2016--2017七年级下册期中数学测试卷【1】【含解析】16
20162017年度七年级下期中测验数学试卷(含答案)

20162017 年度七年级下期中测试数学试卷 ( 含答案 )————————————————————————————————作者:————————————————————————————————日期:2016-2017 学年度七年级下期中考试数学试卷一、精心选一选.(本大题共 10 个小题,每题 3 分,共 30 分.1.以下运算正确的选项是().A . a5+ a5 =a 10B . a6×a4=a 24C . a0÷a -1 =aD. (a2)3=a 52.以下关系式中,正确的是()..A.(a -b) 2 =a 2-b 2B.(a+ b) (a-b)=a 2-b 2C.(a+b) 2 =a 2+b 2D.(a+b) 2=a 2+ ab +b 23.大象是世界上最大的陆栖动物,它的体重的百万分之一相当于()的体重A. 袋鼠B. 啄木鸟C. 蜜蜂D. 小鸡4.假如一个角的补角是 130 °,那么这个角的余角的度数是()A.20°B. 40°C.70° D .130 °5. 以下哪组数能构成三角形()A、4,5,9B、8,7,15C、5,5,11D、13 ,12,206.4 ㎝,另一边为5 ㎝,则它的周长为 ()假如一个等腰三角形的一边为A、 14B、 13C、14 或 13 D 、、没法计算7.以下说法中,正确的选项是()A.内错角相等.B.同旁内角互补.C.同角的补角相等.D. 相等的角是对顶角.8.以长为 3,5,7,10 的四条线段中的三条为边,能构成三角形的个数为()A. 1B.2C.3 D . 49.如图1,以下条件中,能判断DE∥AC的是()A. ∠EDC= ∠EFCB.∠AFE= ∠ACDC. ∠1= ∠2D. ∠3= ∠4图1 10. 已知 x a=3,x b =5, 则 x2a-b =()A. 3B.6C.9D. 1 555二、仔细填一填(每题 3 分,合计 24)11.有两根长 3 ㎝、4 ㎝的木棒,选择第三根木棒构成三角形,则第三根木棒第范围是。
2016-2017学年七年级下数学期中试卷及答案

2016-2017学年度第二学期期中考试七年级数学试卷一、选择题(本题有 小题,每题 分,共 分) 、下面四个图形中 与 是对顶角的是( )✌. . . .、方程组的解为( ) ✌....、在♊ ⍓;♋⌧﹣ ⍓;♌⌧⍓;♍ ⍓四个式子中,不是二元一次方程的有( ) ✌. 个 . 个 . 个 . 个 、如图所示,图中 与 是同位角的是( )2(1)11212(3)12(4)✌、 个 、 个 、 个 、 个 .下列运动属于平移的是( )✌.冷水加热过程中小气泡上升成为大气泡 .急刹车时汽车在地面上的滑动 .投篮时的篮球运动 .随风飘动的树叶在空中的运动、如图 ,下列能判定✌的条件有☎ ✆个☎✆ ︒=∠+∠180BCD B ; ☎✆21∠=∠;☎✆ 43∠=∠; ☎✆ 5∠=∠B✌. . . 、下列语句是真命题的有☎ ✆♊点到直线的垂线段叫做点到直线的距离; ♋内错角相等;♌两点之间线段最短; ♍过一点有且只有一条直54D3E21C B A图线与已知直线平行;♎在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行.✌. 个 . 个 . 个. 个、如图 ,把一个长方形纸片沿☜☞折叠后,点 、 分别落在 、 的位置,若 ☜☞,则 ✌☜☎ ✆✌、 、 、 、 、如图 ,直线21//l l , ✌, ,则 ( )✌. . . . 、如图 ,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点 到 的方向平移到 ☜☞的位置,✌, ,平移距离为 ,则阴影部分面积为( )✌∙∙∙∙ ∙∙∙∙ ∙∙∙∙ ∙∙二、填空题(本题有 小题, 题 分,其余每题 分,共 分) 、﹣ 的立方根是的平方根是 如果,那么♋ ,的绝对值是 , 2的小数部分是♉♉♉♉♉♉♉、命题❽对顶角相等❾的题设 ,结论、( )点 在第二象限内, 到⌧轴的距离是 ,到⍓轴的距离是 ,那么点 的坐标为♉♉♉♉♉♉♉ ( )若,则、如图 ,一艘船在✌处遇险后向相距 海里位于 处的救生船报警.用方向和距离描述遇险船相对于救生船的位置图图F EDCB音乐台湖心亭牡丹园望春亭游乐园(2,-2)孔桥、 ✌的两边与 的两边互相平行,且 ✌比 的 倍少 ,则 ✌的度数为♉♉♉♉♉♉♉、在平面直角坐标系⌧⍓中,对于点 (⌧,⍓),我们把点 ( ⍓,⌧)叫做点 的伴随点.已知点✌ 的伴随点为✌ ,点✌ 的伴随点为✌ ,点✌ 的伴随点为✌ ,⑤,这样依次得到点✌ ,✌ ,✌ ,⑤,✌⏹,⑤.若点✌ 的坐标为( , ),则点✌ 的坐标为 , 点✌ 的坐标为♉♉♉♉♉♉♉♉♉ 三、解答题(本题有 小题,共 分)、(本题有 小题,每小题 分,共 分)(一)计算:( )322769----)( ( ))13(28323-++-☎✆ ☎- ✆+ ☎ +✆. (二)解方程:( ) ⌧ . ( )(⌧﹣ ) ( )、(本小题 分)把下列各数分别填入相应的集合里:38,3,- ,3π,722,32-,87-, ,- ••02, ,7-, ⑤☎每两个相邻的 中间依次多 个 ✆. ☎✆正有理数集合: ⑤❝; ☎✆负无理数集合:⑤❝;、(本小题 分)王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示 可是她忘记了在图中标出原点和⌧轴 ⍓轴 只知道游乐园 的坐标为( ,- ), 请你帮她画出坐标系,并写出其他各景点的坐标、(本小题 分)已知 是⌧的立方根,且(⍓) ,求的值.、(本小题 分)如图,直线✌、 、☜☞相交于点 .( )写出 ☜的邻补角;( )分别写出 ☜和 ☜的对顶角;( )如果 ,EFAB ,求 ☞和 ☞的度数.、(本小题 分)某公路规定行驶汽车速度不得超过 千米 时,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆的行驶速度,所用的经验公式是,其中❖表示车速(单位:千米 时),♎表示刹车后车轮滑过的距离(单位:米),♐表示摩擦系数.在一次交通事故中,经测量♎米,♐.请你判断一下,肇事汽车当时是否超出了规定的速度?、(本小题 分)完成下列推理说明:( )如图,已知 , ,可推出✌.理由如下:因为 (已知),且 ( )所以 (等量代换) 所以 ☜☞( )所以 ( )又因为 (已知) 所以 (等量代换)所以✌( )( )如图,已知 , .求证: ☜ ☞☜.证明: (已知),✌ ( )( )又 (已知), (等量代换)✌☜( ) ☜ ☞☜( )、(本小题 分)如图,长方形 ✌中, 为平面直角坐标系的原点,点✌、 的坐标分别为✌( , ), ( , ),点 在第一象限.( )写出点 的坐标 ;( )若过点 的直线交长方形的 ✌边于点 ,且把长方形 ✌的周长分成 : 的两部分,求点 的坐标;( )如果将( )中的线段 向下平移 个单位长度,得到对应线段 , 在平面直角坐标系中画出 ,并求出它的面积.、(本小题 分)如图,已知 , ,你能判断 与 ✌☜的大小关系吗?并说明理由(本小题 分)如图,在平面直角坐标系中,点✌, 的坐标分别为(﹣ , ),( , ),现同时将点✌, 分别向上平移 个单位,再向右平移 个单位,分别得到点✌, 的对应点 , ,连接✌, , .得平行四边形✌( )直接写出点 , 的坐标;( )若在⍓轴上存在点 ,连接 ✌, ,使 ✌ 平行四边形✌,求出点 的坐标.( )若点 在直线 上运动,连接 , .请画出图形,直接写出 、 、 的数量关系. 学年度第二学期期中联考数学科 评分标准一、选择题(本大题共 小题,每小题 分,共 分)二、填空题(本大题共 小题, 题 分,其余每小题 分,共 分). 、 ± 、 、 ﹣、 2 .题设 两个角是对顶角 结论 这两个角相等.( ) ( , ) ( ) . 南偏西 °, 海里. °或 ° ☎答出一种情况 分) . ( ) 、 ( )三、解答题(本大题共 小题,共 分)☎分)☎一✆( )322769----)( ( ))13(28323-++-解:原式= (- ) … 解:原式=232223-++-…… = …………………… =…233-……… ☎✆ ☎- ✆+ ☎ +✆. 解:原式=13222++-……=222+ ……………………(二)( ) ⌧ . ( )(⌧﹣ ) 题号答案✌✌✌解:⌧ ,…… ⌧﹣ 或⌧﹣ ﹣ ……⌧±,…… ⌧═ 或⌧…… (求出一根给 分)( ),(⌧ ) ,…… ⌧ ,…… ⌧.……(本小题 分)解:☎✆正有理数集合: 38,722, ,…❝ …… 分 ☎✆负无理数集合: 32-,7-,…❝.…… 分(本小题 分)解:( )正确画出直角坐标系;…… 分( )各点的坐标为✌☎✆( , ), (﹣ , ),☜( , ),☞( , );…… 分 (本小题 分)解:∵ 是⌧的立方根, ∴⌧,…… ∵(⍓﹣ ) ,∴, 解得:,……∴.……(本小题 分)解:( )∠ ☞和∠☜……( )∠ ☜和∠ ☜的对顶角分别为∠ ☞和∠✌☞.…… ( )∵✌⊥☜☞ ∴∠✌☞∠ ☞°∴∠ ☞∠ ☞∠ ° ° °…… 又∵∠✌∠ °∴∠☞∠✌☞∠✌° ° °.……(本小题 分)解:把♎,♐代入❖ ,❖ ( ❍♒)……∵ > , ……∴肇事汽车当时的速度超出了规定的速度.…….( 分)( )如图,已知∠ ∠ ,∠ ∠ ,可推出✌∥ .