2018年秋新课堂高中数学人教B版选修2-3学案:第1章-1.2-1.2.1-第2课时 Word版含答案
2018年秋高中数学 第一章 计数原理 1.2 排列与组合 1.2.1 第1课时 排列与排列数公式学案 新人教A版选修2-3

第1课时排列与排列数公式学习目标:1.理解排列的概念,能正确写出一些简单问题的所有排列.(重点)2.理解排列数公式,能利用排列数公式进行计算和证明.(难点)[自主预习·探新知]1.排列的概念从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.相同排列的两个条件(1)元素相同.(2)顺序相同.思考:如何理解排列的定义?阶乘式A m n=n!n-m!(n,m∈N*,m≤n)[提示]“一个排列”是指:从n个不同的元素中任取m(m≤n)个元素,按照一定的顺序排成一列,不是数;“排列数”是指从n个不同元素中取出m(m≤n)个元素的所有排列的个数,是一个数.所以符号A m n只表示排列数,而不表示具体的排列.[基础自测]1.判断(正确的打“√”,错误的打“×”)(1)两个排列的元素相同,则这两个排列是相同的排列.( )(2)从六名学生中选三名学生参加数学、物理、化学竞赛,共有多少种选法属于排列问题.( )(3)有十二名学生参加植树活动,要求三人一组,共有多少种分组方案属于排列问题.(4)从3,5,7,9中任取两个数进行指数运算,可以得到多少个幂属于排列问题.(5)从1,2,3,4中任取两个数作为点的坐标,可以得到多少个点属于排列问题.[解析](1)×因为相同的两个排列不仅元素相同,而且元素的排列顺序也相同.(2)√因为三名学生参赛的科目不同为不同的选法,每种选法与“顺序”有关,属于排列问题.(3)×因为分组之后,各组与顺序无关,故不属于排列问题.(4)√因为任取的两个数进行指数运算,底数不同、指数不同结果不同.结果与顺序有关,故属于排列问题.(5)√因为纵、横坐标不同,表示不同的点,故属于排列问题.[答案](1)×(2)√(3)×(4)√(5)√2.甲、乙、丙三名同学排成一排,不同的排列方法有( )A.3种B.4种C.6种D.12种C[由排列定义得,共有A33=6种排列方法.]3.90×91×92×…×100可以表示为( )A.A10100B.A11100C.A12100D.A13100B[由排列数公式得原式为A11100,故选B.]4.A24=________,A33=________.【导学号:95032026】12 6[A24=4×3=12;A33=3×2×1=6.][合作探究·攻重难]排列的概念判断下列问题是否为排列问题.(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;[思路探究]判断是否为排列问题关键是选出的元素在被安排时,是否与顺序有关.若与顺序有关,就是排列问题,否则就不是排列问题.[解](1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.(2)植树和种菜是不同的,存在顺序问题,属于排列问题.(3)(4)不存在顺序问题,不属于排列问题.(5)中每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题.所以在上述各题中(2)(5)属于排列问题.[规律方法]1.解决本题的关键有两点:一是“取出元素不重复”,二是“与顺序有关”.2.判断一个具体问题是否为排列问题,就看取出元素后排列是有序的还是无序的,而检验它是否有序的依据就是变换元素的“位置”(这里的“位置”应视具体问题的性质和条件来决定),看其结果是否有变化,有变化就是排列问题,无变化就不是排列问题.[跟踪训练]1.判断下列问题是否是排列问题(1)同宿舍4人,每两人互通一封信,问他们一共写了多少封信?(2)同宿舍4人,每两人通一次电话,问他们一共通了几次电话?[解](1)是一个排列问题,相当于从4个人中任取两个人,并且按顺序排好.有多少个排列就有多少封信,共有A24=12封信.(2)不是排列问题,“通电话”不讲顺序,甲与乙通了电话,也就是乙与甲通了电话.排列的简单应用(1)从1,2,3,4四个数字中任取两个数字组成两位数,共有多少个不同的两位数?(2)写出A,B,C,D四名同学站成一排照相,A不站在两端的所有可能站法.【导学号:95032027】[解](1)所有两位数是12,21,13,31,14,41,23,32,24,42,34,43,共有12个不同的两位数.(2)如图所示的树形图:故所有可能的站法是BACD,BADC,BCAD,BDAC,CABD,CADB,CBAD,CDAB,DABC,DACB,DBAC,DCAB,共12种.[规律方法]在排列个数不多的情况下,树形图是一种比较有效的表示方式.在操作中先将元素按一定顺序排出,然后以先安排哪个元素为分类标准进行分类,在每一类中再按余下的元素在前面元素不变的情况下确定第二个元素,再按此元素分类,依次进行,直到完成一个排列,这样能不重不漏,然后按树形图写出排列.2.(1)A,B,C三名同学照相留念,成“一”字形排队,所有排列的方法种数为( ) A.3种B.4种C.6种D.12种(2)北京、广州、南京、天津4个城市相互通航,应该有________种机票.(1)C (2)12[(1)所有的排法有:A—B—C,A—C—B,B—A—C,B—C—A,C—A—B,C—B—A,共6种.(2)列出每一个起点和终点情况,如图所示.北京→广州,北京→南京,北京→天津,广州→南京、广州→天津、广州→北京,南京→天津,南京→北京,南京→广州,天津→北京,天津→广州,天津→南京,共排列数公式的推导与应用[探究问题]1.两个同学从写有数字1,2,3,4的卡片中选取卡片进行组数字游戏.从这选出2个或3个分别能构成多少个无重复数字的两位数或三位数?[提示]从这4个数字中选出2个能构成出3个能构成A34=4×3×2=24个无重复数字的三位数.2.由探究1知A24=4×3=12,A34=4×3×2=[提示]A2n的意义:假定有排好顺序的a n中任取2个元素去填空,一个空位填一个元素,每一种填法就得到一个排列;反过来,任一个排列总可以由这样的一种填法得到,因此,所有不同的填法的种数就是排列数A2n.由分步乘法计数原理知完成上述填空共有n(n-1)种填法,所以A2n=n(n-1).3.你能写出A m n的值吗?有什么特征?若m=n呢?[提示]A m n=n(n-1)(n-2)…(n-m+1)(m,n∈N*,m≤n).(1)公式特征:第一个因数是n,后面每一个因数比它前面一个少1,最后一个因数是n -m+1,共有m个因数;(2)全排列:当m =n 时,即n 个不同元素全部取出的一个排列. 全排列数:A n n =n (n -1)(n -2)·…2·1=n !(叫做n 的阶乘).另外,我们规定0!=1.所以A m n =n (n -1)(n -2)…(n -m +1)=n !n -m !=A n n A n-m n -m . (1)计算:2A 58+7A 48A 88-A 59;(2)求证:A m n +1-A m n =m A m -1n . 【导学号:95032028】[思路探究]:(1)合理选用排列数的两个公式进行展开.(2)提取公因式后合并化简.[解] (1)2A 58+7A 48A 88-A 59=2×8×7×6×5×4+7×8×7×6×58×7×6×5×4×3×2×1-9×8×7×6×5 =8×7×6×5×8+78×7×6×5×24-9=1. (2)证明:∵A m n +1-A m n =n +1!n +1-m !-n !n -m ! =n !n -m !⎝ ⎛⎭⎪⎫n +1n +1-m -1 =n !n -m !·m n +1-m =m ·n !n +1-m !=m A m -1n . ∴A m n +1-A m n =m A m -1n .[规律方法] 排列数的计算方法1.排列数的计算主要是利用排列数的乘积公式进行,应用时注意:连续正整数的积可以写成某个排列数,其中最大的是排列元素的总个数,而正整数(因式)的个数是选取元素的个数,这是排列数公式的逆用.2.应用排列数公式的阶乘形式时,一般写出它们的式子后,再提取公因式,然后计算,这样往往会减少运算量.[跟踪训练]3.求3A x 8=4A x -19中的x .[解] 原方程3A x 8=4A x -19可化为3×8!8-x !=4×9!10-x !, 即3×8!8-x !=4×9×8!10-x 9-x 8-x !, 化简,得x 2-19x +78=0,解得x 1=6,x 2=13.由题意知{ x ≤8,x -1≤9,解得x ≤8.所以原方程的解为x =6.[当 堂 达 标·固 双 基]1.已知下列问题:①从甲、乙、丙三名同学中选出两名分别参加数学和物理学习小组;②从甲、乙、丙三名同学中选出两名同学参加一项活动;③从a ,b ,c ,d 四个字母中取出2个字母;④从1,2,3,4四个数字中取出2个数字组成一个两位数.其中是排列问题的有( )A .1个B .2个C .3个D .4个B [①是排列问题,因为两名同学参加的活动与顺序有关;②不是排列问题,因为两名同学参加的活动与顺序无关;③不是排列问题,因为取出的两个字母与顺序无关;④是排列问题,因为取出的两个数字还需要按顺序排成一列.]2.4×5×6×…×(n -1)×n 等于( )【导学号:95032029】A .A 4nB .A n -4n C .(n -4)! D .A n -3n D [4×5×6×…×(n -1)×n 中共有n -4+1=n -3个因式,最大数为n ,最小数为4, 3.] ________种. A 55=120种.]120.]=5+150-10=320. 法二:A 59+A 49A 610-A 510=4!+5!10!4!-10!5!=5×9!+9!5×10!-10!=6×9!4×10!=320.。
2017-2018年度高中数学 第一章 计数原理 1.2 排列与组合 1.2.2.1 组合及组合数公式讲义 新人教B版选修2-3

12
知识拓展 (1)如果两个组合中的元素完全相同,不管它们的顺序 如何,都是相同的组合.
