1.3 平行线的判定(2)--
五年级数学认识简单的平行线与垂直线的判定方法

五年级数学认识简单的平行线与垂直线的判定方法数学作为一门重要的学科,对于学生的认知能力和逻辑思维能力有着重要的培养作用。
在学习数学的过程中,认识平行线与垂直线是一个必要的基础知识点。
本文将介绍五年级数学中简单的平行线与垂直线的判定方法。
一、平行线的判定方法平行线是指在同一个平面内,永不相交的两条直线。
常见的平行线的判定方法有以下几种:1.1 同位角相等法同位角是指两条平行线所成对应的内角,当两条直线被一条第三条直线所切割时,若同位角相等,则这两条直线平行。
例如,在下图中,线段AB和线段CD被线段EF所切割。
若∠A = ∠C,∠B = ∠D,则AB || CD。
[图片]1.2 顶角对应相等法顶角对应是指两条平行线所成对应的外角,当两条直线被一条第三条直线所切割时,若顶角对应相等,则这两条直线平行。
例如,在下图中,线段AB和线段CD被线段EF所切割。
若∠A = ∠D,则AB || CD。
[图片]1.3 平行线间的距离相等法当两条平行线之间的距离在任意两个点处相等时,这两条直线平行。
例如,在下图中,线段AB与线段CD的距离在A和B两点处相等,则AB || CD。
[图片]二、垂直线的判定方法垂直线是指在同一个平面内,形成直角的两条直线。
对于五年级学生来说,简单的垂直线判定方法如下:2.1 垂直交叉线法两条直线相互垂直,等价于交叉的两条线段构成直角。
例如,在下图中,线段AB与线段CD相互垂直。
[图片]2.2 垂直线的特性垂直线还具有以下特性:- 互相垂直的两条直线的斜率的乘积为-1。
- 两条直线的斜率分别为k1和k2,若k1*k2 = -1,则这两条直线垂直。
通过运用垂直交叉线法与垂直线的特性,可以判定给定的两条直线是否垂直。
三、小结通过上述介绍,我们可以知道五年级数学中简单的平行线与垂直线的判定方法。
平行线的判定可以通过同位角相等法、顶角对应相等法或者平行线间的距离相等法来实现。
而垂直线的判定可以通过垂直交叉线法与垂直线的特性来实现。
平行线的判定课件(共16张PPT)浙教版数学七年级下册

∥
;
(3)如果∠DEC=∠BCF,则 ∥
.
典例精讲
解:l1 // l2,理由如下: ∵直线l1,l2被直线l3所 ∴∠2+∠3截=180° ∵∠2=135° ∴∠3=180°-∠2=180°-135°=45° ∵∠1=45° ∴∠1=∠3 ∴l1 // l2(同位角相等,两直线平行)
典例精讲
解:AB // CD,理由如下: ∵AB⊥EF,CD⊥EF,E,F分别为垂足 ∴∠1=90°,∠2=90° ∴∠1=∠2 ∴AB // CD(同位角相等,两直线平行)
拓展提升
拓展提升
拓展提升
浙教版七年级下册
第一章 平行线
1.3.1 平行线的判定
目标领学
情境引入
回顾画平行线的方法
一放
二靠
三推
a
四画
思考:在这个过程中什么元素没有改变?
探究新知
一般的,判断两条直线平行有下面的方法:
两条直线被第三条直线所截,如果同 位角相等,那么两直线平行. 简单的说:同位角相等,两直线平行 几何语言: ∵∠1=∠2
∴ a∥b(同位角相等,两直线平行)
理解新知
1.如图,下列说法正确的是( B ) A.因为∠1=∠3,所以EF∥GH B.因为∠1=∠2,所以AB∥CD C.因为∠2=∠3,所以AB∥CD D.因为∠2=∠4,所以EF∥GH
理解新知
2.如图
(1)如果∠ADE=∠ABC,则 ∥
;
(2)如果∠ACD=∠F,则
c
a 一般到特殊 b
推论: 在同一平面内,垂直于同一条直线的两条直线互相平行 议一议:为什么要在同一平面内?