理由如下:因为∠ ∠ (已知),且∠ ∠ (对顶角相等)……所以∠ ∠ (等量代换)所以 ☜∥ ☞(同位角相等,两直线平行)……所以∠ ∠ (两直线平行,同位角相等)……又因为∠ ∠ (已知)所以∠ ∠ (等量代换)所以✌∥ (内错角相等,两直线平行)……( )在括号内填写理由.如图,已知∠ ∠ °,∠ ∠ .求证:∠☜∠ ☞☜.证明:∵∠ ∠ °(已知),∴✌∥ (同旁内角互补,两直线平行)……∴∠ ∠ ☜(两直线平行,同位角相等)……又∵∠ ∠ (已知),∴∠ ☜∠ (等量代换)……∴✌∥ ☜(内错角相等,两直线平行)……∴∠☜∠ ☞☜(两直线平行,内错角相等)…….( 分)解:( )点 的坐标( , );……( )长方形 ✌周长 ×( ) ,∵长方形 ✌的周长分成 : 的两部分,∴两个部分的周长分别为 , ,∵ ✌∴ ∵ ,∴ ,∴点 的坐标为( , );……( )如图所示,△ ′ ′即为所求作的三角形,……′ ,点 ′到 ′的距离为 ,所以,△ ′ ′的面积 × × .……( 分)解:∠ 与∠✌☜相等,……理由为:证明:∵∠ ∠ °,∠ ∠ ☞☜°,∴∠ ∠ ☞☜ ……∴✌∥☜☞∴∠ ∠✌☜ ……又∠ ∠∴∠ ∠✌☜∴ ☜∥ ……∴∠ ∠✌☜……、(本小题 分)解:( ) ( , ), ( , );……( )∵✌, ,∴ 平行四边形✌ ✌• × ,设 坐标为( ,❍),∴× × ❍,解得❍±∴ 点的坐标为( , )或( ,﹣ );…… (求出一点给 分)( )当点 在 上,如图 ,∠ ∠ ∠ ;……当点 在线段 的延长线上时,如图 ,,∠ ﹣∠ ∠ ;……同理可得当点 在线段 的延长线上时,∠ ﹣∠ ∠ .…… ☎每种情况正确画出图形给 分✆。
【一中】2016-2017学年第二学期初一数学期中试卷及答案

D . (a)6 a3 a3 .
故选 D .
D. (a)6 a3 a3
3.下列命题:①两直线平行,同旁内角互补;②如果 a ∥b , b∥c ,那么 a ∥c ;③直角都相等;④
相等的角是对应角.其中,真命题有( ).
A.1 个
B. 2 个
C. 3 个
D. 4 个
【答案】C
【解析】①两直线平行,同旁内角互补(正确).
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.不需写出解题过程,请把答案直接填写在答. 题.卷.相.应.位.置.上)
9.钓鱼岛列岛是我国固有领土,共由 8 个岛屿组成,其中最大的岛是钓鱼岛,面积约为 4.3 平方公里, 最小的岛是飞濑岛,面积约为 0.0008 平方公里,请用科学记数法表示飞濑岛的面积约为__________ 平方公里.
【答案】 3
【解析】
1 3
100
3101
1 3
100
3100
3
(1)100 3
3.
12.如图,将三角尺的顶点放在直尺的一边上,∠1 30 .∠3 20 ,则∠2 __________.
1 3
2
【答案】 50 【解析】∵∠1 30 ,∠3 20 , ∴∠4 50 , ∵ AB ∥CD , ∴∠2 ∠4 , ∴∠2 50 .
南京中小学辅导 1对1、3人班、8人班
∵∠BAC 70 , ∴∠AGD 110 .
22.( 8 分)如图,每个小正方形的边长为1,在方格纸内将 △ABC 经过一次平移后得到 △ABC ;,图 中标出了点 B 的对应点 B .
初级中学16—17学年下学期七年级期中考试数学试题(附答案)

54D 3E21C B A2016-2017学年第二学期期中考试七年级数学试卷(问卷)(卷面分值:100分;考试时间:100分钟)同学们,半个学期的勤奋,今天将展现在试卷上,老师相信你一定会把诚信答满试卷,......................................也一定会让努力书写成功,答题时记住细心和耐心。
.......................注意事项:本卷由问卷和答卷两部分组成,其中问卷共4页,答卷共2页,在问卷上答题无效。
一.选择题(本大题共8小题,每小题3分,共24分)1. 4的平方根是( )A . ±2B .2C .±D .2.点P (-1,5)所在的象限是( )A .第一象限B .第二象限C.第三象限 D.第四象限3.下列各组图形,可由一个图形平移得到另一个图形的是( )A B C D4.如图,直线AB 、CD 相交于点O,若∠1+∠2=100°,则∠BOC 等于 ( )A.130°B.140°C.150°D.160 (第4题图)5.已知是二元一次方程4x+ay=7的一组解,则a 的值为( )A .﹣5B .5C .D .﹣6.如右图,下列能判定AB ∥CD 的条件有( )个. (第6题图) (1) ︒=∠+∠180BCD B (2)21∠=∠(3) 43∠=∠ (4) 5∠=∠B A . 1 B .2 C .3D.4 7.下列各组数中,互为相反数的组是( )A .﹣2与B .﹣2和C .﹣与2D .|﹣2|和28.下列命题:①两直线平行,内错角相等;②如果m 是无理数,那么m 是无限小数;③64的立方根是8;④同旁内角相等,两直线平行;⑤如果a 是实数,那么a 是无理数.其中正确的有( )A .1个B .2个C .3个D .4个二.填空(本大题共6小题,每小题3分,共18分)9.若32123=---n m y x 是二元一次方程,则m=____,n=____.10.计算:|3﹣π|+的结果是 .11.已知点P(0,a)在y 轴的负半轴上,则点Q(-2a -1,-a+1)在第 象限.12.已知a 、b 满足方程组2226a b a b -=⎧⎨+=⎩,则3a b +的值为 . (第13题图) 13.如图,一张宽度相等的纸条,折叠后,若∠ABC=120°,则∠1的度数为 .14.在平面直角坐标系中,点A 的坐标为(﹣1,3),线段AB ∥x 轴,且AB =4,则点B 的坐标为 .三、计算解答题 (每小题5分,共20分)15.计算:364+2)3(--31- 16.1+2)451(- .17.解二元一次方程组:18.已知2a-1的平方根是±3,3a-b+2的算术平方根是4,求a+3b的立方根.四、解答题:(19题6分,20题8分,21题6分,22题8分,23题10分共38分)19. 某工程队承包了修建隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了50米.求甲、乙两个班组平均每天各掘进多少米?20.已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.证明:∵∠1=∠2 (已知)∴∥()∴∠E=∠()又∵∠E=∠3 (已知)∴∠3=∠()∴AD∥BE.()21.如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.22.如图,已知△ABC平移后得到△A1B1C1,点A(﹣1,3)平移后得到A1(﹣4,2),(1)写出B,C的坐标:B(,),C(,).(2)画出△ABC,并指出平移规律;(3)求△ABC的面积.A PB 1l 2l 3l 1 2 323如图,已知直线 1l ∥2l ,且 3l 和1l 、2l 分别交于A 、B 两点,点P 在直线AB 上.(1)试找出∠1、∠2、∠3之间的关系并说明理由;(2)当点P 在A 、B 两点间运动时,问∠1、∠2、∠3之间的关系是否发生变化?(只写结论)(3)如果点P 在A 、B 两点外侧运动时,试探究∠1、∠2、∠3 之间的关系。
16—17学年下学期七年级期中考试数学试题(附答案)

永春一中初一年级期中考数学科试卷(2017.4)命题:学校指定命题 考试时间:120分钟 试卷总分:150分说明: (1)试卷分为第Ⅰ卷、第Ⅱ卷,答案一律做在第Ⅱ卷上.(2)一律用黑色水笔作答;不能使用涂改液/带.(3)考生只交第Ⅱ卷,第Ⅰ卷由考生带回保管.第I 卷 班级: 姓名: 座号:一、选择题(共10小题,每题4分,满分40分) 1、方程m x =+13的解是2=x ,则m 的值是( )A .4 ;B .5;C . 6 ;D .7 . 2、若a 是任意有理数,则下列不等式中一定成立的是( )A .2)1(+a >0 ; B .12+a >0; C .a 2>a ; D .2a >0.3、下列图形是轴对称图形的是( )A .B .C .D .4、已知8元刚好买到1支百合和2朵玫瑰花,17元刚好买到4支百合和3朵玫瑰花, 则买1支百合和1朵玫瑰花需要( )A .4元;B .5元;C .6元;D .7元.5、把下列某不等式组的解集在数轴上表示,如图所示,则这个不等式组是( )A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥ C .41x x >⎧⎨>-⎩, D .41x x ⎧⎨>-⎩≤, 6、下列长度的各组线段能组成三角形的是( )A .3cm 、8cm 、5cm ;B .12cm 、5cm 、6cm ;C .5cm 、5cm 、10cm ;D .15cm 、10cm 、7cm . 7、小明在解关于x 、y 的二元一次方程组⎩⎨⎧=⊗-=⊗+13,3y x y x 时得到了正确结果⎩⎨⎧=⊕=1y x ,后来发现“ ”“ ”处被墨水污损了,请你帮他找出 、 处的值分别是( ) A . = 1, = 1; B . = 2, = 1; C . = 1, = 2; D . = 2, = 2. 8、下列几种形状的瓷砖中,只用一种不能够铺满地面的是( ) A .正三角形; B .正四边形; C .正五边形; D .正六边形.9、若关于x的不等式⎩⎨⎧≤-≤-127xmx的整数解共有4个,则m的取值范围是()A.76<<m B.76<≤m C.76≤≤mD.76≤<m10、如图所示,O是锐角三角形ABC内一点,∠AOB=∠BOC=∠COA=120°,P是△ABC内不同于O的另一点,△A′BO′、△A′BP′分别由△AOB、△APB旋转而得,旋转角都为60°,则下列结论中正确的有( ).