(2)当两个组合中的元素不完全相同(即使只有一个元素不同)时, 就是不同的组合.例如从a,b,c三个不同的元
素中取出两个元素的所有组合有3个,它们分别是ab,ac,bc.要注意 ba,ab是相同的组合.
(3)组合问题与排列问题的共同点是:都要“从n个不同元素中,任 取m个元素”,不同点是:前者是“不管顺序并成一组”,而后者要“按照 一定顺序排成一列”.
题型一 题型二 题型三 题型四
题型四 易错辨析
【例 4】
已知C15������
−
1 C6������
=
107C7������,求
m.
错解:由已知得������!(55!-������)!
−
������!(6-������)! 6!
=
7(170-������)7!!������!,
即 60-10(6-m)=(7-m)(6-m),
1234 5
4.已知C������2������-1
=
C������������ 3
=
C���������4���+1,则
m
与
n
的值分别为
.
解析:
由C������������-1
2
=
C������������可得
3
5m=2n+2,①
由C������������
3
=
C������������+1可得
=
������! ������!(������-������)!
=
������(������-1)(������-2���)���…! (������-������+1),这里
2018新人教B版高中数学选修2-3全册学案精编

目录✧ 1.1.1基本计数原理学案✧ 1.1.2基本计数原理的应用学案✧ 1.2.1.1排列及排列数公式学案✧ 1.2.1.2排列的综合应用学案✧ 1.2.2.1组合及组合数公式学案✧ 1.2.2.2组合的综合应用学案✧ 1.3.1二项式定理学案✧ 1.3.2杨辉三角学案✧第1章计数原理章末分层突破学案✧ 2.1.1离散型随机变量学案✧ 2.1.2离散型随机变量的分布列学案✧ 2.1.3超几何分布学案✧ 2.2.1条件概率学案✧ 2.2.2事件的独立性学案✧ 2.2.3独立重复试验与二项分布学案✧ 2.3.1离散型随机变量的数学期望学案✧ 2.3.2离散型随机变量的方差学案✧ 2.4正态分布学案✧第2章概率章末分层突破学案✧ 3.1独立性检验学案✧ 3.2回归分析学案✧统计案例章末分层突破学案基本计数原理1.通过实例,能总结出分类加法计数原理、分步乘法计数原理.(重点)2.正确地理解“完成一件事情”的含义,能根据具体问题的特征,选择“分类”或“分步”.(易混点)3.能利用两个原理解决一些简单的实际问题.(难点)[基础·初探]教材整理1 分类加法计数原理阅读教材P3中间部分,完成下列问题.做一件事,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1+m2+…+m n种不同的方法.判断(正确的打“√”,错误的打“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( )(2)在分类加法计数原理中,每类方案中的方法都能完成这件事.( )(3)从甲地到乙地有两类交通方式:坐飞机和乘轮船,其中飞机每天有3班,轮船有4班.若李先生从甲地去乙地,则不同的交通方式共有7种.( )(4)某校高一年级共8个班,高二年级共6个班,从中选一个班级担任星期一早晨升旗任务,安排方法共有14种.( )【解析】(1)×在分类加法计数原理中,分类标准是统一的,两类不同方案中的方法是不能相同的.(2)√在分类加法计数原理中,是把能完成这件事的所有方法按某一标准分类的,故每类方案中的每种方法都能完成这些事.(3)√由分类加法计数原理,从甲地去乙地共3+4=7(种)不同的交通方式.(4)√根据分类加法计数原理,担任星期一早晨升旗任务可以是高一年级,也可以是高二年级,因此安排方法共有8+6=14(种).【答案】(1)×(2)√(3)√(4)√教材整理2 分步乘法计数原理阅读教材P3后半部分内容,完成下列问题.做一件事,完成它需要分成n个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的方法……做第n个步骤有m n种不同的方法.那么完成这件事共有N=m1×m2×…×m n种不同的方法.判断(正确的打“√”,错误的打“×”)(1)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( )(2)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.( )(3)已知x∈{2,3,7},y∈{-3,-4,8},则x·y可表示不同的值的个数为9个.( )(4)在一次运动会上有四项比赛,冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有43种.( )【解析】(1)√因为在分步乘法计数原理中的每一步都有多种方法,而每种方法各不相同.(2)×因为在分步乘法计数原理中,要完成这件事需分两步,而每步都不能完成这件事,只有各步都完成了,这件事才算完成.(3)√因为x从集合{2,3,7}中任取一个值共有3个不同的值,y从集合{-3,-4,8}中任取一个值共有3个不同的值,故x·y可表示3×3=9个不同的值.(4)×因为每个项目中的冠军都有3种可能的情况,根据分步乘法计数原理共有34种不同的夺冠情况.【答案】(1)√(2)×(3)√(4)×[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]分类加法计数原理的应用(1)从高三年级的四个班中共抽出22人,其中一、二、三、四班分别为4人,5人,6人,7人,他们自愿组成数学课外小组,选其中一人为组长,有多少种不同的选法?(2)在所有的两位数中,个位数字大于十位数字的两位数共有多少个?【精彩点拨】(1)按所选组长来自不同年级为分类标准.(2)按个位(或十位)取0~9不同的数字进行分类.【自主解答】(1)分四类:从一班中选一人,有4种选法;从二班中选一人,有5种选法;从三班中选一人,有6种选法;从四班中选一人,有7种选法.共有不同选法N=4+5+6+7=22种.(2)法一按十位上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36(个).法二按个位上的数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个,所以按分类加法计数原理知,满足条件的两位数共有1+2+3+4+5+6+7+8=36(个).1.应用分类加法计数原理解题的策略(1)标准明确:明确分类标准,依次确定完成这件事的各类方法.(2)不重不漏:完成这件事的各类方法必须满足不能重复,又不能遗漏.(3)方法独立:确定的每一类方法必须能独立地完成这件事.2.利用分类加法计数原理解题的一般思路[再练一题]1.(1)某学生去书店,发现2本好书,决定至少买其中一本,则购买方式共有( )A.1种B.2种C.3种D.4种(2)有三个袋子,分别装有不同编号的红色小球6个,白色小球5个,黄色小球4个.若从三个袋子中任取1个小球,有________种不同的取法.【导学号:62980000】【解析】(1)分两类:买1本或买2本书,各类购买方式依次有2种、1种,故购买方式共有2+1=3种.故选C.(2)有3类不同方案:第1类,从第1个袋子中任取1个红色小球,有6种不同的取法;第2类,从第2个袋子中任取1个白色小球,有5种不同的取法;第3类,从第3个袋子中任取1个黄色小球,有4种不同的取法.其中,从这三个袋子的任意一个袋子中取1个小球都能独立地完成“任取1个小球”这件事,根据分类加法计数原理,不同的取法共有6+5+4=15种.【答案】(1)C (2)15分步乘法计数原理的应用一种号码锁有4个拨号盘,每个拨号盘上有从0到9共十个数字,这4个拨号盘可以组成多少个四位数的号码(各位上的数字允许重复)?【精彩点拨】根据题意,必须依次在每个拨号盘上拨号,全部拨号完毕后,才拨出一个四位数号码,所以应用分步乘法计数原理.【自主解答】按从左到右的顺序拨号可以分四步完成:第一步,有10种拨号方式,所以m1=10;第二步,有10种拨号方式,所以m2=10;第三步,有10种拨号方式,所以m3=10;第四步,有10种拨号方式,所以m4=10.根据分步乘法计数原理,共可以组成N=10×10×10×10=10 000个四位数的号码.1.应用分步乘法计数原理时,完成这件事情要分几个步骤,只有每个步骤都完成了,才算完成这件事情,每个步骤缺一不可.2.利用分步乘法计数原理解题的一般思路(1)分步:将完成这件事的过程分成若干步;(2)计数:求出每一步中的方法数;(3)结论:将每一步中的方法数相乘得最终结果.[再练一题]2.张涛大学毕业参加工作后,把每月工资中结余的钱分为两部分,其中一部分用来定期储蓄,另一部分用来购买国债.人民币储蓄可以从一年期、二年期两种中选择一种,购买国债则可以从一年期、二年期和三年期中选择一种.问:张涛共有多少种不同的理财方式?【解】由题意知,张涛要完成理财目标应分步完成.第1步,将一部分钱用来定期储蓄,从一年期和二年期中任意选择一种理财方式;第2步,用另一部分钱购买国债,从一年期、二年期和三年期三种国债中任意选择一种理财方式.由分步乘法计数原理,得2×3=6种.[探究共研型]两个计数原理的辨析探究1 某大学食堂备有6种荤菜,5种素菜,3种汤,现要配成一荤一素一汤的套餐,试问要“完成的这件事”指的是什么?若配成“一荤一素”是否“完成了这件事”?【提示】“完成这件事”是指从6种荤菜中选出一种,再从5种素菜中选出一种,最后从3种汤中选出一种,这时这件事才算完成.而只选出“一荤一素”不能算“完成这件事”.探究2 在探究1中,要“完成配成套餐”这件事需分类,还是分步?为什么?【提示】要配成一荤一素一汤的套餐,需分步完成.只配荤菜、素菜、汤中的一种或两种都不能达到“一荤一素一汤”的要求,即都不能完成“配套餐”这件事.