应用新知
你能说出木工师傅用图中的角尺工具画平行线的道理吗? 方法1:同位角相等,两直线平行. 方法2:在同一平面内,垂直于同一条直线的两条直线互相平行Fra bibliotek应用新知
浙教版八年级数学上册1.3平行线的性质(2)

A B
C
B
F E C 图2 D
A
图1
练习二: 填空:如图(1):
∴∠B= ∠ C
AB
CD
(已知), ( 两直线平行,内错角相等).
如图(2):
∠ ADE= ∠ B (已知), ∴ DE BC ( 同位角相等,两直线平行), ∴∠CED+∠ C=180º(两直线平行,同旁内角互补 ).
A A B D C (1) D B (2) E C
D C
解:∠1=∠2 ∠ B A ∵AB∥CD(已知) ∥ (已知) ∴∠1+∠ ∴∠ ∠BAD=180° ° 图1—14 两直线平行,同旁内角互补) (两直线平行,同旁内角互补) ∵AD∥BC(已知) ∥ (已知) ∴∠2+∠ ∴∠ ∠BAD=180° ° 两直线平行,同旁内角互补) (两直线平行,同旁内角互补) ∴∠1=∠ (同角的补角相等) ∴∠ ∠2(同角的补角相等) 讨论: 还有其它解法吗? 如不用“ 两直线平行, 同 讨论 : 还有其它解法吗 ? 如不用 “ 两直线平行 , 旁内角互补”这个性质是否可以解? 旁内角互补”这个性质是否可以解?
D
(2)
∴ ∠3+ ∠4=180 °
平角的意义) 又∵ ∠2+ ∠4=180 ° (平角的意义)
∵ ∠2=∠3 ∠
( 已证 已证)
F
平行线的性质: 性质1:两直线平行,同位角相等. 性质2:两直线平行,内错角相等.
数学表示格式:
已知) ∵ AB ∥ CD (已知 已知 ∴ ∠2=∠3( ∠ ( )
C
做一做: 做一做:
3、如图,已知∠1+∠2=180 ° , 如图,已知∠1+∠ ∠3=65°,求∠4的度数。 3=65° 的度数。
平行线与垂直线的性质及判定方法

平行线与垂直线的性质及判定方法平行线和垂直线是几何学中常见的重要概念。
对于这两种线相互之间的性质以及如何准确判定它们的方法,本文将进行详细介绍。
一、平行线的性质及判定方法平行线是指在同一个平面内永远不会相交的两条直线。
关于平行线的性质和判定方法,我们可以从以下几个方面进行说明。
1. 平行线的性质1.1 不同于同一直线上的两点,同一平面上不同直线上的两点无法连线。
1.2 平行线之间的距离始终相等。
1.3 平行线对应的内角、外角相等。
1.4 平行线的斜率相等或者不存在。
2. 平行线的判定方法2.1 通过观察法判定平行线:如果两条直线的方向相同或者相互平行,它们就是平行线。
可以通过观察直线的倾斜角度或者倾斜方向来判断。
2.2 通过斜率判定平行线:计算两条直线的斜率,如果它们的斜率相等或者不存在,那么这两条直线即为平行线。
2.3 通过平行线定理判定平行线:平行线定理是指如果有一直线与两条平行线相交,那么这两条直线也是平行线。
二、垂直线的性质及判定方法垂直线是指在同一个平面上与另一条直线相交时,两条直线之间的角度为90度。
下面我们来介绍垂直线的性质和判定方法。
1. 垂直线的性质1.1 垂直线之间相交的角度为90度。
1.2 垂直线上的两条线段的长度相等。
1.3 垂直线的斜率的乘积为-1,其中一个垂直线的斜率不存在。
2. 垂直线的判定方法2.1 通过观察法判定垂直线:如果两条直线的交角为90度,它们就是垂直线。
可以通过观察直线之间的交角来判断。
2.2 通过斜率判定垂直线:计算两条直线的斜率,如果斜率的乘积为-1,其中一个直线的斜率不存在,那么这两条直线即为垂直线。
2.3 通过垂直线定理判定垂直线:垂直线定理是指如果两条直线相互垂直,则它们的斜率乘积为-1。
综上所述,平行线与垂直线在几何学中有着重要的性质和判定方法。
对于平行线来说,我们可以通过观察法、斜率以及平行线定理来判定。
而对于垂直线来说,我们可以通过观察法、斜率以及垂直线定理来判定。
平行线的判定及性质 例题及练习

平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
平行线的判定方法

平行线的判定方法平行线是指在同一平面内不相交的两条直线。