(提示:有一个角是60°的等腰三角形是等边三角形)A.1个B.2个C.3个D.4个①△O′BO为等边三角形,且A′、O′、O、C在一条直线上.②A′O′+O′O=AO+BO.③A′P′+P′P=PA+PB.④PA+PB+PC>AO+BO+CO.二、填空题(共6小题,每题4分,满分24分)11、七边形的外角和等于.12、已知一个等腰三角形有两边的长分别为2和5,则它的周长为.13、方程组⎪⎩⎪⎨⎧-=++=--=-2213cbacbca的解为.14、如图,△A′B′C′是由△ABC沿射线AC方向平移2cm得到,若AC=3cm,则A′C=cm.15、已知关于y的一元一次方程()byy-=+-25120171的解为3-=y,那么关于x的一元一次方程()bxx-+=+12520171的解为.(第14题) (第16题) 16、如上图有九个空格,要求每个格中填入一个数,使得每行、每列、每条对角线上的三个数之和都相等,①则图中a与b存在的数量关系是:;②若某三角形三边的长度刚好是图中的a 、b 与9,则字母a 的取值范围是: . 三、解答题(共9小题,满分86分) 17、(12分)解方程(组):(1) 1653=-x ; (2)⎩⎨⎧=-=4322y x yx18、(12分) 解下列不等式(组),并把它们的解集在数轴上表示出来: (1)12223+≥+-x x(2)⎩⎨⎧≥+<+4)1(231x x19、(7分)关于y x ,的方程组⎩⎨⎧=++=-my x m y x 523的解满足0>+y x ,求m 的取值范围;20、(7分)如图,在8×6正方形方格中,点A 、B 、C 在小正方形的顶点上. (1)在图中画出与△ABC 关于直线l 成轴对称的△AB′C′,并回答问题: 图中线段CC′被直线l ;(3分)(2)在直线l 上找一点D ,使线段DB+DC 最短.(不写作法,应保留作图痕迹)(2分) (3) 在直线l 确定一点P ,使得PB PA -的值最小.(不写作法,应保留作图痕迹)(2分)21、(7分)如图,在直角△ABC 中,∠C=90°,DE 垂直平分AB ,交BC 于点D 、交AB于点E .(1)若AD 平分∠CAB ,则∠B 的度数是 度;(3分) (2)若AB=10,△ACD 的周长为14,求△ACB 的周长.(4分)22、(7分)某地政府急灾民之所需,立即组织12辆汽车,将A 、B 、C 三种救灾物资共92吨一次性运往灾区,甲、乙、丙三种车型的汽车分别运载A 、B 、C 三种物资,每辆车按运载量满装物资。
2016-2017学年度第二学期期中数学考试试卷

2016-2017学年度第二学期期中考试七年级数学试卷第Ⅰ卷(选择题,共30分)一、选择题(每题3分,共30分)1.9的算术平方根是A .3±B .9±C .3D .-32. 在平面直角坐标系中,点P (-3,5)所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限3.在同一个平面内,两条直线的位置关系是A.平行或垂直B.相交或垂直C. 平行或相交D. 不能确定 4.如图所示,四幅汽车标志设计中,能通过平移得到的是奥迪 本田 大众 铃木A . B. C. D. 5.如图,梯子的各条横档互相平行,若∠1=80,则∠2的度数是A.80B.100C.120D.1506. 如图,点E 在AC 的延长线上,下列条件能判断AB ∥CD 的是A.∠3=∠4B.∠1=∠2C.∠D=∠DCED.∠D+∠ACD=180°7.已知直角坐标系中点P 到y 轴的距离为5,且点P 到x 轴的距离为3,则这样的点P 的个数是 A .1 B .2 C .3D .48.在实数23-,0.7 ,34,π,16中,无理数的个数是 A .1B .2C .3D .49.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为A .53°B .55°C .57°D .60°第6题图 第5题图10.如图,直线l 1∥l 2,∠A=125°,∠B=85°,则∠1+∠2= A .30° B .35° C .36° D .40°第Ⅱ卷(非选择题 共90分)二、填空题:(每题3分,共18分)11.在直角坐标系中,写出一个在纵轴的负半轴上点的坐标 . 12.若一个数的平方根等于它本身,则这个数是13.若a 是介于3与7之间的整数,b 是2的小数部分,则ab-22的值为 14. 如图,将△ABC 沿BC 方向平移2cm 得到△DEF,若△ABC 的周长为16cm ,则四边形ABFD 的周长为 cm15.如果两个角的两边分别平行,其中一个角比另一个角的2倍少36°,那么这两个角 是16. 如图,将正整数按如图所示规律排列下去,若用有序数对(m ,n )表示m 排从左到右第n 个数。
中学2016-2017学年七年级(下)期中数学试卷(解析版)

七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.下列计算正确的是()A.a3•a2=a6 B.a5+a5=a10C.(﹣3a3)2=6a2D.(a3)2•a=a72.如果一个角的补角是150°,那么这个角的余角的度数是()A.30°B.60°C.90°D.120°3.将0.00000573用科学记数法表示为()A.0.573×10﹣5 B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣64.(x﹣1)(2x+3)的计算结果是()A.2x2+x﹣3 B.2x2﹣x﹣3 C.2x2﹣x+3 D.x2﹣2x﹣35.如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B+∠BDC=180°6.下列各式中,能用平方差公式进行计算的是()A.(﹣x﹣y)(x+y)B.(2x﹣y)(y﹣2x)C.(1﹣x)(﹣1﹣x)D.(3x+y)(x﹣3y)7.如图,已知直线a,b被直线c所截,若a∥b,∠1=110°,∠2=40°,则∠3=()A.40°B.50°C.60°D.70°8.如图,下列条件不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.∠A=∠D,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DB,AC=DC9.正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同,下图反映了一天24小时内小明体温的变化情况,下列说法错误的是()A.清晨5时体温最低B.下午5时体温最高C.这天中小明体温T(℃)的范围是36.5≤T≤37.5D.从5时到24时,小明的体温一直是升高的10.某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A .B .C.D .二、填空题(每小题3分,共24分) 11.计算:(﹣2xy 3z 2)2= .12.如图,直线AB 、CD 、EF 相交于一点,∠1=50°,∠2=64°,则∠COF=度.13.将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2= .14.如果多项式x 2+8x +k 是一个完全平方式,则k 的值是 . 15.若5m =3,5n =2,则52m +n = .16.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y (单位:元)与购书数量x (单位:本)之间的函数关系 . 17.已知x +y=﹣5,xy=6,则x 2+y 2= .18.某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置:上述问题中,第五排、第六排分别有 个、 个座位;第n 排有 个座位.三、作图题(每小题5分,共5分)19.(5分)如图,已知∠BAC 及BA 上一点P ,求作直线MN ,使MN 经过点P ,且MN ∥AC .(要求:使用尺规正确作图,保留作图痕迹)四、计算与求值(每小题25分,共25分) 20.(25分)计算与求值(1)(﹣1)2015+()﹣3﹣(π﹣3.1)0 (2)(3x ﹣2)2+(﹣3+x )(﹣x ﹣3) (3)(﹣2x 2y )2•3xy ÷(﹣6x 2y ) (4)1122﹣113×111(用乘法公式计算)(5)[(2x +y )2+(2x +y )(y ﹣2x )﹣6y ]÷2y ,其中x=﹣,y=3.五、解答题(共36分)21.(8分)如图,已知点A 、F 、E 、C 在同一直线上,AB ∥CD ,∠ABE=∠CDF ,AF=CE . (1)从图中任找两对全等三角形,并用“≌”符号连接起来; (2)求证:AB=CD .22.(9分)张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图象.根据图象回答下列问题:(1)体育场离张阳家多少千米?(2)体育场离文具店多少千米?张阳在文具店逗留了多长时间?(3)张阳从文具店到家的速度是多少?23.(7分)阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2()∵AC∥DE(已知)∴∠1=∠3()故∠2=∠3()∵DF∥AE(已知)∴∠2=∠5,()∠3=∠4()∴∠4=∠5()∴DF平分∠BDE()24.