探究3 在探究1中若要配成“一素一汤套餐”试问可配成多少种不同的套餐?你能分别用分类加法计数原理和分步乘法计数原理求解吗?你能说明分类加法计数原理与分步乘法计数原理的主要区别吗?【提示】5种素菜分别记为A,B,C,D,E.3种汤分别记为a,b,c.利用分类加法计数原理求解:以选用5种不同的素菜分类:选素菜A时,汤有3种选法;选素菜B时,汤有3种选法;选素菜C时,汤有3种选法;选素菜D时,汤有3种选法;选素菜E时,汤有3种选法.故由加法计数原理,配成“一素一汤”的套餐共有3+3+3+3+3=15(种)不同的套餐.利用分步乘法计数原理求解:第一步:从5种素菜中,任选一种共5种不同的选法;第二步:从3种汤中,任选一种共3种不同的选法.由分步乘法计数原理,配成“一素一汤”的套餐共有5×3=15(种)不同套餐.两个计数原理的主要区别在于分类加法计数原理是将一件事分类完成,每类中的每种方法都能完成这件事,而分步乘法计数原理是将一件事分步完成,每步中的每种方法都不能完成这件事.有A,B,C型高级电脑各一台,甲、乙、丙、丁4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑.从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有多少种?【精彩点拨】从这4个操作人员中选3人分别去操作这三种型号的电脑,首先将问题分类,可分为4类,然后每一类再分步完成.即解答本题可“先分类,后分步”.【自主解答】第1类,选甲、乙、丙3人,由于丙不会操作C型电脑,分2步安排这3人操作电脑,有2×2=4种方法;第2类,选甲、乙、丁3人,由于丁只会操作A型电脑,这时安排3人操作电脑,有2种方法;第3类,选甲、丙、丁3人,这时安排3人操作电脑只有1种方法;第4类,选乙、丙、丁3人,同样也只有1种方法.根据分类加法计数原理,共有4+2+1+1=8种选派方法.1.能用分步乘法计数原理解决的问题具有如下特点:(1)完成一件事需要经过n个步骤,缺一不可;(2)完成每一步有若干种方法;(3)把各个步骤的方法数相乘,就可以得到完成这件事的所有方法数.2.利用分步乘法计数原理应注意:(1)要按事件发生的过程合理分步,即分步是有先后顺序的.(2)“步”与“步”之间是连续的、不间断的、缺一不可的,但也不能重复、交叉.(3)若完成某件事情需n步,则必须依次完成这n个步骤后,这件事情才算完成.[再练一题]3.一个袋子里有10张不同的中国移动手机卡,另一个袋子里有12张不同的中国联通手机卡.(1)某人要从两个袋子中任取一张自己使用的手机卡,共有多少种不同的取法?(2)某人手机是双卡双待机,想得到一张移动和一张联通卡供自己使用,问一共有多少种不同的取法?【解】(1)第一类:从第一个袋子取一张移动卡,共有10种取法;第二类:从第二个袋子取一张联通卡,共有12种取法.根据分类加法计数原理,共有10+12=22种取法.(2)第一步,从第一个袋子取一张移动卡,共有10种取法;第二步,从第二个袋子取一张联通卡,共有12种取法.根据分步乘法计数原理,共有10×12=120种取法.[构建·体系]1.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为( )【导学号:62980001】A.7B.12C.64D.81【解析】先从4件上衣中任取一件共4种选法,再从3条长裤中任选一条共3种选法,由分步乘法计数原理,上衣与长裤配成一套共4×3=12(种)不同配法.故选B.【答案】 B2.从A地到B地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内乘坐这三种交通工具的不同走法数为( )A.1+1+1=3B.3+4+2=9C.3×4×2=24D.以上都不对【解析】分三类:第一类,乘汽车,从3次中选1次有3种走法;第二类,乘火车,从4次中选1次有4种走法;第三类,乘轮船,从2次中选1次有2种走法.所以,共有3+4+2=9种不同的走法.【答案】 B3.从2,3,5,7,11中每次选出两个不同的数作为分数的分子、分母,则可产生不同的分数的个数是________,其中真分数的个数是________.【解析】产生分数可分两步:第一步,产生分子有5种方法;第二步,产生分母有4种方法,共有5×4=20个分数.产生真分数,可分四类:第一类,当分子是2时,有4个真分数,同理,当分子分别是3,5,7时,真分数的个数分别是3,2,1,共有4+3+2+1=10个真分数.【答案】20 104.十字路口来往的车辆,如果不允许回头,不同的行车路线有________条.【解析】经过一次十字路口可分两步:第一步确定入口,共有4种选法;第二步确定出口,从剩余3个路口任选一个共3种,由分步乘法计数原理知不同的路线有4×3=12条.【答案】125.某公园休息处东面有8个空闲的凳子,西面有6个空闲的凳子,小明与爸爸来这里休息.(1)若小明爸爸任选一个凳子坐下(小明不坐),有几种坐法?(2)若小明与爸爸分别就坐,有多少种坐法?【解】(1)小明爸爸选凳子可以分两类:第一类:选东面的空闲凳子,有8种坐法;第二类:选西面的空闲凳子,有6种坐法.根据分类加法计数原理,小明爸爸共有8+6=14(种)坐法.(2)小明与爸爸分别就坐,可以分两步完成:第一步,小明先就坐,从东西面共8+6=14(个)凳子中选一个坐下,共有14种坐法;(小明坐下后,空闲凳子数变成13)第二步,小明爸爸再就坐,从东西面共13个空闲凳子中选一个坐下,共13种坐法.由分步乘法计数原理,小明与爸爸分别就坐共有14×13=182(种)坐法.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.如图111所示为一个电路图,从左到右可通电的线路共有( )图111A.6条B.5条C.9条D.4条【解析】从左到右通电线路可分为两类:从上面有3条;从下面有2条.由分类加法计数原理知,从左到右通电的线路共有3+2=5条.【答案】 B2.有5列火车停在某车站并排的5条轨道上,若火车A 不能停在第1道上,则5列火车的停车方法共有( )A.96种B.24种C.120种D.12种【解析】 先排第1道,有4种排法,第2,3,4,5道各有4,3,2,1种,由分步乘法计数原理知共有4×4×3×2×1=96种.【答案】 A3.将5封信投入3个邮筒,不同的投法共有( )【导学号:62980002】A.53种B.35种 C.8种 D.15种 【解析】 每封信均有3种不同的投法,所以依次把5封信投完,共有3×3×3×3×3=35种投法.【答案】 B4.如果x ,y ∈N ,且1≤x ≤3,x +y <7,则满足条件的不同的有序自然数对的个数是( )A.15B.12C.5D.4 【解析】 利用分类加法计数原理.当x =1时,y =0,1,2,3,4,5,有6个;当x =2时,y =0,1,2,3,4,有5个;当x =3时,y =0,1,2,3,有4个.据分类加法计数原理可得,共有6+5+4=15个.【答案】 A5.从集合{1,2,3,4,5}中任取2个不同的数,作为方程Ax +By =0的系数A ,B 的值,则形成的不同直线有( )A.18条B.20条C.25条D.10条【解析】 第一步,取A 的值,有5种取法;第二步,取B 的值,有4种取法,其中当A =1,B =2时与A =2,B =4时是相同的方程;当A =2,B =1时与A =4,B =2时是相同的方程,故共有5×4-2=18条.【答案】 A二、填空题6.椭圆x 2m +y 2n=1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则满足题意的椭圆的个数为________.【解析】因为焦点在y轴上,所以0<m<n,考虑m依次取1,2,3,4,5时,符合条件的n值分别有6,5,4,3,2个,由分类加法计数原理知,满足题意的椭圆的个数为6+5+4+3+2=20个.【答案】207.某班2016年元旦晚会原定的5个节目已排成节目单,开演前又增加了2个新节目,如果将这两个节目插入原节目单中,那么不同的插法的种数为________.【解析】将第一个新节目插入5个节目排成的节目单中有6种插入方法,再将第二个新节目插入到刚排好的6个节目排成的节目单中有7种插入方法,利用分步乘法计数原理,共有插入方法:6×7=42(种).【答案】428.如图112,小圆圈表示网络的结点,结点之间的连线表示它们有网线相连,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点B向结点A传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为________.图112【解析】依题意,首先找出B到A的路线,一共有4条,分别是BCDA,信息量最大为3;BEDA,信息量最大为4;BFGA,信息量最大为6;BHGA,信息量最大为6.由分类加法计数原理,单位时间内传递的最大信息量为3+4+6+6=19.【答案】19三、解答题9.有不同的红球8个,不同的白球7个.(1)从中任意取出一个球,有多少种不同的取法?(2)从中任意取出两个不同颜色的球,有多少种不同的取法?【解】(1)由分类加法计数原理,从中任取一个球共有8+7=15(种).(2)由分步乘法计数原理,从中任取两个不同颜色的球共有8×7=56(种).10.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人.(1)从中任选1人去献血,有多少种不同的选法;(2)从四种血型的人中各选1人去献血,有多少种不同的选法?【解】从O型血的人中选1人有28种不同的选法;从A型血的人中选1人有7种不同的选法;从B型血的人中选1人有9种不同的选法;从AB型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选哪种血型的哪一个人,“任选1人去献血”这件事情都可以完成,所以用分类加法计数原理.