在几何学中,判定两条直线是否平行有多种方法,下面将介绍几种常见的判定方法。
首先,我们可以利用直线的斜率来判定两条直线是否平行。
如果两条直线的斜率相等,那么它们就是平行线。
斜率的计算公式为,斜率 k = (y2 y1) / (x2 x1),其中 (x1, y1) 和 (x2, y2) 分别是直线上的两个点的坐标。
如果两条直线的斜率相等,那么它们就是平行线。
这是因为斜率代表了直线的倾斜程度,如果两条直线的倾斜程度相同,那么它们就是平行的。
其次,我们可以利用直线的方程来判定两条直线是否平行。
如果两条直线的方程形式相同,但是常数项不同,那么它们就是平行线。
直线的一般方程形式为,y= kx + b,其中 k 是斜率,b 是常数项。
如果两条直线的方程形式相同,但是常数项不同,那么它们就是平行线。
这是因为方程的常数项决定了直线与 y 轴的交点,如果两条直线的方程形式相同但常数项不同,那么它们与 y 轴的交点不同,因此它们是平行线。
另外,我们还可以利用直线的性质来判定两条直线是否平行。
如果两条直线分别与一条第三条直线平行,那么这两条直线也是平行的。
这是因为如果两条直线分别与一条第三条直线平行,那么它们与第三条直线的夹角相等,而平行线之间的夹角为零,因此这两条直线也是平行的。
除了以上提到的方法,我们还可以利用平行线的性质来判定两条直线是否平行。
例如,平行线之间的距离是相等的,如果两条直线上的任意一点到另一条直线的距离相等,那么这两条直线就是平行线。
综上所述,判定两条直线是否平行有多种方法,可以根据具体情况选择合适的方法进行判定。
通过斜率、方程、性质等多种方法的综合运用,可以准确地判定两条直线是否平行,从而应用于解决实际问题中。
希望以上内容对您有所帮助,谢谢阅读!。
平行线的判定和性质知识点详解

平行线的判定和性质(综合篇)一、重点和难点:重点:平行线的判定性质。
难点:①平行线的性质与平行线的判定的区分②掌握推理论证的格式。
二、例题:这部分内容所涉及的题目主要是从已知图形中辨认出对顶角、同位角、内错角或同旁内角.解答这类题目的前提是熟练地掌握这些角的概念,关键是把握住这些角的基本图形特征,有时还需添加必要的辅助线,用以突出基本图形的特征.上述类型题目大致可分为两大类。
一类题目是判断两个角相等或互补及与之有关的一些角的运算问题。
其方法是“由线定角”,即运用平行线的性质来推出两个角相等或互补。
另一类题目主要是“由角定线",也就是根据某些角的相等或互补关系来判断两直线平行,解此类题目必须要掌握好平行线的判定方法.例1.如图,已知直线a,b,c被直线d所截,若∠1=∠2,∠2+∠3=180°,求证:∠1=∠7分析:运用综合法,证明此题的思路是由已知角的关系推证出两直线平行,然后再由两直线平行解决其它角的关系。
∠1与∠7是直线a和c被d所截得的同位角。
须证a//c。
法(一)证明:∵d是直线(已知)∴∠1+∠4=180°(平角定义)∵∠2+∠3=180°,∠1=∠2(已知)∴∠3=∠4(等角的补角相等)∴a//c(同位角相等,两直线平行)∴∠1=∠7(两直线平行,同位角相等)法(二)证明:∵∠2+∠3=180°,∠1=∠2(已知)∴∠1+∠3=180°(等量代换)∵∠5=∠1,∠6=∠3(对顶角相等)∴∠5+∠6=180°(等量代换)∴a//c (同旁内角互补,两直线平行)∴∠1=∠7(两直线平行,同位角相等)。
例2.已知如图,∠1+∠2=180°,∠A=∠C,AD平分∠BDF,求证:BC平分∠DBE.分析:只要求得∠EBC=∠CBD,由∠1+∠2=180°推出∠1=∠BDC,从而推出AE//FC,从而推出∠C=∠EBC而∠C=∠A于是可得∠A=∠EBC.因此又可得AD//BC,最后再运用平行线性质和已知条件便可推出∠EBC=∠DBC.证明:∵∠2+∠BDC=180°(平角定义)又∵∠2+∠1=180°(已知)∴∠BDC=∠1(同角的补角相等)∴AE//FC(同位角相等两直线平行)∴∠EBC=∠C(两直线平行内错角相等)又∵∠A=∠C(已知)∴∠EBC=∠A(等量代换)∴AD//BC(同位角相等,两直线平行)∴∠ADB=∠CBD(两直线平行,内错角相等)∠ADF=∠C(两直线平行,同位角相等)又∵DA平分∠BDF(已知)∴∠ADB=∠ADF(角平分线定义)∴∠EBC=∠DBC(等量代换)∴BC平分∠DBE(角平分线定义)说明:这道题反复应用平行线的判定和性质,这是以后在证题过程中经常使用的方法,见到“平行"应想到有关的角相等,见到有关的角相等,就应想到能否判断直线间的平行关系.把平行线的判定与性质紧密地结合在一起也就是使直线平行和角相等联系在一起,这样解题能得心应手,灵活自如。