(12分)(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE 的面积是(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式.(4)利用所得公式计算:2(1+)(1+)(1+)(1+)+.七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列计算正确的是()A.a3•a2=a6 B.a5+a5=a10C.(﹣3a3)2=6a2D.(a3)2•a=a7【分析】A、利用同底数幂的乘法法则计算得到结果,即可作出判断;B、合并同类项得到结果,即可作出判断;C、利用积的乘方与幂的乘方运算法则计算得到结果,即可作出判断;D、利用幂的乘方及同底数幂的乘法运算得到结果,即可作出判断.【解答】解:A、a3•a2=a5,本选项错误;B、a5+a5=2a5,本选项错误;C、(﹣3a3)2=9a2,本选项错误;D、(a3)2•a=a6•a=a7,本选项正确.故选D.【点评】此题考查了幂的乘方与积的乘方,合并同类项,去括号与添括号,以及同底数幂的乘法,熟练掌握运算法则是解本题的关键.2.如果一个角的补角是150°,那么这个角的余角的度数是()A.30°B.60°C.90°D.120°【分析】本题根据互余和互补的概念计算即可.【解答】解:180°﹣150°=30°,那么这个角的余角的度数是90°﹣30°=60°.故选B.【点评】本题考查互余和互补的概念,和为90度的两个角互为余角,和为180度的两个角互为补角.3.将0.00000573用科学记数法表示为()A.0.573×10﹣5 B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00000573用科学记数法表示为5.73×10﹣6,故选:C.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(x﹣1)(2x+3)的计算结果是()A.2x2+x﹣3 B.2x2﹣x﹣3 C.2x2﹣x+3 D.x2﹣2x﹣3【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.【解答】解:(x﹣1)(2x+3),=2x2﹣2x+3x﹣3,=2x2+x﹣3.故选:A.【点评】本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项,属于基础题.5.如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B+∠BDC=180°【分析】根据平行线的判定方法直接判定.【解答】解:选项B中,∵∠3=∠4,∴AB∥CD (内错角相等,两直线平行),所以正确;选项C中,∵∠5=∠B,∴AB∥CD (内错角相等,两直线平行),所以正确;选项D中,∵∠B+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),所以正确;而选项A中,∠1与∠2是直线AC、BD被AD所截形成的内错角,因为∠1=∠2,所以应是AC∥BD,故A错误.故选A.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6.下列各式中,能用平方差公式进行计算的是()A.(﹣x﹣y)(x+y)B.(2x﹣y)(y﹣2x)C.(1﹣x)(﹣1﹣x)D.(3x+y)(x﹣3y)【分析】利用平方差公式的结构特征判断即可.【解答】解:下列各式中,能用平方差公式进行计算的是(1﹣x)(﹣1﹣x),故选C.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.7.如图,已知直线a,b被直线c所截,若a∥b,∠1=110°,∠2=40°,则∠3=()A.40°B.50°C.60°D.70°【分析】先根据平行线的性质求出∠4的度数,故可得出∠4+∠2的度数.由对顶角相等即可得出结论.【解答】解:∵a∥b,∴∠4=∠1=110°,∵∠3=∠4﹣∠2,∴∠3=110°﹣40°=70°,故选D.【点评】本题考查的是平行线的性质,三角形的外角的性质,用到的知识点为:两直线平行,同位角相等.8.如图,下列条件不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.∠A=∠D,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DB,AC=DC【分析】利用全等三角形的判定方法:SSS、SAS、ASA、AAS、HL分别进行分析即可.【解答】解:A、AB=DC,AC=DB再加公共边BC=BC可利用SSS判定△ABC≌△DCB,故此选项不合题意;B、∠A=∠D,∠ABC=∠DCB再加公共边BC=BC可利用AAS判定△ABC≌△DCB,故此选项不合题意;C、BO=CO,∠A=∠D再加对顶角∠AOB=∠DOC可利用AAS判定△AOB≌△DOC,可得AO=DO,AB=CD,进而可得AC=BD,再加公共边BC=BC可利用SSS判定△ABC≌△DCB,故此选项不合题意;D、AB=DB,AC=DC不能判定△ABC≌△DCB,故此选项不合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同,下图反映了一天24小时内小明体温的变化情况,下列说法错误的是()A.清晨5时体温最低B.下午5时体温最高C.这天中小明体温T(℃)的范围是36.5≤T≤37.5D.从5时到24时,小明的体温一直是升高的【分析】分析折线统计图,即可求出答案.【解答】解:由折线统计图可知:折线统计图中最底部的数据,则是温度最低的时刻,最高位置的数据则是温度最高的时刻;则清晨5时体温最低,下午5时体温最高;最高温度为37.5℃,最低温度为36.5℃,则小明这一天的体温范围是36.5≤T≤37.5;从5时到17时,小明的体温一直是升高的趋势,而17﹣24时的体温是下降的趋势.所以错误的是从5时到24时,小明的体温一直是升高的,故选D.【点评】读懂统计图,从图中得到必要的信息是解决本题的关键.10.某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A .B .C.D .【分析】依题意可得小李步行速度匀速前进,然后中途因为遇到一个红灯停下来耽误了几分钟,然后加快速度但还是保持匀速前进,可把图象分为3个阶段.【解答】解:根据题意:步行去图书馆看书,分3个阶段;(1)从家里出发后以某一速度匀速前进,位移增大;(2)中途遇到一个红灯,停下来耽误了几分钟,位移不变;(3)小李加快速度(仍保持匀速)前进,位移变大.故选:C.【点评】本题主要考查函数图象的知识点,要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.二、填空题(每小题3分,共24分)11.计算:(﹣2xy3z2)2=4x2y6z4.【分析】根据积的乘方,即可解答.【解答】解:(﹣2xy3z2)2=4x2y6z4,故答案为:4x2y6z4.【点评】本题考查了积的乘方,解决本题的关键是熟记积的乘方的法则.12.如图,直线AB、CD、EF相交于一点,∠1=50°,∠2=64°,则∠COF=66度.【分析】根据平角意义求得∠EOD,再根据对顶角求得结论.【解答】解:∵∠1=50°,∠2=64°,∴∠EOD=180°﹣∠1﹣∠2=66°∴∠COF=∠EOD=66°,故答案为:66.【点评】本题主要考查了平角的定义,对顶角定理,熟记对顶角定理是解题的关键.13.将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2=90°.【分析】过点B作BN∥FG,根据矩形的性质可得BN∥EH∥FG,再根据两直线平行,内错角相等可得∠1=∠3,∠2=∠4,然后求出∠1+∠2=∠ABC,从而得证.【解答】证明:如图,过点B作BN∥FG,∵四边形EFGH是矩形纸片,∴EH∥FG,∴BN∥EH∥FG,∴∠1=∠3,∠2=∠4,∴∠1+∠2=∠3+∠4=∠ABC=90°,即∠1+∠2=90°.故答案为:90°.【点评】本题考查了两直线平行,内错角相等的性质,矩形的对边平行,每一个角都是直角的性质,熟记性质并作出辅助线是解题的关键.14.如果多项式x2+8x+k是一个完全平方式,则k的值是16.【分析】根据完全平方公式的乘积二倍项和已知平方项先确定出另一个数是4,平方即可.【解答】解:∵8x=2×4•x,∴k=42=16.【点评】本题考点是对完全平方公式的应用,由乘积二倍项确定做完全平方运算的两个数是求解的关键.15.若5m=3,5n=2,则52m+n=18.【分析】逆运用同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘进行计算即可得解.【解答】解:52m+n=52m•5n=(5m)2•5n=32•2=9×2=18.故答案为:18.【点评】本题考查了幂的乘方的性质,同底数幂的乘法,熟记运算性质并灵活运用是解题的关键.16.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系y=.【分析】本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额y与购书数x的函数关系式,再进行整理即可得出答案.【解答】解:根据题意得:y=,整理得:;则付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系是y=;故答案为:y=.