有28+7+9+3=47种不同的选法.(2)要从四种血型的人中各选1人,即从每种血型的人中各选出1人后,“各选1人去献血”这件事情才完成,所以用分步乘法计数原理.有28×7×9×3=5 292种不同的选法.[能力提升]1.一植物园参观路径如图113所示,若要全部参观并且路线不重复,则不同的参观路线种数共有( )图113A.6种B.8种C.36种D.48种【解析】由题意知在A点可先参观区域1,也可先参观区域2或3,每种选法中可以按逆时针参观,也可以按顺时针参观,所以第一步可以从6个路口任选一个,有6种走法,参观完第一个区域后,选择下一步走法,有4种走法,参观完第二个区域后,只剩下最后一个区域,有2种走法,根据分步乘法计数原理,共有6×4×2=48种不同的参观路线.【答案】 D2.某市汽车牌照号码(由4个数字和1个字母组成)可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复).某车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码所有可能的情况有( )【导学号:62980003】A.180种B.360种C.720种D.960种【解析】分五步完成,第i步取第i个号码(i=1,2,3,4,5).由分步乘法计数原理,可得车牌号码共有5×3×4×4×4=960种.【答案】 D3.直线方程Ax+By=0,若从0,1,3,5,7,8这6个数字中每次取两个不同的数作为A,B 的值,则可表示________条不同的直线.【解析】若A或B中有一个为零时,有2条;当AB≠0时有5×4=20条,故共有20+2=22条不同的直线.【答案】224.已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),(1)P可以表示平面上的多少个不同点?(2)P可以表示平面上的多少个第二象限的点?(3)P可以表示多少个不在直线y=x上的点?【解】(1)完成这件事分为两个步骤:a的取法有6种,b的取法有6种.由分步乘法计数原理知,P可以表示平面上的6×6=36(个)不同点.(2)根据条件需满足a<0,b>0.完成这件事分两个步骤:a的取法有3种,b的取法有2种,由分步乘法计数原理知,P 可以表示平面上的3×2=6(个)第二象限的点.(3)因为点P不在直线y=x上,所以第一步a的取法有6种,第二步b的取法有5种,根据分步乘法计数原理可知,P可以表示6×5=30(个)不在直线y=x上的点.基本计数原理的应用1.熟练应用两个计数原理.(重点)2.能运用两个计数原理解决一些综合性的问题.(难点)[基础·初探]教材整理分类加法计数原理与分步乘法计数原理的联系与区别阅读教材P4~P5,完成下列问题.分类加法计数原理和分步乘法计数原理的联系与区别1.由1,2,3,4组成没有重复数字的三位数的个数为________.【解析】由题意知可以组成没有重复数字的三位数的个数为4×3×2=24.【答案】242.(a1+a2+a3)(b1+b2+b3)(c1+c2+c3+c4)展开后共有________项.【导学号:62980004】【解析】该展开式中每一项的因式分别来自a1+a2+a3,b1+b2+b3,c1+c2+c3+c4中的各一项.由a1,a2,a3中取一项共3种取法,从b1,b2,b3中取一项有3种不同取法,从c1,c2,c3,c4中任取一项共4种不同的取法.由分步乘法计数原理知,该展开式共3×3×4=36(项).【答案】363.5名班委进行分工,其中A不适合当班长,B只适合当学习委员,则不同的分工方案种数为________.【解析】根据题意,B只适合当学习委员,有1种情况,A不适合当班长,也不能当学习委员,有3种安排方法,剩余的3人担任剩余的工作,有3×2×1=6种情况,由分步乘法计数原理,可得共有1×3×6=18种分工方案.【答案】184.用1,2,3三个数字组成一个四位数,规定这三个数必须全部使用,且同一数字不能相邻,这样的四位数有________个.【解析】分三步完成,第1步,确定哪一个数字被使用2次,有3种方法;第2步,把这2个相同的数字排在四位数不相邻的两个位置上,有3种方法;第3步,将余下的2个数字排在四位数余下的两个位置上,有2种方法.故有3×3×2=18个不同的四位数.【答案】18[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]抽取(分配)问题(1)高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有( )A.16种B.18种C.37种D.48种(2)甲、乙、丙、丁四人各写一张贺卡,放在一起,再各取一张不是自己的贺卡,则不同取法的种数有________.【精彩点拨】(1)由于去甲工厂的班级分配情况较多,而其对立面较少,可考虑间接法求解.(2)先让一人去抽,然后再让被抽到贺卡所写人去抽.【自主解答】(1)高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践有43种不同的分配方案,若三个班都不去工厂甲则有33种不同的分配方案.则满足条件的不同的分配方案有43-33=37(种).故选C.(2)不妨由甲先来取,共3种取法,而甲取到谁的将由谁在甲取后第二个来取,共3种取法,余下来的人,都只有1种选择,所以不同取法共有3×3×1×1=9(种).【答案】(1)C (2)9求解抽取(分配)问题的方法1.当涉及对象数目不大时,一般选用枚举法、树状图法、框图法或者图表法.2.当涉及对象数目很大时,一般有两种方法:①直接法:直接使用分类加法计数原理或分步乘法计数原理.②间接法:去掉限制条件,计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.[再练一题]1.3个不同的小球放入5个不同的盒子,每个盒子至多放一个小球,共有多少种方法?【解】法一(以小球为研究对象)分三步来完成:第一步:放第一个小球有5种选择;第二步:放第二个小球有4种选择;第三步:放第三个小球有3种选择.根据分步乘法计数原理得:共有方法数N=5×4×3=60.法二(以盒子为研究对象)盒子标上序号1,2,3,4,5,分成以下10类:第一类:空盒子标号为(1,2):选法有3×2×1=6(种);第二类:空盒子标号为(1,3):选法有3×2×1=6(种);第三类:空盒子标号为(1,4):选法有3×2×1=6(种);分类还有以下几种情况:空盒子标号分别为(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10类,每一类都有6种方法.根据分类加法计数原理得,共有方法数N=6+6+…+6=60(种).组数问题用0,1,2,3,4,5可以组成多少个无重复数字的(1)银行存折的四位密码;(2)四位整数;。
2018年秋新课堂高中数学人教B版选修2-3学案:第1章-1.3-1.3.2 Word版含答案

1.3.2 杨辉三角1.使学生建立“杨辉三角”与二项式系数之间的直觉,并探索其中的规律.(难点)2.掌握二项式系数的性质及其应用.(重点)3.掌握“赋值法”并会灵活运用.[基础·初探]教材整理1 杨辉三角阅读教材P 29,完成下列问题.杨辉三角的特点(1)在同一行中,每行两端都是1,与这两个1等距离的项的系数相等.(2)在相邻的两行中,除1以外的每一个数都等于它“肩上”两个数的和,即C m n +1=C m -1n +C m n .1.如图1-3-1是一个类似杨辉三角的图形,则第n 行的首尾两个数均为________.13 35 6 57 11 11 79 18 22 18 9图1-3-1【解析】 由1,3,5,7,9,…可知它们成等差数列,所以a n =2n -1.【答案】2n-12.如图1-3-2,由二项式系数构成的杨辉三角中,第________行从左到右第14与第15个数之比为2∶3.11 112 1133 11464 1……图1-3-2【解析】设第n行从左到右第14与第15个数之比为2∶3,则3C13n=2C14n,即3n!13!(n-13)!=2n!14!(n-14)!,解得n=34.【答案】34教材整理2二项式系数的性质阅读教材P29后半部分,完成下列问题.1.每一行的两端都是1,其余每个数都等于它“肩上”两个数的和.2.每一行中,与首末两端“等距离”的两个数相等.3.如果二项式的幂指数n是偶数,那么其展开式中间一项T n2+1的二项式系数最大;如果n是奇数,那么其展开式中间两项T n+12与Tn+12+1的二项式系数相等且最大.4.二项展开式的二项式系数的和等于2n.1.已知(a+b)n展开式中只有第5项的二项式系数最大,则n等于________.【解析】因为只有第5项的二项式系数最大,所以n2+1=5,所以n=8.【答案】82.已知(ax+1)n的展开式中,二项式系数和为32,则n等于________.【导学号:62980026】【解析】 二项式系数之和为C 0n +C 1n +…+C n n =2n =32,所以n =5.【答案】 53.(2x -1)10展开式中x 的奇次幂项的系数之和为________.【解析】 因为(2x -1)10=a 0+a 1x +a 2x 2+…+a 10x 10,令x =1,得a 0+a 1+a 2+…+a 10=1,再令x =-1,得310=a 0-a 1+a 2-a 3+…+a 10,两式相减,可得a 1+a 3+…+a 9=1-3102.【答案】 1-3102[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型]与“杨辉三角”有关的问题如图1-3-3,在“杨辉三角”中斜线AB 的上方,从1开始箭头所示的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,….记其前n 项和为S n ,求S 19的值.