浙教版七年级数学下册专题1.3平行线的判定(知识解读)(原卷版+解析)

专题1.3 平行线的判定(知识解读)【学习目标】1.理解和掌握平行线的判定公理及3个判定定理.2.通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力.3.掌握应用数学语言表示平行线的判定公理及定理,逐步掌握规范的推理论证格式,通过学生画图、讨论、推理等活动,给学生渗透化归思想和分类思想.【知识点梳理】知识点1:平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.记作:如果a∥b,a∥c,那么a∥c注意:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)“平行公理的推论”也叫平行线的传递性知识点2:平行线判定判定方法(1):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单说成:同位角相等,两直线平行。
几何语言:∵∠1=∠2∴AB∥CD(同位角相等,两直线平行)判定方法(2):两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行。
∵∠2=∠3∴AB∥CD(内错角相等,两直线平行)判定方法(3):两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行简单说成:同旁内角互补,两直线平行。
∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)【典例分析】【考点1:平行线公理及推论】【典例1】(2023秋•鼓楼区校级期末)下列说法正确的是()A.不相交的两条直线叫做平行线B.同一平面内,过一点有且仅有一条直线与已知直线垂直C.平角是一条直线D.过同一平面内三点中任意两点,只能画出3条直线【变式1】(2023秋•奉化区校级期末)下列说法正确的是()A.两点之间,直线最短B.永不相交的两条直线叫做平行线C.若AC=BC,则点C为线段AB的中点D.两点确定一条直线【典例2】(2023春•麒麟区期末)下列说法正确的是()A.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a∥cB.在同一平面内,a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥cD.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a⊥c【变式2-1】(2023春•阳春市校级月考)下列说法中,正确的个数为()(1)过一点有无数条直线与已知直线平行(2)如果a∥b,a∥c,那么b∥c(3)如果两线段不相交,那么它们就平行(4)如果两直线不相交,那么它们就平行A.1个A B.2个C.3个D.4个【变式2-2】(2023春•饶平县校级期中)若AB∥CD,AB∥EF,则∥,理由是.【考点2:平行线判定】【典例3】(2023秋•香坊区校级期中)如图,下列各组条件中,能得到AB∥CD 的是()A.∠1=∠3B.∠2=∠4C.∠B=∠D D.∠1+∠2+∠B=180°【变式3-1】(2023春•台江区校级期中)如图,过直线外一点作已知直线的平行线,其依据是()A.两直线平行,同位角相等B.内错角相等,两直线平行C.同位角相等,两直线平行D.两直线平行,内错角相等【变式3-2】(2023•德保县二模)如图,能判定AD∥BC的条件是()A.∠1=∠3B.∠1=∠2C.∠2=∠3D.