【点评】此题考查了分段函数,理解分段收费的意义,明确每一段购书数量及相应的购书单价是解题的关键,要注意x的取值范围.17.已知x+y=﹣5,xy=6,则x2+y2=13.【分析】把x+y=﹣5两边平方,根据完全平方公式和已知条件即可求出x2+y2的值.【解答】解:∵x+y=﹣5,∴(x+y)2=25,∴x2+2xy+y2=25,∵xy=6,∴x2+y2=25﹣2xy=25﹣12=13.故答案为:13.【点评】本题考查了完全平方公式,完全平方公式有以下几个特征:①左边是两个数的和的平方;②右边是一个三项式,其中首末两项分别是两项的平方,都为正,中间一项是两项积的2倍;其符号与左边的运算符号相同.18.某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置:上述问题中,第五排、第六排分别有62个、65个座位;第n排有47+3n个座位.【分析】由座位数可以看出后一排的座位数总比前一排的座位数多3,由此得到第n(n >1)排有[50+3(n﹣1)]个座位,问题可以解答.【解答】解:第一排有50个座位,第二排有[50+(2﹣1)×3]=53个座位,第三排有[50+(3﹣1)×3]=56个座位,第四排有[50+(4﹣1)×3]=59个座位,第五排有[50+(5﹣1)×3]=62个座位,第六排有[50+(6﹣1)×3]=65个座位,第n排有[50+3(n﹣1)]=(47+3n)个座位.【点评】解决此类问题需要发现数字的一般规律,问题就容易解决.三、作图题(每小题5分,共5分)19.(5分)如图,已知∠BAC及BA上一点P,求作直线MN,使MN经过点P,且MN ∥AC.(要求:使用尺规正确作图,保留作图痕迹)【分析】过点P作PQ⊥AC,再过点P作MN⊥PQ,根据垂直于同一直线的两直线平行,即可得直线MN即为所求.【解答】解:如图,直线MN即为所求.【点评】本题主要考查作图﹣复杂作图,熟练掌握过一点作已知直线的垂线及平行线的判定是解题的关键.四、计算与求值(每小题25分,共25分)20.(25分)计算与求值(1)(﹣1)2015+()﹣3﹣(π﹣3.1)0(2)(3x﹣2)2+(﹣3+x)(﹣x﹣3)(3)(﹣2x2y)2•3xy÷(﹣6x2y)(4)1122﹣113×111(用乘法公式计算)(5)[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=﹣,y=3.【分析】(1)先求出每一部分的值,再代入求出即可;(2)先算乘法,再合并同类项即可;(3)先算乘方,再算乘除即可;(4)先变形,再根据平方差公式进行计算即可;(5)先算乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:(1)(﹣1)2015+()﹣3﹣(π﹣3.1)0=﹣1+27﹣1=25;(2)(3x﹣2)2+(﹣3+x)(﹣x﹣3)=9x2﹣12x+4+9﹣x2=8x2﹣12x+13;(3)(﹣2x2y)2•3xy÷(﹣6x2y)=4x4y2•3xy÷(﹣6x2y)=12x5y3÷(﹣6x2y)=﹣2x3y2;(4)原式=1122﹣(112+1)(112﹣1)=1122﹣1122+1=1;(5)[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,=(4x2+4xy+y2+y2﹣4x2﹣6y)÷2y=(4xy+2y2﹣6y)÷2y=2x+y﹣3,把x=﹣,y=3代入得:原式=2×(﹣)+3﹣3=﹣1.【点评】本题考查了整式的混合运算和求值、零指数幂、负整数指数幂等知识点,能正确根据整式的运算法则进行化简是解此题的关键.五、解答题(共36分)21.(8分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两对全等三角形,并用“≌”符号连接起来;(2)求证:AB=CD.【分析】(1)本题有三对三角形全等,分别是△ABE≌△CDF,△ABC≌△CDA,△BEC ≌△DFA(2)先根据AF=CE利用等式的性质得:AE=FC,由AB∥CD得内错角相等,则△ABE≌△CDF,得出结论.【解答】解:(1)△ABE≌△CDF,△ABC≌△CDA,(2)∵AF=CE,∴AF+EF=CE+EF,即AE=CF,∵AB∥CD,∴∠BAC=∠DCA,∵∠ABE=∠CDF,∴△ABE≌△CDF(AAS),∴AB=CD.【点评】本题考查了全等三角形的性质和判定,是常考题型,比较简单;熟练掌握全等三角形的性质和判定是做好本题的关键;从图形中看,要想得出结论,只需证明△ABE ≌△CDF,或是证明四边形ABCD为平行四边形,从已知上看,证明全等有一个条件,所以要再得出两个条件才行,从而得出结论.22.(9分)张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图象.根据图象回答下列问题:(1)体育场离张阳家多少千米?(2)体育场离文具店多少千米?张阳在文具店逗留了多长时间?(3)张阳从文具店到家的速度是多少?【分析】(1)根据离开家的最大距离就是体育场到张阳家的距离解答;(2)根据纵坐标的两个距离不变时的距离的差为体育场离文具店的距离计算即可得解,再求出距离不变时的时间差即可;(3)根据速度=路程÷时间,列式计算即可得解.【解答】解:(1)体育场离张阳家2.5 km.(2)因为2.5﹣1.5=1(km),所以体育场离文具店1 km.因为65﹣45=20(min),所以张阳在文具店逗留了20 min.(3)文具店到张阳家的距离为1.5 km,张阳从文具店到家用的时间为100﹣65=35(min),所以张阳从文具店到家的速度为1.5÷=(km/h).【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.23.(7分)阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5,(两直线平行,同位角相等)∠3=∠4(两直线平行,内错角相等)∴∠4=∠5(等量代换)∴DF平分∠BDE(角平分线的定义)【分析】根据角平分线的定义得到∠1=∠2,根据平行线的性质得到∠1=∠3,等量代换得到∠2=∠3,根据平行线的性质得到∠2=∠5,等量代换即可得到结论.【解答】证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5,(两直线平行,同位角相等)∠3=∠4(两直线平行,内错角相等)∴∠4=∠5(等量代换)∴DF平分∠BDE(角平分线的定义).故答案为:角平分线的定义,两直线平行,内错角相等,等量代换,两直线平行,同位角相等,等量代换,角平分线的定义.【点评】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解题的关键.24.(12分)(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是a2﹣b2(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE 的面积是(a+b)(a﹣b)(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式(a+b)(a﹣b)=a2﹣b2.(4)利用所得公式计算:2(1+)(1+)(1+)(1+)+.【分析】(1)根据图1确定出阴影部分面积即可;(2)根据图2确定出长方形面积即可;(3)根据两图形面积相等得到乘法公式;(4)利用得出的平方差公式计算即可得到结果.【解答】解:(1)根据题意得:阴影部分面积为a2﹣b2;(2)根据题意得:阴影部分面积为(a+b)(a﹣b);(3)可得(a+b)(a﹣b)=a2﹣b2;(4)原式=4(1﹣)(1+)(1+)(1+)(1+)+=4(1﹣))(1+)(1+)(1+)+=4(1﹣)(1+)(1+)+=4(1﹣)(1+)+=4(1﹣)+=4﹣+=4.故答案为:(1)a2﹣b2;(2)(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2【点评】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.。
学16—17届七年级下学期期中考试数学试题(附答案)