图1-3-3【精彩点拨】由图知,数列中的首项是C22,第2项是C12,第3项是C23,第4项是C13,…,第17项是C210,第18项是C110,第19项是C211.【自主解答】S19=(C22+C12)+(C23+C13)+(C24+C14)+…+(C210+C110)+C211=(C12+C13+C14+…+C110)+(C22+C23+…+C210+C211)=(2+3+4+…+10)+C312=(2+10)×92+220=274.“杨辉三角”问题解决的一般方法观察—分析;试验—猜想;结论—证明,要得到杨辉三角中蕴含的诸多规律,取决于我们的观察能力,观察能力有:横看、竖看、斜看、连续看、隔行看,从多角度观察.如表所示:[再练一题]1.如图1-3-4所示,满足如下条件:①第n行首尾两数均为n;②表中的递推关系类似“杨辉三角”.则第10行的第2个数是________,第n行的第2个数是________.图1-3-4【解析】 由图表可知第10行的第2个数为:(1+2+3+…+9)+1=46,第n 行的第2个数为:[1+2+3+…+(n -1)]+1=n (n -1)2+1=n 2-n +22. 【答案】 46 n 2-n +22求展开式的系数和设(1-2x )2 017=a 0+a 1x +a 2x 2+…+a 2 017·x 2 017(x ∈R ).(1)求a 0+a 1+a 2+…+a 2 017的值;(2)求a 1+a 3+a 5+…+a 2 017的值;(3)求|a 0|+|a 1|+|a 2|+…+|a 2 017|的值.【精彩点拨】 先观察所求式子与展开式各项的特点,利用赋值法求解.【自主解答】 (1)令x =1,得a 0+a 1+a 2+…+a 2 017=(-1)2 017=-1.①(2)令x =-1,得a 0-a 1+a 2-…-a 2 017=32 017.②①-②得2(a 1+a 3+…+a 2 017)=-1-32 017,∴a 1+a 3+a 5+…+a 2 017=-1-32 0172. (3)∵T r +1=C r 2 017(-2x )r =(-1)r ·C r 2 017·(2x )r , ∴a 2k -1<0(k ∈N +),a 2k >0(k ∈N ).∴|a 0|+|a 1|+|a 2|+|a 3|+…+|a 2 017|=a 0-a 1+a 2-a 3+…-a 2 017=32 017.1.解决二项式系数和问题思维流程.2.“赋值法”是解决二项展开式中项的系数常用的方法,根据题目要求,灵活赋给字母不同值.一般地,要使展开式中项的关系变为系数的关系,令x=0可得常数项,令x=1可得所有项系数之和,令x=-1可得偶次项系数之和与奇次项系数之和的差.[再练一题]2.若(3x-1)7=a7x7+a6x6+…+a1x+a0,求:(1)a1+a2+…+a7;(2)a1+a3+a5+a7;(3)a0+a2+a4+a6.【解】(1)令x=0,则a0=-1;令x=1,得a7+a6+…+a1+a0=27=128,①所以a1+a2+…+a7=129.(2)令x=-1,得-a7+a6-a5+a4-a3+a2-a1+a0=(-4)7,②由①-②得2(a1+a3+a5+a7)=128-(-4)7,∴a1+a3+a5+a7=8 256.(3)由①+②得2(a0+a2+a4+a6)=128+(-4)7,∴a0+a2+a4+a6=-8 128.[探究共研型]二项式系数性质的应用探究1根据杨辉三角的特点,在杨辉三角同一行中与两个1等距离的项的系数相等,你可以得到二项式系数的什么性质?【提示】对称性,因为C m n=C n-mn,也可以从f(r)=C r n的图象中得到.探究2计算C k nC k-1n,并说明你得到的结论.。
2018年秋新课堂高中数学人教B版选修2-3 课件+教师用书+学业分层测评 第二章 (11)

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.有以下三个问题:①掷一枚骰子一次,事件M:“出现的点数为奇数”,事件N:“出现的点数为偶数”;②袋中有3白、2黑,5个大小相同的小球,依次不放回地摸两球,事件M:“第1次摸到白球”,事件N:“第2次摸到白球”;③分别抛掷2枚相同的硬币,事件M:“第1枚为正面”,事件N:“两枚结果相同”.这三个问题中,M,N是相互独立事件的有( )A.3个B.2个C.1个D.0个【解析】 ①中,M,N是互斥事件;②中,P(M)=,P(N)=.即事件M的结果对事件N的结果有影响,所以M,N不是相互独立事件;③中,P(M)=,P(N)=,P(M∩N)=,P(M∩N)=P(M)P(N),因此M,N是相互独立事件.【答案】 C2.从甲袋中摸出一个红球的概率是,从乙袋中摸出一个红球的概率是,从两袋各摸出一个球,则表示( )【导学号:62980046】A.2个球不都是红球的概率B.2个球都是红球的概率C.至少有1个红球的概率D.2个球中恰有1个红球的概率【解析】 分别记从甲、乙袋中摸出一个红球为事件A,B,则P(A)=,P(B)=,由于A,B相互独立,所以1-P()P()=1-×=.根据互斥事件可知C正确.【答案】 C3.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( )A. B.C. D.【解析】 问题等价为两类:第一类,第一局甲赢,其概率P1=;第二类,需比赛2局,第一局甲负,第二局甲赢,其概率P2=×=.故甲队获得冠军的概率为P1+P2=.【答案】 A4.在荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图2-2-2所示.假设现在青蛙在A叶上,则跳三次之后停在A叶上的概率是( )图2-2-2A. B.C. D.【解析】 青蛙跳三次要回到A只有两条途径:第一条:按A→B→C→A,P1=××=;第二条,按A→C→B→A,P2=××=.所以跳三次之后停在A叶上的概率为P=P1+P2=+=.【答案】 A5.如图2-2-3所示,在两个圆盘中,指针落在圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )图2-2-3A. B.C. D.【解析】 “左边圆盘指针落在奇数区域”记为事件A,则P(A)==,“右边圆盘指针落在奇数区域”记为事件B,则P(B)=,事件A,B相互独立,所以两个指针同时落在奇数区域的概率为×=,故选A.【答案】 A二、填空题6.在甲盒内的200个螺杆中有160个是A型,在乙盒内的240个螺母中有180个是A型.若从甲、乙两盒内各取一个,则能配成A型螺栓的概率为________.【解析】 “从200个螺杆中,任取一个是A型”记为事件B.“从240个螺母中任取一个是A型”记为事件C,则P(B)=,P(C)=.∴P(A)=P(B")C)=P(B)·P(C)=·=.【答案】 7.三人独立地破译一份密码,他们能单独译出的概率分别为,,,假设他们破译密码是彼此独立的,则此密码被破译的概率为________.【导学号:62980047】【解析】 用A,B,C分别表示“甲、乙、丙三人能破译出密码”,则P(A)=,P(B)=,P(C)=,且P( ")") )=P()P()P()=××=.所以此密码被破译的概率为1-=.【答案】 8.台风在危害人类的同时,也在保护人类.台风给人类送来了淡水资源,大大缓解了全球水荒,另外还使世界各地冷热保持相对均衡.甲、乙、丙三颗卫星同时监测台风,在同一时刻,甲、乙、丙三颗卫星准确预报台风的概率分别为0.8,0.7,0.9,各卫星间相互独立,则在同一时刻至少有两颗预报准确的是________.【解析】 设甲、乙、丙预报准确依次记为事件A,B,C,不准确记为,,,则P(A)=0.8,P(B)=0.7,P(C)=0.9,P()=0.2,P()=0.3,P()=0.1,至少两颗预报准确的事件有AB,AC,BC,ABC,这四个事件两两互斥且独立.所以至少两颗预报准确的概率为P=P(A")B"))+P(A")")C)+P(")B")C)+P(A")B")C)=0.8×0.7×0.1+0.8×0.3×0.9+0.2×0.7×0.9+0.8×0.7×0.9=0.056+0.216+0.126+0.504=0.902.【答案】 0.902三、解答题9.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地的1位车主至少购买甲、乙两种保险中的1种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.【解】 记A表示事件:该地的1位车主购买甲种保险;B表示事件:该地的1位车主购买乙种保险;C表示事件:该地的1位车主至少购买甲、乙两种保险中的一种;D表示事件:该地的1位车主甲、乙两种保险都不购买;E表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买.(1)P(A)=0.5,P(B)=0.3,C=A+B,P(C)=P(A+B)=P(A)+P(B)=0.8.(2)D=,P(D)=1-P(C)=1-0.8=0.2,P(E)=0.8×0.2×0.8+0.8×0.8×0.2+0.2×0.8×0.8=0.384.10.某城市有甲、乙、丙3个旅游景点,一位游客游览这3个景点的概率分别是0.4,0.5,0.6,且游客是否游览哪个景点互不影响,用¾表示该游客离开该城市时游览的景点数与没有游览的景点数之差的绝对值,求¾的分布列.【解】 设游客游览甲、乙、丙景点分别记为事件A1,A2,A3,已知A1,A2,A3相互独立,且P(A1)=0.4,P(A2)=0.5,P(A3)=0.6,游客游览的景点数可能取值为0,1,2,3,相应的游客没有游览的景点数可能取值为3,2,1,0,所以¾的可能取值为1,3.则P(¾=3)=P(A1∩A2∩A3)+P(1∩2∩3)=P(A1)·P(A2)·P(A3)+P(1)·P(2)·P(3)=2×0.4×0.5×0.6=0.24.P(¾=1)=1-0.24=0.76.