∠2=∠4【变式3-3】(2023春•宾阳县期中)如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是()A.①③B.②④C.①②③④D.①③④【典例4】(2023春•重庆月考)如图,点E、F分别在AB、CD上,AF⊥CE于点O,∠1=∠B,∠A+∠2=90°,求证:AB∥CD.请填空.证明:∵AF⊥CE(已知)∴∠AOE=90°()又∵∠1=∠B()∴()∴∠AFB=∠AOE()∴∠AFB=90°()又∵∠AFC+∠AFB+∠2=(平角的定义)∴∠AFC+∠2=()°又∵∠A+∠2=90°(已知)∴∠A=∠AFC()∴(内错角相等,两直线平行)【变式4-1】(2023秋•社旗县期末)〖我阅读〗“推理”是数学的一种基本思想,包括归纳推理和演绎推理.演绎推理是一种从一般到特殊的推理,它借助于一些公认的基本事实及由此推导得到的结论,通过推断,说明最后结论的正确.〖我会做〗填空(理由或数学式)已知:如图,∠1=∠E,∠B=∠D.求证:AB∥CD.证明:∵∠1=∠E()∴()∴+∠2=180° ()∵∠B=∴+=180°∴AB∥CD()【变式4-2】(2023春•岳池县期末)把下面的说理过程补充完整:已知,如图,直线AB,CD被直线EF所截,点H为CD与EF的交点,GH ⊥CD于点H,∠2=30°,∠1=60°.试说明:AB∥CD.解:∵GH⊥CD(),∴∠CHG=90°()又∵∠2=30°(),∴∠3=()∴∠4=60°()又∵∠1=60°()∴∠1=∠4()∴AB∥CD()【变式4-3】(2023春•宁远县期末)完成下面的证明如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.完成推理过程BE平分∠ABD(已知),∴∠ABD=2∠α().∵DE平分∠BDC(已知),∴∠BDC=2∠β ()∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)()∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°().∴AB∥CD().【典例5】(2023春•大埔县期末)如图,已知∠A=∠C,AD⊥BE,BC⊥BE,点D在线段EC上,求证:AB∥CD.【变式5-1】(2023秋•西乡县期末)如图,已知∠A=∠ADE,∠C=∠E.求证:BE∥CD.【变式5-2】(2023春•宣恩县期末)如图,AD⊥BC于D,EF⊥BC于F,∠1=∠2,AB与DG平行吗?为什么?专题1.3 平行线的判定(知识解读)【学习目标】1.理解和掌握平行线的判定公理及两个判定定理.2.通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力.3.掌握应用数学语言表示平行线的判定公理及定理,逐步掌握规范的推理论证格式,通过学生画图、讨论、推理等活动,给学生渗透化归思想和分类思想.【知识点梳理】知识点1:平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.记作:如果a∥b,a∥c,那么a∥c注意:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)“平行公理的推论”也叫平行线的传递性知识点2:平行线判定判定方法(1):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单说成:同位角相等,两直线平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同位角 相等 ∵∠1=∠2 (已知) c
两直线平行 ∴a∥b 1 a 内错角 相等 ∵∠3=∠2 (已知) 3 4 2 两直线平行 ∴a∥b b 同旁内角 互 ∵ ∠2+∠4=180° 补,两直线平行 ∴a∥b
能力挑战
1、如图,不能判定 l (A)∠2=∠3 (C)∠1=∠2
1 // l2
的是 ( D ) (B)∠1=∠4
1.3平行线的判定(2)
一般地,判断两直线平行有下面的方法:
判定方法1 两条直线被第三条直线所截 , 如果同位角相等, 那么这两条直线平行. 简单说成:同位角相等,两直线平行.