2016—2017学年度第二学期初一年级数学期中试卷一、选择题(每小题3分,共30分) 1.下列运算中,正确的是 ( )A.326a a a ⋅= B. 448b b b += C.824a a a ÷=D.2363(3)27p q p q -=-2.下列多项式相乘,能用平方差公式计算的是( )A .(2)(2)a b b a +-B .(23)(32)a b b a -+C .(3)(3)m n m n --+D 3. 如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为( ) A .30° B .45° C . 60° D .75°第3题图 第5题图4.要使2(2)()x x b x a -+-中不含x 的一次项和二次项,则,a b 的值分别为( ) A .2,4a b =-=- B .2,4a b == C .2,4a b ==- D .2,4a b =-= 5.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠5=∠B ;④AD ∥BE ,且∠D=∠B ;⑤∠1+∠3+∠B=180°.其中能说明AB ∥DC 的条件有 ( ) A .5个 B .4个 C . 3个 D .2个6. 海水受日月的引力而产生潮汐现象,早晨海水上涨叫做潮,黄昏海水上涨叫做汐,合称潮汐.潮汐与人类的生活有着密切的联系.如下图所示,是某港口从0时到12时的水深情况,下列说法不正确的是 ( ) A .时间是自变量,水深是因变量;B .3时时水最深,9时时水最浅;C .0时到3时港口水深在增加,3时到12时港口水深在减少;D .图象上共有3个时刻水深恰好为5米.第6题图7. 已知3,2x y xy -=-=,则(2)(2)x y +-的值是( ) A .4 B .-8 C .12 D .08. 下列说法中,正确的个数是( ) (1)在同一平面内,不相交的两条线段一定平行; (2)相等的角是对顶角;(3)两条直线被第三条直线所截,同位角相等;(4)两条平行线被第三条直线所截,一对内错角的角平分线互相平行; (5)从直线外一点到这条直线的垂线段,叫做这个点到直线的距离; (6)两个角互补,则一个角一定是钝角,另一个角一定是锐角. A . 1个 B.2个 C .3个 D .4个9. 如图,直线AB 、CD 相交于点O ,OE 平分∠BOC ,OF ⊥OE 于O ,若∠AOD=70°,则∠AOF=( ).A .35°B .45°C .55°D .65°10. 已知2510a a --= ,则221a a +的值为( ) A .5 B .25 C . 23 D .27第9题图 二、填空题(每小题3分,共18分)11.(1)(1)p p -+= ,62()a a ÷-= ,201620170.25(4)⨯-= ;12. 在电子显微镜下测得一个球体细胞的直径是5510cm -⨯,3102⨯个这样的细胞排成的细AB CDEF1 胞链的长度是 ;13.一个角的余角与它的补角之比为1:4,则这个角的度数是 ; 14. 已知2249x mxy y -+是关于,x y 的完全平方式,则m = ;15. 如图,把矩形ABCD 沿EF 对折,若∠1 = 500,则∠AEF 等于 ;16. 已知 925,310,a b ==则23a b -= .第15题图三、解答题(共52分) 17.(共12分)计算题:(1)22313()2a b ab ⋅-(2)(23)()(2)(2)a b a b a b a b -+--+(3)43()()()x y y x y x -÷-⋅-(4)(23)(23)m n m n -++-18.(5,其中2,1x y =-=.19.(5分)尺规作图(保留作图痕迹,不写作法):已知αβ∠∠、,求作一个角,使它等于αβ∠-∠.20.(5分)如图所示,梯形上底的长是x,下底的长是15,高是8,梯形面积是y .(1)梯形面积y与上底长x之间的关系式是什么?(2)用表格表示当x从10变到15时(每次增加1),y的相应值;(3)当x每增加1时,y如何变化?(4)当x=0时,y等于什么?此时图形是什么?21.(4分)如图所示,一个窗户被装饰布挡住了一部分,其中窗户的长a与宽b之比是3:2,部分的面积.(结果用只含字母b的代数式表示,保留 .)22.(6分)如图,已知∠1=∠2,∠B=∠C,试证明AB∥CD.23.(7分)图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀将其均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于_____________; (2)请用两种不同的方法求图②中阴影部分的面积:方法1:___________________; 方法2:___________________. (3)根据(2)请写出代数式22(),(),m n m n mn +-之间的等量关系__________________________;(4)根据(3)题中的等量关系,解决如下问题:若7,5,a b ab +==求2()a b -的值.24.(8分)探究:如图①,已知直线12//l l ,直线3l 和12l l 、分别交于点C 和D ,直线3l 上有一点P.(1)若点P 在C 、D 之间运动时,问∠PAC ,∠APB ,∠PBD 之间有怎样的关系?并说明理由.(2)若点P 在C 、D 两点的外侧运动时(点P 与点C 、D 不重合),请尝试自己画图,写出∠PAC ,∠APB ,∠PBD 之间的关系,并说明理由.(3)如图②,AB ∥EF ,∠C=90°,我们可以用类似的方法求出αβγ∠∠∠、、之间的关系,请直接写出αβγ∠∠∠、、之间的关系.图①图②西北大学附中初一年级数学期中试卷答案一、选择题 1. D 2. B 3. C 4. D 5. C 6. C 7. A 8. A 9. C 10. D 一、填空题11. 21p - 4a - -4 12. 1110-⨯cm 或0.1cm 13. 60° 14. 12± 15. 115° 16.120三、解答题17. (1)5738a b -(2)22a ab b -+ (3)222x xy y -+(4)224129m n n -+-18. 3126x x y --- 13319. 图略,注意写结论20.(1)1(15)84602y x x =+⨯=+ (2)(3)增加4(4)y=60 三角形 21.223216S b b π=- 22.141224//33//CE BF C B C B AB CD∠=∠∠=∠∴∠=∠∴∴∠=∠∠=∠∴∠=∠∴23. (1)m-n(2) 22(),()4m n m n mn -+- (3) 22()()4m n m n mn -=+- (4) 2924. (1)APB PAC PBD ∠=∠+∠ (2)上方:APB PBD PAC ∠=∠-∠ 下方:APB PAC PBD ∠=∠-∠(3)90αβγ∠+∠=∠+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册期中数学测试卷【1】一.选择题(共6小题)1.(2014春•台安县期中)将一个直角三角板与一张两边平行的纸条按如图所示位置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.4个B.3个C.2个D.1个2.(2015春•台安县期中)下列各组数中互为相反数的是()A.与B.﹣3与 C.﹣3与D.﹣(﹣2)与﹣|﹣2| 3.(2015春•台安县期中)如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC:∠EOD=1:2,则∠BOD等于()A.30°B.36°C.45°D.72°4.(2015春•辽阳校级期中)若两条平行线被第三条直线所截,则一组同旁内角的平分线()A.互相垂直B.互相平行C.互相重合D.关系不确定5.(2013•邵东县模拟)如图,下列条件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.能判定AB∥CD的条件个数有()A.1 B.2 C.3 D.46.(2015春•台安县期中)在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′(点A的对应点为点A′),若点A′的坐标为(﹣3,2),则点B′的坐标为()A.(4,3)B.(2,4)C.(﹣1,﹣2)D.(﹣2,﹣1)二.填空题(共14小题)7.(2014春•台安县期中)有下列命题:①两条直线相交,若同一角的两个邻补角相等,则这两条直线垂直;②两条直线相交,若一角与其邻补角相等,则这两条直线垂直;③两条直线被第三条所截,若内错角相等,则它们的角平分线互相垂直;④两条直线被第三条直线所截,若同旁同角互补,则它们的角平分线互相直.其中真命题有(填序号).8.(2015春•松山区校级期中)若无理数与﹣为正数m的平方根,则m=.9.(2015春•武夷山市期中)已知,则.10.(2015春•滑县期末)将方程2x﹣3y=5变形为用x的代数式表示y的形式是.11.(2012•吉林模拟)如图,将一个宽度相等的纸条折叠一下,如果∠1=100°,则∠2=度.12.(2013春•广水市期末)把命题“平行于同一条直线的两条直线互相平行”改写成“如果…,那么…”的形式为.13.(2014春•海城市期中)点A在数轴上和原点相距3个单位长度,点B在数轴上和原点相距个单位长度,则A、B两点这间的距离是.14.(2015春•台安县期中)在平面直角坐标系中,点(﹣3,﹣m2﹣1)一定在第象限.15.(2015春•台安县期中)如图,将三角尺ABC沿BC方向平移,得到三角形A′CC′.已知∠B=30°,∠ACB=90°,则∠BAA′的度数为.16.(2012春•青岛期末)如图,将△ABC沿CB边向右平移得到△DFE,DE交AB于点G.已知∠A:∠C:∠ABC=1:2:3,AB=9cm,BF=5cm,AG=5cm,则图中阴影部分的面积为cm2.17.(2015春•安达市期末)在平面直角坐标系中,孔明玩走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位长度;当n被3除,余数为1时,则向右走1个单位长度;当n被3除,余数为2时,则向右走2个单位长度,当走完第100步时,棋子所处位置的坐标是.18.(2015春•台安县期中)已知3既是x﹣1的平方根,又是2x﹣y+1的立方根,则x2﹣y2的平方根是.19.(2015春•台安县期中)有四个实数分别是:|﹣9|,,﹣,2.请你计算其中有理数与无理数的积的差,其结果是.20.(2015春•台安县期中)如图,是李晓松同学在运动会跳远比赛中最好的一跳,甲、乙、丙三名同学分别测得PA=5.52米,PB=5.37米,MA=5.60米,那么他的跳远成绩应该为米.三.解答题(共10小题)21.