平行四边形,下列结论不正确的是A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当∠ABC =90°时,它是矩形 D .当AC =BD 时,它是正方形6.如图,在菱形ABCD 中,∠A=110°,E 、F 分别是边AB 和BC 的中点,EP ⊥CD 于点P,则∠FPC等于 A .45°B .35°C .55°D .50°7.如图,D 是△ABC 内一点,BD ⊥CD ,AD =6,BD =4,CD =3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是 A .7 B .8 C .11D .10AD8.直线3122yx=+上有一点A到y轴的距离为1,则点A的纵坐标为A.2或0 B.-2或1 C.2或-1 D.1或-39.如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B →C →D作匀速运动,那么△ABP的面积y与点P运动的路程x之间的函数图象大致是A.B. C. D.10.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为A.23 B.26 C.3 D.6第Ⅱ卷(非选择题 90分)二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在横线上)11.计算:18﹣32﹢2= .12.已知点P1(x1,y1),p2(x2,,y2)是一次函数y=-4x+3图像上的两点,且x1<x2,则y1与y2的大小关系是13.已知矩形两对角线夹角为60°,对角线长为2cm,则矩形面积为 .14.一次函数1y mx m=+-的图像过点(0,2)且y随x的增大而增大,则m= .15.如图,直线y kx b=+经过A(3,1)和B(6,0)两点,则不等式组0<kx b+<13x的解集为 .16.若直线y=3x+b与两坐标轴围成的面积为6个平方单位,则b=(第10题图)三、用心做一做,显显自己的能力!(本大题共6小题,满分72分.解答写在相应位置)17.(本题满分10分)先化简,再求值:2222211()()b a ab baa ab a a b-+÷+⋅+-,其中23,23a b=+=-.18.(本题满分12分)如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,且∠EAF=60°,BE=2cm,,DF=3cm,试求平行四边形ABCD的周长及面积.19.(本题满分12分)如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状并说明理由.20.(本题满分12分)直线y=kx+b与坐标轴围成的三角形面积为4,直线向下平移3个单位过(0,-1),求原直线解析式.21.(本题满分12分)如图已知A(-3,2)、B(3,1),在x轴y轴上分别找一点使它到A、B两点距离之和最短并画出图形0 xAB22.(本题满分14分)如图,直线y=kx-6经过点A(4,0),直线y=-3x+3与x轴交于点B,且两直线交于点C.(1)求k的值.(2)求△ABC的面积.(3)在直线y=kx-6上是否存在异于点C的另一点P,使得△ABP与△ABC的面积相等,请直接写出点P的坐标.y=-3x。
八年级月考及答案.doc

1 1 ,C. 一 VxV4D. 一 WxV42 25由x<y得到ax>ay,则a的取值范)a>0 B. a<0 C.aNOD.aWO6下面化简正确的A . 2。
+ 1 (Q—Z?)2=0 B.J 2。
+1C.6-2x------ 二2D.二—a7、根据分式的基本性质,分式------ 可变形为…(a-b)A、——-a-bBaa+b8、已知三角形的两边长分别是3、5,则第三边a的取值范围是……()A、2VQV8 B、2WaW 8x 29、如果分式方程--------- =0无解,则x的值是................3 x-2 )A、 2 C、-1 D、-210、下列计算中,则正确4(m + 〃)4/«2 + Smn +4〃2② ^±1 = -1;-x+y+ 136cib^ c13、将分式祝料约分可得: 6abc 14、将—,通分可得____________________________ 3a 2c一、选择题(请将正确的答案填写到答题纸相应的表格中,4, X 10=40分)1.不等式-x<2的非负整数解有 ............................. ()2A. 4个B. 5个C. 3个D. 2个2.-5x>3的解集是........................................ ()3 3 3 3A. x> ——B. xN ——C. xV——D. xW ——5 5 5 5x>2x3.不等式组{.......................... 的解集在数轴上可以表示为()3x > -6A. -----------------B.------------ T ---- G ------ ------ ►---- e -------- e ------ ►,2 0-2 0C. D.12x -1 > 0 1 14 .不等式组!的解集是........ ()A. —WxW4 B. —VxW44-x)0 2 21 — y 1③(a+Z?)+ 方)•------- = a + b ;④——:~-' 'v ' a+b l-.rA、1个B、2个C、3个D、4个填空题(请将正确的答案填到答题纸相应的空格上,4' X8=32分)1 2v"、的解集是 ------------------------------- ;12、分式成中,当尸 -------------------- 时,分式值为零;C21、化简求值:已知a=4,b=3,求"3b a1—9b 2 22Cl — 1 Q2_]1 ----a23a - 2 2a— 3 a +1a +115、当x=2008时,代数式三三-1的值是______________ ; 16、分式竺旦―—的最简公分母是_________________ :X — 1Q — 1。