几何语言:
c 1
a
b
∵∠1=∠2(已知) ∴a∥b(同位角相等,两直线平行)
想一想
如果∠ ∠2 3= =∠ ∠5 4 , 能判定哪两条直线平行? 1 2
5 a
6 b 8 4 7 2
c 1
3
练一练
c 1.如图 d
a 1 2 3
b
4
(1)从∠1=∠2,可以推出 a ∥ b , 理由是 内错角相等,两直线平行 。 (2)从∠2=∠ 3 ,可以推出c∥d , 理由是 同位角相等,两直线平行 。
(3)如果∠1=75°,∠4=105°,
可以推出 a∥ b 。 理由是 同旁内角互补,两直线平行 。
a
2
b
数学转化思想
一般地,判断两直线平行有下面的方法: 判定方法2 两条直线被第三条直线所
截,如果内错角相等,那么这两条直线 平行
简单说成:内错角相等,两直线平行
想一想
如图,∠1= ∠2 ,且∠1=∠3, AB和CD平行吗?
D
3
C
1 A
2
B
说一说
(3)如果1+2=1800 能判定a//b吗?
解:能,
c
3 1 2
因为1+2=180 1+3=180
所以 2=3 所以 a//b 数学转化思想
a b
一般地,判断两直线平行有下面的方法: 判定方法3 两条直线被第三条直线所
截,如果同旁内角互补,那么这两条直 线平行
简单说成:同旁内角互补,两直线平行
想一想
如图:B= D=45°, C=135°, 问图中有哪些直线平行? A
理由是 同位角相等,两直线平行
。
如图,∠1=∠2,能判断 不能. AB∥DF吗?为什么? 若不能判断AB∥DF,你认为还 需要再添加的一个条件是什么呢?写 出这个条件,并说明你的理由。
B E 2 F
1
思考
A 添加∠CBD=∠EDB
C 内错角相等,两直线平行 D
想想还可以添 加什么条件?
平行线的判定示意图
∠2=150 满足条件___________ 或∠3=30°,则a//b
c 2 3 1 b a
.直线 a b 被直线 c 所截,给出下列条件: 、 2; (1) 1 = ( 2 ) 3 = 6;
( 3 ) 4 = 1
0 + = ; ( 4) 6 7 180 . (1)(2)(4) 其中能识别 a // b 的条件序号是 __________
l 3 与 l 4平行, l1 与 l 2 不平行
能力挑战
4.如图,哪些条件能判定直线AB∥CD?
A
1 2 4
3
B
C
D
能力挑战
5.如图:可以确定AB∥CE的条件是( C ) A.∠2=∠B B. ∠1=∠A C. ∠3=∠B D. ∠3=∠A
B 1 C A E
2 3 D
6.如图,已知∠1=30°,∠2或 ∠3
E 1
G
3 2 5 4 H B
A C
D
F
思考:
两条直线被第三条直线所截,同时得到同位 角、内错角和同旁内角,由同位角相等可以 判定两直线平行,那么,能否利用内错角, 或同旁内角来判定两直线平行呢?
说一说
(2)由3= 2,可推出a//b吗? 如何推出?写出你的推理过程 c
• 解: 1=3(已知) • 3= 2(对顶角相等) 3 • 1= 2 • a//b(同位角相等,两直线平行)
练一练
2.如图
1 B
A
3 4 5
D
2
C
(1)从∠1=∠4,可以推出 AB ∥ CD , 理由是 内错角相等,两直线平行 (3)从∠ 2 =∠ 3 ,可以推出AD∥BC, 理由是 内错角相等,两直线平行 理由是 同旁内角互补,两直线平行 (4)从∠5=∠ ABC ,可以推出AB∥CD, 。 (2)从∠ABC +∠ BCD =180,可以推出AB∥CD , 。 。
判定
同位角相等 内错角相等 同旁内角互补
位置关系 数量关系 两直线平行
D C
答:AB//CD,AD//BC ∵ B=45°(已知)
B
C=135°(已知) B+ C=180° AB//CD(同旁内角互补,两直线平行) 同理:AD//BC
归纳
同位角相等,两直线平行; 内错角相等,两直线平行; 同旁内角互补,两直线平行;
判定两条直线平行的方法
文字叙述 符号语言 图形
(D)∠1=∠3
1 3
l1
l2
4 2
能力挑战
2、如图,∠1=∠2,则下列结论正确的是( C ) (A)AD//BC (B)AB//CD
E A
1 2
D F C
(C)AD//EF (D)EF//BC
B
能力挑战
3、如图,哪些直线平行,哪些直线不平行?
o 50 o 12060 ol4 l3 源自260ol1