(2014春•台安县期中)计算:+×﹣÷.22.(2015春•台安县期中)计算:﹣+3×+.23.(2015春•台安县期中)如图,直线AB∥CD,直线EF与AB、CD分别交于点E、F,EG⊥EF,垂足为E,若∠1=50°,求∠2的度数.24.(2015春•台安县期中)春天到了,七(1)班组织同学到人民公园春游,张明、李华对着景区示意图描述牡丹亭位置(图中小正方形边长代表100m)张明:“牡丹亭坐标(300,300)”李华:“牡丹亭在中心广场东北方向约420m处”实际上,他们所说的位置都是正确的.根据所学的知识解答下列问题(1)请指出张明同学是如何在景区示意图上建立平面直角坐标系的,并在图中画出所建立的平面直角坐标系;(2)李华同学是用什么来描述牡丹园的位置?(3)请用张明所用的方法,描述出公园内其它景点的位置.25.(2014春•定州市期末)请把下列证明过程补充完整.已知:如图,BCE,AFE是直线,AD∥BC,∠1=∠2,∠3=∠4,求证:AB∥CD证明:∵AD∥BC(已知)∴∠3=∠()∵∠3=∠4(已知)∴∠4=∠(等量代换)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF()即∠BAF=∠∴∠4=∠(等量代换)∴AB∥CD()26.(2015春•莆田校级期中)如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周).(1)写出点B的坐标().(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标.(3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.27.(2015春•绥中县期中)如图,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标(1.2),(1)写出点A、B的坐标:A(,)、B(,);(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′,B′,C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,),并在图中画出平移图形.(3)计算△ABC的面积.28.(2015春•台安县期中)数学活动课上,王老师说:“是无理数,无理数就是无限不循环小数,同学们,你能把的小数部分全部写出来吗?”大家议论纷纷,小明同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用﹣2表示它的小数部分.”王老师说:“小明同学的说法是正确的,因为的整数部分是2,将这个数减去其整数部分,差就是小数部分,”请你解答:已知7+=x+y,其中x是一个整数,且0<y<1,求出3x+(﹣y)的值.29.(2015春•绥中县期中)如图,已知直线l1∥l2,且l3和l1、l2分别交于A、B两点,点P在直线AB上.(PC与l1所夹的角为∠1,PD与l2所夹的角为∠2,∠CPD为∠3)(1)试找出∠1、∠2、∠3之间的关系并说明理由;(2)当点P在A、B两点间运动时,问∠1、∠2、∠3之间的关系是否发生变化?(3)如果点P在A、B两点外侧运动时,试探究∠1、∠2、∠3之间的关系.(点P和A、B不重合,只要写出结论即可)30.(2015春•台安县期中)已知直线l1∥l2,点A是l1上的动点,点B在l1上,点C、D在l2上,∠ABC,∠ADC的平分线交于点E(不与点B,D重合).(1)若点A在点B的左侧,∠ABC=80°,∠ADC=60°,过点E作EF∥l1,如图①所示,求∠BED的度数.(2)若点A在点B的左侧,∠ABC=α°,∠ADC=60°,如图②所示,求∠BED 的度数;(直接写出计算的结果)(3)若点A在点B的右侧,∠ABC=α°,∠ADC=60°,如图③所示,求∠BED 的度数.参考答案与试题解析一.选择题(共6小题)1.(2014春•台安县期中)将一个直角三角板与一张两边平行的纸条按如图所示位置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.4个B.3个C.2个D.1个【解答】解:∵纸条的两边平行,∴∠1=∠2(两直线平行,同位角相等),∠3=∠4(两直线平行,内错角相等)∠4+∠5=180°(两直线平行,同旁内角互补),故(1),(2),(4)正确;由题意得:∠2+∠4=180°﹣90°=90°,故(3)正确.∴其中正确的个数是:4个.故选A.2.(2015春•台安县期中)下列各组数中互为相反数的是()A.与B.﹣3与 C.﹣3与D.﹣(﹣2)与﹣|﹣2|【解答】解:因为,所以互为倒数,不互为相反数;因为﹣3的相反数是3,所以﹣3与不互为相反数;因为=﹣3,所以﹣3与相等,不互为相反数;因为﹣(﹣2)=2,﹣|﹣2|=﹣2,2与﹣2互为相反数,所以﹣(﹣2)与﹣|﹣2|互为相反数.故选:D.3.(2015春•台安县期中)如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC:∠EOD=1:2,则∠BOD等于()A.30°B.36°C.45°D.72°【解答】解:∵∠EOC:∠EOD=1:2,∴∠EOC=180°×=60°,∵OA平分∠EOC,∴∠AOC=∠EOC=×60°=30°,∴∠BOD=∠AOC=30°.故选:A.4.(2015春•辽阳校级期中)若两条平行线被第三条直线所截,则一组同旁内角的平分线()A.互相垂直B.互相平行C.互相重合D.关系不确定【解答】解:两条平行线被第三条直线所截,则一组同旁内角的平分线互相垂直.故选A.5.(2013•邵东县模拟)如图,下列条件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.能判定AB∥CD的条件个数有()A.1 B.2 C.3 D.4【解答】解:(1)∠B+∠BCD=180°,同旁内角互补,两直线平行,则能判定AB∥CD;(2)∠1=∠2,但∠1,∠2不是截AB、CD所得的内错角,所不能判定AB∥CD;(3)∠3=∠4,内错角相等,两直线平行,则能判定AB∥CD;(4)∠B=∠5,同位角相等,两直线平行,则能判定AB∥CD.满足条件的有(1),(3),(4).故选:C.6.(2015春•台安县期中)在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′(点A的对应点为点A′),若点A′的坐标为(﹣3,2),则点B′的坐标为()A.(4,3)B.(2,4)C.(﹣1,﹣2)D.(﹣2,﹣1)【解答】解:∵A(﹣4,﹣1),A′(﹣3,2),∴平移规律为横坐标加1,纵坐标加3,∵B(1,1),∴1+1=2,1+3=4,∴点B′的坐标为(2,4).故选B.二.填空题(共14小题)7.(2014春•台安县期中)有下列命题:①两条直线相交,若同一角的两个邻补角相等,则这两条直线垂直;②两条直线相交,若一角与其邻补角相等,则这两条直线垂直;③两条直线被第三条所截,若内错角相等,则它们的角平分线互相垂直;④两条直线被第三条直线所截,若同旁同角互补,则它们的角平分线互相直.其中真命题有②④(填序号).【解答】解:①两条直线相交,若同一角的两个邻补角相等,则这两条直线垂直,错误;②两条直线相交,若一角与其邻补角相等,则这两条直线垂直,正确;③两条直线被第三条所截,若内错角相等,则它们的角平分线互相垂直,错误,应该是平行;④两条直线被第三条直线所截,若同旁同角互补,则它们的角平分线互相直,正确.故答案为:②④.8.(2015春•松山区校级期中)若无理数与﹣为正数m的平方根,则m=3.【解答】解:∵无理数与﹣为正数m的平方根,∴=,∴2a﹣9=a﹣3,解得a=6,所以m==3.故答案为:3.9.(2015春•武夷山市期中)已知,则 1.01.【解答】解:∵,∴ 1.01;故答案为:1.01.10.(2015春•滑县期末)将方程2x﹣3y=5变形为用x的代数式表示y的形式是y=.【解答】解:移项得:﹣3y=5﹣2x系数化1得:y=.11.(2012•吉林模拟)如图,将一个宽度相等的纸条折叠一下,如果∠1=100°,则∠2=50度.【解答】解:如图,∵∠1=100°,∴∠2+∠3=∠1=100°,根据折叠的性质,∠2=∠3,∴∠2=100°÷2=50°.故答案为:50.12.(2013春•广水市期末)把命题“平行于同一条直线的两条直线互相平行”改写成“如果…,那么…”的形式为如果两条直线平行于同一条直线,那么这两条直线平行.【解答】解:命题可以改写为:“如果两条直线平行于同一条直线,那么这两条直线平行”.13.(2014春•海城市期中)点A在数轴上和原点相距3个单位长度,点B在数轴上和原点相距个单位长度,则A、B两点这间的距离是3+或3﹣.【解答】解:设点A表示a,点B表示b,∵A在数轴上和原点相距3个单位长度,点B在数轴上和原点相距个单位长度,∴a=±3,b=±,∴当a=3,b=时,∴AB=|3﹣|=3﹣;当a=﹣3,b=时,∴AB=|﹣3﹣|=3+;当a=﹣3,b=时,∴AB=|﹣3﹣|=3+;当a=﹣3,b=﹣时,∴AB=|﹣3+|=3﹣;故答案为:3+或3﹣.14.(2015春•台安县期中)在平面直角坐标系中,点(﹣3,﹣m2﹣1)一定在第三象限.【解答】解:∵m2+1>0,∴﹣(m2+1)=﹣m2﹣1<0,∵﹣3<0∴点(﹣3,﹣m2﹣1)一定在第三象限.故答案为:三.15.(2015春•台安县期中)如图,将三角尺ABC沿BC方向平移,得到三角形A′CC′.已知∠B=30°,∠ACB=90°,则∠BAA′的度数为150°.