初二数学月考试卷答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. -√2D. √4答案:C解析:有理数是可以表示为两个整数之比的数,即形如a/b(a、b为整数,b≠0)的数。
在给出的选项中,只有-√2可以表示为两个整数之比(例如-2/1),所以选C。
2. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 等边三角形答案:D解析:轴对称图形是指存在一条直线,使得图形沿这条直线折叠后,两边完全重合。
在给出的选项中,正方形、等腰三角形和长方形都满足这个条件,而等边三角形则不满足,因此选D。
3. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x^2C. y = 1/xD. y = 3x答案:C解析:反比例函数是指当x不等于0时,y与x的乘积为常数k(k≠0)的函数,即y = k/x。
在给出的选项中,只有y = 1/x满足这个条件,所以选C。
4. 下列各数中,无理数是()A. √9B. √16C. √25D. √36答案:A解析:无理数是不能表示为两个整数之比的数。
在给出的选项中,只有√9是无理数,因为它等于3,而3不能表示为两个整数之比,所以选A。
5. 已知直角三角形的一条直角边长为3cm,斜边长为5cm,求另一条直角边长。
答案:4cm解析:根据勾股定理,直角三角形的两条直角边的平方和等于斜边的平方。
设另一条直角边长为x,则有3^2 + x^2 = 5^2。
解得x = 4。
二、填空题(每题5分,共20分)6. 已知x + y = 7,x - y = 3,求x和y的值。
答案:x = 5,y = 2解析:将两个方程相加,得到2x = 10,解得x = 5。
将x = 5代入其中一个方程,得到5 - y = 3,解得y = 2。
7. 下列分数中,最简分数是()A. 4/6B. 6/8C. 2/3D. 8/10答案:C解析:最简分数是指分子和分母互质的分数。
第一学期八年级数学第二次月考试卷(含解析)

第一学期八年级数学第二次月考试卷(含解析)一、选择题1.若a满足3a a =,则a 的值为( )A .1B .0C .0或1D .0或1或1-2.在平面直角坐标系中,点()23P -,关于x 轴的对称点的坐标是( ) A .()23-,B .()23,C .()23--,D .()23-,3.下列等式从左到右的变形,属于因式分解的是( )A .()a x y ax ay -=-B .()()311x x x x x -=+- C .()()21343x x x x ++=++D .()22121x x x x ++=++4.下列各式从左到右变形正确的是( ) A .0.220.22a b a ba b a b++=++B .231843214332x yx y x y x y ++=-- C .n n a m m a-=-D .221a b a b a b+=++5.下列图案中,不是轴对称图形的是( ) A .B .C .D .6.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A 36B 33C .6D .37.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 8.一辆货车早晨7∶00出发,从甲地驶往乙地送货.如图是货车行驶路程y(km)与行驶时间x(h)的完整的函数图像(其中点B、C、D在同一条直线上),小明研究图像得到了以下结论:①甲乙两地之间的路程是100km;②前半个小时,货车的平均速度是40km/h;③8∶00时,货车已行驶的路程是60km;④最后40 km货车行驶的平均速度是100km/h;⑤货车到达乙地的时间是8∶24,其中,正确的结论是()A.①②③④B.①③⑤C.①③④D.①③④⑤9.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>010.如图,在平面直角坐标系xOy中,直线y=﹣43x+4与x轴、y轴分别交于点A、B,M是y轴上的点(不与点B重合),若将△ABM沿直线AM翻折,点B恰好落在x轴正半轴上,则点M的坐标为()A .(0,﹣4 )B .(0,﹣5 )C .(0,﹣6 )D .(0,﹣7 )二、填空题11.关于x 的分式方程211x ax +=+的解为负数,则a 的取值范围是_________. 12.49的平方根为_______ 13.某厂现在的年产值是15万元,计划今后每年增加2万元,年产值y 与年数x 之间的函数关系为________.14.写出一个比4大且比5小的无理数:__________.15.