所以分布列为:1.设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)是( )A. B.C. D.【解析】 由P(A") )=P(B") ),得P(A)P()=P(B)·P(),即P(A)[1-P(B)]=P(B)[1-P(A)],∴P(A)=P(B).又P( "))=,∴P()=P()=,∴P(A)=.【答案】 D2.三个元件T1,T2,T3正常工作的概率分别为,,,且是互相独立的.将它们中某两个元件并联后再和第三个元件串联接入电路,在如图2-2-4的电路中,电路不发生故障的概率是( )图2-2-4A. B.C. D.【解析】 记“三个元件T1,T2,T3正常工作”分别为事件A1,A2,A3,则P(A1)=,P(A2)=,P(A3)=.不发生故障的事件为(A2∪A3)")A1,∴不发生故障的概率为P=P[(A2∪A3)")A1]=[1-P(2)·P(3)]·P(A1)=×=.故选A.【答案】 A3.本着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算),有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为,,两小时以上且不超过三小时还车的概率分别是,,两人租车时间都不会超过四小时.求甲、乙两人所付的租车费用相同的概率为________.【导学号:62980048】【解析】 由题意可知,甲、乙在三小时以上且不超过四个小时还车的概率分别为,,设甲、乙两人所付的租车费用相同为事件A,则P(A)=×+×+×=.所以甲、乙两人所付的租车费用相同的概率为.【答案】 4.在一段线路中并联着3个自动控制的开关,只要其中1个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.【解】 如图所示,分别记这段时间内开关J A,J B,J C能够闭合为事件A,B,C.由题意,这段时间内3个开关是否能够闭合相互之间没有影响,根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是P()=P()P()P()=[1-P(A)][1-P(B)][1-P(C)]=(1-0.7)×(1-0.7)×(1-0.7)=0.027.于是这段时间内至少有1个开关能够闭合,从而使线路能正常工作的概率是1-P()=1-0.027=0.973.即在这段时间内线路正常工作的概率是0.973.。
高中数学选修2-3优质三段式学案1:1.2.2 组合(2)

高中数学选修2-3学案1.2.2组合(2)一、学习目标:1.掌握带有较复杂限制条件的组合问题的处理方法;2.掌握分组分配问题的处理方法.学习重点:带有较复杂限制条件的组合问题的处理方法;分组分配问题的处理方法.二、基本知识:1、组合的定义:2、组合数公式:3、组合与排列的区别:4、组合数的两个计算性质:三、典型例题例1、在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人去参加市级培训,在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加;(3)甲、乙、丙三人不能参加;(4)甲、乙、丙三人只能有1人参加;(5)甲、乙、丙三人至少1人参加.例2、(1)平面内有10个点,以其中每2个点为端点的线段共有多少条?(2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?四、课堂练习1.从4名男生,2名女生中,选2人参加某项活动,至少有一名女生参加的选法有________种.2.从正方体ABCD-A′B′C′D′的8个顶点中选取4个作为四面体的顶点,可得到的不同的四面体的个数为________.3.(2013·课标全国卷)从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n=________.学习笔记高中数学选修2-3学案学习笔记4.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有________.5.“抗震救灾,众志成城”,在我国“四川5·12”抗震救灾中,某医院从10名医疗专家中抽调6名奔赴赈灾前线,其中这10名医疗专家中有4名是外科专家.问:(1)抽调的6名专家中恰有2名是外科专家的抽调方法有多少种?(2)至少有2名外科专家的抽调方法有多少种?(3)至多有2名外科专家的抽调方法有多少种?——★参考答案★——例1.解:(1)512C =792(种)不同的选法.(2)甲、乙、丙三人必须参加,只需从另外的9人中选2人,共有29C =36(种)不同的选法.(3)甲、乙、丙三人不能参加,只需从另外的9人中选5人,共有59C =126(种)不同的选法.(4)甲、乙、丙三人只能有1人参加,分两步,先从甲、乙、丙中选1人,有13C =3(种)选法,再从另外的9人中选4人有49C 种选法,共有1439C C =378(种)不同的选法. (5)方法一 (直接法)可分为三类:第一类:甲、乙、丙中有1人参加,共有1439C C 种; 第二类:甲、乙、丙中有2人参加,共有2339C C 种; 第三类:甲、乙、丙3人均参加,共有3239C C 种. 共有1439C C +2339C C +3239C C =666(种)不同的选法. 方法二 (间接法)12人中任意选5人共有512C 种,甲、乙、丙三人不能参加的有59C 种,所以,共有512C -59C =666(种)不同的选法.例2.解 (1)以平面内10个点中每2个点为端点的线段的条数,就是从10个不同的元素中取出2个元素的组合数,即线段共有C 210=10×91×2=45(条). (2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每 2 个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段共有A 210=10×9=90(条). 课堂练习1.[[解析]] 法一 分两类, ①一男一女,共有4×2=8种; ②两女,只有1种,共有8+1=9种.法二 间接法C 26-C 24=15-6=9种.[[答案]] 92.[[解析]] 从8个顶点中任取4个有C 48种方法,从中去掉6个面和6个对角面,所以有C 48-12=58个不同的四面体.[[答案]] 583.[[解析]] 由题意知n >4,取出的两数之和等于5的有两种情况:1,4和2,3,所以P =2C 2n =114,即n 2-n -56=0,解得n =-7(舍去)或n =8.[[答案]]84.[[解析]]先从12名同学选4个上第一个路口,再从剩下的8名同学选4个上第二个路口,那么剩下的4名同学上第三个路口,则不同的分配方案共有C412C48C44=34 650种.[[答案]]34 6505.解(1)分步:首先从4名外科专家中任选2名,有C24种选法,再从除外科专家的6人中选取4人,有C46种选法,所以共有C24·C46=90(种)抽调方法.(2)“至少”的含义是不低于,有两种解答方法.方法一(直接法)按选取的外科专家的人数分类:①选2名外科专家,共有C24·C46种选法;②选3名外科专家,共有C34·C36种选法;③选4名外科专家,共有C44·C26种选法;根据分类加法计数原理,共有C24·C46+C34·C36+C44·C26=185(种)抽调方法.方法二(间接法)不考虑是否有外科专家,共有C610种选法,考虑选取1名外科专家参加,有C14·C56种选法;没有外科专家参加,有C66种选法,所以共有:C610-C14·C56-C66=185(种)抽调方法.(3)“至多2名”包括“没有”、“有1名”、“有2名”三种情况,分类解答.①没有外科专家参加,有C66种选法;②有1名外科专家参加,有C14·C56种选法;③有2名外科专家参加,有C24·C46种选法.所以共有C66+C14·C56+C24·C46=115(种)抽调方法.。
人教新课标B版高中数学选修2-3第一章计数原理1.2.1排列课件

叙述为: 从4个不同的元素a,b,c,d 中任取3个,然后按 照一定的顺序排成一列,共有多少种不同的排列方法?
abc,abd,acb,acd,adb,adc; bac,bad,bca,bcd,bda,bdc; cab,cad,cba,cbd,cda,cdb; dab,dac,dba,dbc,dca,dcb.
一个三位数,共可得到多少个不同的三位数?
1
2
3
4
23 4 1 3 4
1 24
12 3
3 4 2 4 2 3 3 41 41 3 2 41 4 1 2 2 3 1 3 1 2
有此可写出所有的三位数:
123,124,132,134,142,143; 213,214,231,234,241,243, 312,314,321,324,341,342; 412,413,421,423,431,432。
1、排列:
基本概念
从n个不同元素中取出m (m n)个元素, 按照一定的顺序排成一列,叫做从n个不同元 素中取出m个元素的一个排列。
说明:
1、元素不能重复。(互异性)
2、“按一定顺序”就是与位置有关,这是判断一
个问题是否是排列问题的关键(。 有序性)
3、两个排列相同,当且仅当这两个排列中的元素 完全相同,而且元素的排列顺序也完全相同。
3. 信号兵用3种不同颜色的旗子各一面,每次打出3 面,最多能打出不同的信号有( )
A. 1种 B.3种 C.6种 D.27种
26×25×24×10×9×8=11232000 11232000+11232000=22464000
探究:
问题1:从甲、乙、丙3名同学中选出2名参加一项活 动,其中1名同学参加上午的活动,另1名同学参加 下午的活动,有多少种不同的选法?