【解答】解:由将三角尺ABC沿BC方向平移,得到三角形A′CC′,得AA′∥BC.由AA′∥BC,得∠BAA′+∠B=180°.由∠B=30°,得∠BAA′=150°.故答案为:150°.16.(2012春•青岛期末)如图,将△ABC沿CB边向右平移得到△DFE,DE交AB于点G.已知∠A:∠C:∠ABC=1:2:3,AB=9cm,BF=5cm,AG=5cm,则图中阴影部分的面积为cm2.【解答】解:∵AB=DF,AB=9∴DF=9,BG=AB﹣AG=9﹣5=4又∵BF是平行四边形高S阴影=(BG+DF)×BF=(4+9)×5=.17.(2015春•安达市期末)在平面直角坐标系中,孔明玩走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位长度;当n被3除,余数为1时,则向右走1个单位长度;当n被3除,余数为2时,则向右走2个单位长度,当走完第100步时,棋子所处位置的坐标是(100,33).【解答】解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故答案为(100,33).18.(2015春•台安县期中)已知3既是x﹣1的平方根,又是2x﹣y+1的立方根,则x2﹣y2的平方根是±8.【解答】解:根据题意得:x﹣1=9,2x﹣y+1=27,解得:x=10,y=﹣6,∴x2﹣y2=64,则64的平方根为±8.故答案为:±8.19.(2015春•台安县期中)有四个实数分别是:|﹣9|,,﹣,2.请你计算其中有理数与无理数的积的差,其结果是5.【解答】解:|﹣9|=9,,﹣=﹣2,2,则有理数的和为9﹣2=7;无理数的积为2,则有理数的和与无理数的积的差为7﹣2=5.故答案为:5.20.(2015春•台安县期中)如图,是李晓松同学在运动会跳远比赛中最好的一跳,甲、乙、丙三名同学分别测得PA=5.52米,PB=5.37米,MA=5.60米,那么他的跳远成绩应该为 5.37米.【解答】解:根据跳远规则,李晓松的跳远成绩为点P到踏板的距离,∵直线外一点到直线的垂线段的长度,叫做点到直线的距离,∴他的跳远成绩应该为线段PB的长度,∵PB=5.37米,∴他的跳远成绩应该为5.37米.故答案为:5.37.三.解答题(共10小题)21.(2014春•台安县期中)计算:+×﹣÷.【解答】解:+×﹣÷=11+3×﹣÷(﹣3)=11+2+1=14.22.(2015春•台安县期中)计算:﹣+3×+.【解答】解:原式==.23.(2015春•台安县期中)如图,直线AB∥CD,直线EF与AB、CD分别交于点E、F,EG⊥EF,垂足为E,若∠1=50°,求∠2的度数.【解答】解:∵∠1=50°,∴∠EFD=∠1=50°.∵AB∥CD,∴∠EFD+∠BEF=180°,∴∠BEF=180°﹣50°=130°.∵EG⊥EF,∴∠GEF=90°,∴∠2=∠BEF﹣∠GEF=130°﹣90°=40°.24.(2015春•台安县期中)春天到了,七(1)班组织同学到人民公园春游,张明、李华对着景区示意图描述牡丹亭位置(图中小正方形边长代表100m)张明:“牡丹亭坐标(300,300)”李华:“牡丹亭在中心广场东北方向约420m处”实际上,他们所说的位置都是正确的.根据所学的知识解答下列问题(1)请指出张明同学是如何在景区示意图上建立平面直角坐标系的,并在图中画出所建立的平面直角坐标系;(2)李华同学是用什么来描述牡丹园的位置?(3)请用张明所用的方法,描述出公园内其它景点的位置.【解答】解:(1)张明是以中心广场为原点,正东方向为x轴正方向,正北方向为y轴正方向,建立如图所示的平面直角坐标系3,如图;(2)李华是用方向和距离描述牡丹园的位置;(3)中心广场(0,0),南门(100,﹣600),望春亭(﹣200,﹣100),游乐园(200,﹣400),音乐台(0,400).25.(2014春•定州市期末)请把下列证明过程补充完整.已知:如图,BCE,AFE是直线,AD∥BC,∠1=∠2,∠3=∠4,求证:AB∥CD证明:∵AD∥BC(已知)∴∠3=∠CAD(两直线平行,内错角相等)∵∠3=∠4(已知)∴∠4=∠CAD(等量代换)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等式性质)即∠BAF=∠CAD∴∠4=∠BAF(等量代换)∴AB∥CD(同位角相等,两直线平行)【解答】证明:∵AD∥BC(已知)∴∠3=∠CAD(两直线平行,内错角相等)∵∠3=∠4(已知)∴∠4=∠CAD(等量代换)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等式性质)即∠BAF=∠CAD∴∠4=∠BAF(等量代换)∴AB∥CD(同位角相等,两直线平行).26.(2015春•莆田校级期中)如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周).(1)写出点B的坐标(4,6).(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标.(3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.【解答】解:(1)根据长方形的性质,可得AB与y轴平行,BC与x轴平行;故B的坐标为(4,6);(2)根据题意,P的运动速度为每秒2个单位长度,当点P移动了4秒时,则其运动了8个长度单位,此时P的坐标为(4,4),位于AB上;(3)根据题意,点P到x轴距离为5个单位长度时,有两种情况:P在AB上时,P运动了4+5=9个长度单位,此时P运动了4.5秒;P在OC上时,P运动了4+6+4+1=15个长度单位,此时P运动了=7.5秒.27.(2015春•绥中县期中)如图,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标(1.2),(1)写出点A、B的坐标:A(2,﹣1)、B(4,3);(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′,B′,C′的三个顶点坐标分别是A′(0,0)、B′(2,4)、C′(﹣1,3),并在图中画出平移图形.(3)计算△ABC的面积.【解答】解:(1)如图所示:A(2,﹣1)、B(4,3);(2)如图所示:A'(0、0)、B'(2、4)、C'(﹣1、3);(3)如图:△ABC的面积为:3×4﹣×3×1×2﹣×2×4=12﹣3﹣4=5.28.(2015春•台安县期中)数学活动课上,王老师说:“是无理数,无理数就是无限不循环小数,同学们,你能把的小数部分全部写出来吗?”大家议论纷纷,小明同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用﹣2表示它的小数部分.”王老师说:“小明同学的说法是正确的,因为的整数部分是2,将这个数减去其整数部分,差就是小数部分,”请你解答:已知7+=x+y,其中x是一个整数,且0<y<1,求出3x+(﹣y)的值.【解答】解:∵3<<4,∴10<7+<11,∵7+=x+y,且x是一个整数,0<y<1,∴x=10,y=7+﹣10=﹣3,∴3x+(﹣y)=3×10+[﹣(﹣3)]=33.29.(2015春•绥中县期中)如图,已知直线l1∥l2,且l3和l1、l2分别交于A、B 两点,点P在直线AB上.(PC与l1所夹的角为∠1,PD与l2所夹的角为∠2,∠CPD为∠3)(1)试找出∠1、∠2、∠3之间的关系并说明理由;(2)当点P在A、B两点间运动时,问∠1、∠2、∠3之间的关系是否发生变化?(3)如果点P在A、B两点外侧运动时,试探究∠1、∠2、∠3之间的关系.(点P和A、B不重合,只要写出结论即可)【解答】解:(1)∠1+∠2=∠3.理由如下:作PE∥AC,如图1,∵l1∥l2,∴PE∥BD,∴∠1=∠EPC,∠2=∠EPD,∴∠1+∠2=∠3;(2)∠1、∠2、∠3之间的关系不发生变化;(3)∠1﹣∠2=∠3或∠2﹣∠1=∠3.30.(2015春•台安县期中)已知直线l1∥l2,点A是l1上的动点,点B在l1上,点C、D在l2上,∠ABC,∠ADC的平分线交于点E(不与点B,D重合).(1)若点A在点B的左侧,∠ABC=80°,∠ADC=60°,过点E作EF∥l1,如图①所示,求∠BED的度数.(2)若点A在点B的左侧,∠ABC=α°,∠ADC=60°,如图②所示,求∠BED 的度数;(直接写出计算的结果)(3)若点A在点B的右侧,∠ABC=α°,∠ADC=60°,如图③所示,求∠BED 的度数.【解答】解:(1)∵BE、DE分别是∠ABC,∠ADC的平分线,∴∠ABE=∠ABC=×80°=40°,∠CDE=∠ADC=×60°=30°.∵EF∥L1,∴∠BEF=∠ABE=40°.∵L1∥L2∴EF∥L2∴∠DEF=∠CDE=30°∴∠BED=∠BEF+∠DEF=40°+30°=70°;(2)BE、DE分别是∠ABC,∠ADC的平分线,∴∠ABE=∠ABC=α°,∠CDE=∠ADC=×60°=30°.∵EF∥L1,∴∠BEF=∠ABE=α°.∵L1∥L2,∴EF∥L2,∴∠DEF=∠CDE=30°∴∠BED=∠BEF+∠DEF=α°+30°,即∠BED=(α+30)°;(3)过点E作EF∥L1,∵BE,DE分别是∠ABC、∠ADC平分线,∴∠ABE=∠ABC=α°,∠CDE=∠ADC=×60°=30°.∵EF∥L1,∴∠BEF=(180﹣α)°.又∵L1∥L2∴EF∥L2∴∠DEF=∠CDE=30°∴∠BED=∠BEF+∠DEF=(180﹣α+30)°=(210﹣α)°.。