已知113-=a b ,则分式232a ab b a ab b+-=--__________. 16.若关于x 的多项式322ax bx +-的一个因式是231+-x x ,则+a b 的值为__________.17. 如图,在正三角形ABC 中,AD ⊥BC 于点D ,则∠BAD= °.18.在平面直角坐标系中,把直线y=-2x+3沿y 轴向上平移两个单位后,得到的直线的函数关系式为_____.19.已知直角三角形的两边长分别为3、4.则第三边长为________.20.如图,在平面直角坐标系中,函数y=﹣2x 与y=kx+b 的图象交于点P (m ,2),则不等式kx+b >﹣2x 的解集为_____.三、解答题21.春节前小明花1200元从市场购进批发价分别为每箱30元与50元的A 、B 两种水果进行销售,分别以每箱35元与60元的价格出售,设购进A 水果x 箱,B 水果y 箱.(1)求y 关于x 的函数表达式;(2)若要求购进A 水果的数量不少于B 水果的数量,则应该如何分配购进A 、B 水果的数量并全部售出才能获得最大利润,此时最大利润是多少?22.某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如表: x/元 … 15 20 25 … y/件…252015…已知日销售量y 是销售价x 的一次函数.(1)求日销售量y (件)与每件产品的销售价x (元)之间的函数表达式; (2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?23.小明在学习等边三角形时发现了直角三角形的一个性质:直角三角形中,30角所对的直角边等于斜边的一半。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,
关于的方程
的一
9.如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B =70°,则 ∠EDC 的大小为( )
A.10°
B.15°
C.20°
D.30°
10.顺次连接某个四边形各边中点得到一个正方形,则原四边形一定是( ) A.正方形 B.矩形 C.菱形 D.对角线互相垂直且相等的四边形
11.某中学举行歌咏比赛,六名评委对某歌手打分如下:77,82,78,95,83,75,去掉一个最高分和一个最低分后的平均分是( ) A.79 B.80 C.81 D.82
12.某居民楼内月底统计用电情况,其中3户用电45千瓦时,5户用电50千瓦时,6户用电42千瓦时,则平均每户用电( )
A.41千瓦时
B.42千瓦时
C.45.5千瓦时
D.46千瓦时
二、填空题(每小题4分,共24分)
13.一组数据8,8,x ,10的众数与平均数相等,则x = .
14. 三角形的每条边的长都是方程的根,则三角形的周长是_______________. 15.如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰长如图所示,依此规律第10个图形的周长为 .
16.已知关于的方程的一个根是,则_______.
17. 已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是
___________.
18.若两个连续奇数的积是323,则这两个数的和是__________.
三、解答题(共60分)
19.(10分)
(1)
计算:
222+
- (2 ) 解方程:2
660x
x --=
20.(10分)经市场调查,质量为(5±0.25)kg 的西瓜最为畅销.为了控制西瓜的质量,农科所采用A 、B 两种种植技术进行试验.现从这两种技术种植的西瓜中各随机抽取20个,记录它们的质量如下(单位:kg ):
A :4.1 4.8 5.4 4.9 4.7 5.0 4.9 4.8 5.8 5.2 5.0 4.8 5.2 4.9 5.2 5.0 4.8 5.2 5.1 5.0
B :4.5 4.9 4.8 4.5 5.2 5.1 5.0 4.5 4.7 4.9 5.4 5.5 4.6 5.3 4.8 5.0 5.2 5.3 5.0 5.3
(1)若质量为(5±0.25)kg 的为优等品,根据以上信息完成下表:
(看,你认为推广哪种种植技术较好.
21. (10分)关于x 的方程
244(2)0kx k x k +++=有两个不相等的实数根. 求k 的取值范围。
22.(10分)如图,在□ABCD 中,E 、F 分别是DC 、AB 上的点,且.
求证:(1);(2)四边形AFCE
是平行四边形.
23. (10分)某校2013年捐款1万元给希望工程,以后每年都捐款,计划到2014年共捐款4.75万元,问该校捐款的平均年增长率是多少?
24.(10分)观察探究,完成证明和填空.
如图,四边形ABCD 中,点E ,F ,G ,H 分别是边A B ,B C ,C D ,D A 的中点,顺次连接E ,F ,G ,H ,得到的四边形EFGH 叫中点四边形.
(1)求证:四边形EFGH
是平行四边形; (2)请你探究并填空:
当四边形ABCD 变成平行四边形时,它的中点四边形是 ; 当四边形ABCD 变成矩形时,它的中点四边形是 ; 当四边形ABCD 变成菱形时,它的中点四边形是 ; 当四边形ABCD 变成正方形时,它的中点四边形是 ;
(3)根据以上探究,请你总结中点四边形的形状是由原四边形的什么决定的?。