2017-2018学年高中数学人教B版选修2-3教学案:1-3-2

1.3.2 杨辉三角[对应学生用书P16](a +b )n 的展开式的二次项系数,当n 取正整数时可以表示成如下形式:问题1:从上面的表示形式可以直观地看出什么规律?提示:在同一行中,每行两端都是1,与这两个1等距离的项的系数相等;在相邻的两行中,除1以外的每一个数都等于它“肩上”两个数的和.问题2:计算每一行的系数和,你又能看出什么规律? 提示:2,4,8,16,32,64,…,其系数和为2n . 问题3:二项式系数的最大值有何规律?提示:n =2,4,6时,中间一项最大,n =3,5时中间两项最大.二项式系数的性质(1)每一行的两端都是1,其余每个数都等于它“肩上”两个数的和.即C 0n =C nn =1,C m n +1=C m -1n +C m n .(2)每一行中,与首末两端“等距离”的两个数相等,即C m n =C n-mn.(3)如果二项式的幂指数n 是偶数,那么其展开式中间一项T 12n+的二项式系数最大;如果n 是奇数,那么其展开式中间两项T n 12+与T 112n ++的二项式系数相等且最大.(4)二项展开式的各二项式系数的和等于2n .即C 0n +C 1n +C 2n +…+C n n =2n .且C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.由“杨辉三角”可直观地看出二项式系数的性质,同时当二项式乘方次数不大时,可借助于它直接写出各项的二项式系数.[对应学生用书P16][例1] 如图,在“杨辉三角”中,斜线AB 的上方,从1开始箭头所示的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,….记其前n 项和为S n ,求S 19的值.[思路点拨] 由图知,数列中的首项是C 22,第2项是C 12,第3项是C 23,第4项是C 13,…,第17项是C 210,第18项是C 110,第19项是C 211.[精解详析] S 19=(C 22+C 12)+(C 23+C 13)+(C 24+C 14)+…+(C 210+C 110)+C 211=(C 12+C 13+C 14+…+C 110)+(C 22+C 23+…+C 210+C 211)=(2+3+4+…+10)+C 312=(2+10)×92+220=274. [一点通]解决与杨辉三角有关的问题的一般思路:(1)观察:对题目要横看、竖看、隔行看、连续看,多角度观察; (2)找规律:通过观察,找出每一行的数之间、行与行之间的数据的规律.1.如图是一个类似杨辉三角的图形,则第n 行的首尾两个数均为________.解析:由1,3,5,7,9,…可知它们成等差数列,所以a n =2n -1. 答案:2n -12.如图,由二项式系数构成的杨辉三角中,第________行从左到右第14个数与第15个数之比为2∶3.解析:设第n 行从左至右第14与第15个数之比为2∶3,则3C 13n =2C 14n ,即3n !13!(n -13)!=2n !14!(n -14)!.解得n =34. 答案:34[例2] 设(1012 2 014·(1)求a 0+a 1+a 2+…+a 2 014的值. (2)求a 1+a 3+a 5+…+a 2 013的值. (3)求|a 0|+|a 1|+|a 2|+…+|a 2 014|的值.[思路点拨] 先观察所要求的式子与展开式各项的特点,用赋值法求解.[精解详析] (1)令x =1,得a 0+a 1+a 2+…+a 2 014=(-1)2 014=1.①(2)令x =-1,得a 0-a 1+a 2-…+a 2 014=32 014.② ①-②得2(a 1+a 3+…+a 2 013)=1-32 014, ∴a 1+a 3+a 5+…+a 2 013=1-32 0142.(3)∵T r +1=C r 2 014(-2x )r =(-1)r·C r 2 014·(2x )r , ∴a 2k -1<0(k ∈N +),a 2k >0(k ∈N ). ∴|a 0|+|a 1|+|a 2|+|a 3|+…+|a 2 014| =a 0-a 1+a 2-a 3+…+a 2 014 =32 014. [一点通]赋值法是解决二项展开式中项的系数问题的常用方法.根据题目要求,灵活赋给字母不同值是解题的关键.一般地,要使展开式中项的关系变为系数的关系,令x =0可得常数项,令x =1可得所有项的和,令x =-1可得偶次项系数之和与奇次项系数之和的差.3.(1+x )+(1+x )2+…+(1+x )n 的展开式中各项系数的和为( ) A .2n +1B .2n -1C .2n +1-1D .2n +1-2解析:令x =1,则2+22+…+2n =2n +1-2. 答案:D4.已知(1+2x -x 2)7=a 0+a 1x +a 2x 2+…+a 13x 13+a 14x 14. (1)求a 0+a 1+a 2+…+a 14; (2)求a 1+a 3+a 5+…+a 13. 解:(1)令x =1,则a 0+a 1+a 2+…+a 14=27=128.① (2)令x =-1,则a 0-a 1+a 2-a 3+…-a 13+a 14=(-2)7=-128.② ①-②得2(a 1+a 3+…+a 13)=256, ∴a 1+a 3+a 5+…+a 13=128.[例3] (10分)已知x x 233⎛⎫ ⎪⎝⎭+n 的展开式中,各项系数和与它的二项式系数和的比为32.(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.[思路点拨] 根据已知条件求出n ,再根据n 为奇数或偶数确定二项式系数最大的项和系数最大的项.[精解详析] 令x =1,则展开式中各项系数和为(1+3)n =22n . 又展开式中二项式系数和为2n , ∴22n2n =2n =32,n =5. (1)∵n =5,展开式共6项,∴二项式系数最大的项为第三、四两项,∴T 3=C 25(x 23)3(3x 2)2=90x 6,T 4=C 35(x 23)2(3x 2)3=270x 223.(2)设展开式中第k +1项的系数最大, 则由T k +1=C k 5(x 23)5-k(3x 2)k =3k C k 5x k 1043+,得⎩⎪⎨⎪⎧3k C k 5≥3k -1C k -15,3k C k 5≥3k +1C k +15,,∴72≤k ≤92,∴k =4, 即展开式中系数最大的项为T 5=C 45(x 23)(3x 2)4=405x263.[一点通]1.求二项式系数最大的项,根据二项式系数的性质,当n 为奇数时,中间两项的二项式系数最大;当n 为偶数时,中间一项的二项式系数最大.2.求展开式中系数最大项与二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式组、解不等式的方法求得.5.若⎝⎛⎭⎫x 3+1x 2n 的展开式中第6项系数最大,则不含x 的项是( ) A .210 B .120 C .461D .416解析:由题意知展开式中第6项二项式系数最大, n2+1=6,∴n =10,T r +1=C r 10x3(10-r )⎝⎛⎭⎫1x 2r =C r 10x 30-5r . ∴30-5r =0.∴r =6. 常数项为C 610=210. 答案:A6.已知(1+3x )n 的展开式中,末三项的二项式系数的和等于121,求展开式中二项式系数最大的项.解:由题意知C n n +C n -1n +C n -2n =121,即C 0n +C 1n +C 2n =121,∴1+n +n (n -1)2=121,即n 2+n -240=0,解得n =15或-16(舍).∴在(1+3x )15的展开式中二项式系数最大的项是第八、九两项,且T 8=C 715(3x )7=C 71537x 7,T 9=C 815(3x )8=C 81538x 8.二项式系数的有关性质的形成过程体现了观察——归纳——猜想——证明的数学方法,并且在归纳证明的过程中应用了函数、方程等数学思想.大致对应如下:[对应课时跟踪训练(八)]1.已知(2-x )10=a 0+a 1x +a 2x 2+…+a 10x 10,则a 8等于( ) A .180 B .-180 C .45D .-45解析:a 8=C 810·22=180. 答案:A2.在(a -b )20的二项展开式中,二项式系数与第6项的二项式系数相同的项是( ) A .第15项 B .第16项 C .第17项D .第18项 解析:第6项的二项式系数为C 520,又C 1520=C 520,所以第16项符合条件.答案:B3.已知C 0n +2C 1n +22C 2n +…+2n C n n =729,则C 1n +C 3n +C 5n 的值等于( )A .64B .32C .63D .31解析:C 0n +2C 1n +…+2n C 2n =(1+2)n =3n =729, ∴n =6,∴C 16+C 36+C 56=32.答案:B4.已知关于x 的二项式⎝⎛⎭⎪⎫x +a 3x n 展开式的二项式系数之和为32,常数项为80,则a的值为( )A .1B .+1C .2D .±2解析:由题意知2n =32,n =5, T r +1=C r 5(x )5-r a r·xr 13-=C r 5a r x5526-r ,令52-56r =0,得r =3, ∴a 3C 35=80,解得a =2. 答案:C5.在(1+2x )7的展开式中,C 27是第________项的二项式系数,第3项的系数是________. 解析:由二项式系数的定义知C k n 为第k +1项的系数, ∴C 27为第3项的二项式系数.∵T 2+1=C 27·(2x )2=22·C 27x 2, ∴第3项的系数为22·C 27=84. 答案:3 846.若(x +2)5的展开式第二项的值大于1 000,则实数x 的取值范围为________. 解析:∵T 2=C 15·(x )4·21=10x 2>1 000,且x ≥0, ∴x >10.答案:(10,+∞)7.已知⎝⎛⎭⎫x -2x 2n (n ∈N +)的展开式中第五项的系数与第三项的系数的比是10∶1,求展开式中含x 32的项.解:由题意知第五项的系数为C 4n ·(-2)4,第三项的系数为C 2n ·(-2)2,则C 4n ·(-2)4C 2n ·(-2)2=101,解得n =8(n =-3舍去). 所以通项为 T r +1=C r 8(x )8-r·⎝⎛⎭⎫-2x 2r =C r8(-2)r ·x r852-.令8-5r 2=32,得r =1. ∴展开式中含x 32的项为T 2=-16x 32.8.已知(2x -3y )9=a 0x 9+a 1x 8y +a 2x 7y 2+…+a 9y 9,求: (1)各项系数之和; (2)所有奇数项系数之和; (3)系数绝对值的和;(4)分别求出奇数项的二项式系数之和与偶数项的二项式系数之和. 解:(1)令x =1,y =1,得 a 0+a 1+a 2+…+a 9=(2-3)9=-1. (2)由(1)知,a 0+a 1+a 2+…+a 9=-1.令x =1,y =-1,可得a 0-a 1+a 2-…-a 9=59. 将两式相加,可得a 0+a 2+a 4+a 6+a 8=59-12.(3)法一:|a 0|+|a 1|+|a 2|+…+|a 9|=a 0-a 1+a 2-a 3+…-a 9,令x =1,y =-1,则|a 0|+|a 1|+|a 2|+…+|a 9|=a 0-a 1+a 2-a 3+…-a 9=59.法二:|a 0|+|a 1|+|a 2|+…+|a 9|即为(2x +3y )9的展开式中各项的系数和,令x =1,y =1,得|a 0|+|a 1|+|a 2|+…+|a 9|=59. (4)奇数项的二项式系数之和为C 09+C 29+…+C 89=28.偶数项的二项式系数之和为C 19+C 39+…+C 99=28.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时排列的综合应用1.掌握一些排列问题的常用解决方法.(重点)2.能应用排列知识解决简单的实际问题.(难点)[基础·初探]教材整理排列的综合应用阅读教材P11例3~P13,完成下列问题.1.解简单的排列应用题的基本思想2.解简单的排列应用题,首先必须认真分析题意,看能否把问题归结为排列问题,即是否有顺序.如果是的话,再进一步分析,这里n个不同的元素指的是什么,以及从n个不同的元素中任取m个元素的每一种排列对应的是什么事情,然后才能运用排列数公式求解.1.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为________.【解析】从2,4中取一个数作为个位数字,有2种取法;再从其余四个数中取出三个数排在前三位,有A34种排法.由分步乘法计数原理知,这样的四位偶数共有2×A34=48个.【答案】482.A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法种数有________种.【解析】把A,B视为一人,且B固定在A的右边,则本题相当于4人的全排列,共A44=24种.【答案】243.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的活动.若其中甲、乙两名志愿者不能从事翻译活动,则选派方案共有________种.【导学号:62980012】【解析】翻译活动是特殊位置优先考虑,有4种选法(除甲、乙外),其余活动共有A35种选法,由分步乘法计数原理知共有4×A35=240种选派方案.【答案】240[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]无限制条件的排列问题(1)有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?(2)有5种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?【精彩点拨】(1)从5本不同的书中选出3本分别送给3名同学,各人得到的书不同,属于求排列数问题;(2)给每人的书均可以从5种不同的书中任选1本,各人得到哪本书相互之间没有联系,要用分步乘法计数原理进行计算.【自主解答】(1)从5本不同的书中选出3本分别送给3名同学,对应于从5个不同元素中任取3个元素的一个排列,因此不同送法的种数是A35=5×4×3=60,所以共有60种不同的送法.(2)由于有5种不同的书,送给每个同学的每本书都有5种不同的选购方法,因此送给3名同学,每人各1本书的不同方法种数是5×5×5=125,所以共有125种不同的送法.1.没有限制的排列问题,即对所排列的元素或所排列的位置没有特别的限制,这一类问题相对简单,分清元素和位置即可.2.对于不属于排列的计数问题,注意利用计数原理求解.[再练一题]1.(1)将3张电影票分给10人中的3人,每人1张,共有________种不同的分法.(2)从班委会5名成员中选出3名,分别担任班级学习委员,文娱委员与体育委员,不同的选法共有________种.【解析】 (1)问题相当于从10张电影票中选出3张排列起来,这是一个排列问题.故不同分法的种数为A 310=10×9×8=720.(2)从班委会5名成员中选出3名,分别担任班级学习委员,文娱委员与体育委员,应有A 35=5×4×3=60.【答案】 (1)720 (2)60排队问题7名师生站成一排照相留念,其中老师1人,男学生4人,女学生2人,在下列情况下,各有多少种不同站法?(1)老师甲必须站在中间或两端;(2)2名女生必须相邻而站;(3)4名男生互不相邻;(4)若4名男生身高都不等,按从高到低的顺序站.【精彩点拨】 解决此类问题的方法主要按“优先”原则,即优先排特殊元素或优先考虑特殊位子,若一个位子安排的元素影响另一个位子的元素个数时,应分类讨论.【自主解答】 (1)先考虑甲有A 13种站法,再考虑其余6人全排,故不同站法总数为:A 13A 66=2 160(种).(2)2名女生站在一起有站法A 22种,视为一种元素与其余5人全排,有A 66种排法,所以有不同站法A 22·A 66=1 440(种).(3)先站老师和女生,有站法A 33种,再在老师和女生站位的间隔(含两端)处插入男生,每空一人,则插入方法A 44种,所以共有不同站法A 33·A 44=144(种).(4)7人全排列中,4名男生不考虑身高顺序的站法有A 44种,而由高到低有从左到右和从右到左的不同,所以共有不同站法2·A 77A 44=420(种).解决排队问题时应注意的问题1.对于相邻问题可以采用捆绑的方法,将相邻的元素作为一个整体进行排列,但是要注意这个整体内部也要进行排列.2.对于不相邻问题可以采用插空的方法,先排没有限制条件的元素,再将不相邻的元素以插空的方式排入.3.对于顺序给定的元素的排列问题只需考虑其余元素的排列即可.4.“在”与“不在”的有限制条件的排列问题,既可以从元素入手,也可以从位置入手,原则是谁“特殊”谁优先.[再练一题]2.3名男生,4名女生,按照不同的要求站成一排,求不同的排队方案有多少种.(1)甲不站中间,也不站两端;(2)甲、乙两人必须站两端.【解】(1)分两步,首先考虑两端及中间位置,从除甲外的6人中选3人排列,有A36种站法,然后再排其他位置,有A44种站法,所以共有A36·A44=2 880种不同站法.(2)甲、乙为特殊元素,先将他们排在两头位置,有A22种站法,其余5人全排列,有A55种站法.故共有A22·A55=240种不同站法.[探究共研型]数字排列问题探究1偶数的个位数字有何特征?从1,2,3,4,5中任取两个不同数字能组成多少个不同的偶数?【提示】偶数的个位数字一定能被2整除.先从2,4中任取一个数字排在个位,共2种不同的排列,再从剩余数字中任取一个数字排在十位,共4种排法,故从1,2,3,4,5中任取两个数字,能组成2×4=8(种)不同的偶数.探究2在一个三位数中,身居百位的数字x能是0吗?如果在0~9这十个数字中任取不同的三个数字组成一个三位数,如何排才能使百位数字不为0?【提示】在一个三位数中,百位数字不能为0,在具体排数时,从元素0的角度出发,可先将0排在十位或个位的一个位置,其余数字可排百位、个位(或十位)位置;从“位置”角度出发可先从1~9这9个数字中任取一个数字排百位,然后再从剩余9个数字中任取两个数字排十位与个位位置.探究3如何从26,17,31,48,19中找出大于25的数?【提示】先找出十位数字比2大的数,再找出十位数字是2,个位数字比5大的数即可.用0,1,2,3,4,5这六个数字可以组成多少个无重复数字的(1)六位奇数?(2)个位数字不是5的六位数?【精彩点拨】这是一道有限制条件的排列问题,每一问均应优先考虑限制条件,遵循特殊元素或特殊位置优先安排的原则.另外,还可以用间接法求解.【自主解答】(1)法一:从特殊位置入手(直接法)分三步完成,第一步先填个位,有A13种填法,第二步再填十万位,有A14种填法,第三步填其他位,有A44种填法,故共有A13A14 A44=288(个)六位奇数.法二:从特殊元素入手(直接法)0不在两端有A14种排法,从1,3,5中任选一个排在个位有A13种排法,其他各位上用剩下的元素做全排列有A44种排法,故共有A14A13A44=288(个)六位奇数.法三:排除法6个数字的全排列有A66个,0,2,4在个位上的六位数为3A55个,1,3,5在个位上,0在十万位上的六位数有3A44个,故满足条件的六位奇数共有A66-3A55-3A44=288(个).(2)法一:排除法0在十万位的六位数或5在个位的六位数都有A55个,0在十万位且5在个位的六位数有A44个.故符合题意的六位数共有A66-2A55+A44=504(个).法二:直接法十万位数字的排法因个位上排0与不排0而有所不同.因此需分两类:第一类:当个位排0时,符合条件的六位数有A55个.第二类:当个位不排0时,符合条件的六位数有A14A14A44个.故共有符合题意的六位数A55+A14A14A44=504(个).解排数字问题常见的解题方法1.“两优先排法”:特殊元素优先排列,特殊位置优先填充.如“0”不排“首位”.2.“分类讨论法”:按照某一标准将排列分成几类,然后按照分类加法计数原理进行,要注意以下两点:一是分类标准必须恰当;二是分类过程要做到不重不漏.3.“排除法”:全排列数减去不符合条件的排列数.4.“位置分析法”:按位置逐步讨论,把要求数字的每个数位排好.[再练一题]3.用0,1,2,3,4,5这六个数取不同的数字组数.(1)能组成多少个无重复数字且为5的倍数的五位数?(2)能组成多少个无重复数字且比1 325大的四位数?(3)若所有的六位数按从小到大的顺序组成一个数列{a n},则240 135是第几项.【导学号:62980013】【解】(1)符合要求的五位数可分为两类:第一类,个位上的数字是0的五位数,有A45个;第二类,个位上的数字是5的五位数,有A14·A34个.故满足条件的五位数的个数共有A45+A14·A34=216(个).(2)符合要求的比1 325大的四位数可分为三类:第一类,形如2□□□,3□□□,4□□□,5□□□,共A14·A35个;第二类,形如14□□,15□□,共有A12·A24个;第三类,形如134□,135□,共有A12·A13个.由分类加法计数原理知,无重复数字且比1 325大的四位数共有:A14·A35+A12·A24+A12·A13=270(个).(3)由于是六位数,首位数字不能为0,首位数字为1有A55个数,首位数字为2,万位上为0,1,3中的一个有3A44个数,∴240 135的项数是A55+3A44+1=193,即240 135是数列的第193项.[构建·体系]。