人教版高中数学选修1-1知识点总结

合集下载

高中数学选修1-1(人教A版)第三章导数及其应用3.3知识点总结含同步练习及答案

高中数学选修1-1(人教A版)第三章导数及其应用3.3知识点总结含同步练习及答案

描述:例题:高中数学选修1-1(人教A版)知识点总结含同步练习题及答案第三章 导数及其应用 3.3 导数在研究函数中的应用一、学习任务1. 了解函数的单调性与导数的关系;能利用导数研究函数的单调性;会求不超过三次的多项式函数的单调区间.2. 了解函数的极大(小)值、最大(小)与导数的关系;会求函数的极大(小)值,以及在指定区间上函数的最大(小)值.二、知识清单导数与函数的图象 利用导数研究函数的单调性 利用导数求函数的极值利用导数求函数的最值三、知识讲解1.导数与函数的图象(1)导数 表示函数 在点 处的切线斜率.当切线斜率为正值时,切线的倾斜角小于 ,函数曲线呈上升状态;当切线的斜率为负值时,切线的倾斜角大于 且小于 ,函数曲线呈下降状态.(2)如果在区间 内恒有 ,那么函数 在区间 内是常函数.()f ′x 0y =f (x )(,f ()x 0x 090∘90∘180∘(a ,b )(x )=0f′y =f (x )(a ,b ) 是函数 的导函数, 的图象如图所示,则 的图象最有可能是下列选项中的( )解:C导函数的图象在 轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在 轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由 时导函数图象在 轴的上方,表示在此区间上,原函数图象呈上升趋势,可排除 B、D 选项;由 时导函数图象在 轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除 A 选项.(x )f ′f (x )y =(x )f ′f (x )x x x ∈(−∞,0)x x ∈(0,1)xy=f(x)已知函数 的图象如图所示,则导函数f(x)(a,b)则函数 在开区间答案:解析:3. 已知函数 , 的导函数的图象如下图,那么 , 的图象可能是.A.B .C .D .D 和 都是单调递增的,但 增长的越来越慢, 增长的越来越快,并且在 处, 的切线的斜率应该相等.y =f (x )y =g (x )y =f (x )y =g (x )()f (x )g (x )f (x )g (x )x 0f (x ),g (x)高考不提分,赔付1万元,关注快乐学了解详情。

高中数学选修1-1(人教B版)第一章常用逻辑用语1.3知识点总结含同步练习题及答案

高中数学选修1-1(人教B版)第一章常用逻辑用语1.3知识点总结含同步练习题及答案

q ”,那么
1 时,mx 2 − x + 1 = 0 无实数根; 4
1 ,则 mx 2 − x + 1 = 0 无实数根,真命题; 4
写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假. (1)若 m ⋅ n < 0 ,则方程 mx 2 − x + n = 0 有实数根; (2)若 m ⩽ 0 或 n ⩽ 0,则 m + n ⩽ 0 . 解:(1)逆命题:若方程 mx 2 − x + n = 0 有实数根,则 m ⋅ n < 0 ,假命题 ; 否命题:若 m ⋅ n ⩾ 0 ,则方程 mx2 − x + n = 0 没有实数根,假命题 ; 逆否命题:若方程 mx 2 − x + n = 0 没有实数根,则 m ⋅ n ⩾ 0 ,真命题. (2)逆命题:若 m + n ⩽ 0 ,则 m ⩽ 0 或 n ⩽ 0 ,真命题; 否命题:若 m > 0 且 n > 0,则 m + n > 0 ,真命题 ; 逆否命题:若 m + n > 0 ,则 m > 0 且 n > 0 ,假命题 .
因为 p 是 q 的充分不必要条件,所以 A ⫋ B.故
{ 1 + m ⩾ 10, 或{ 1 + m > 10, 1 − m < −2, 1 − m ⩽ −2,
解得 m ⩾ 9 ,故实数 m 的取值范围是 [9, +∞).
2.若则命题的四种形式 描述: 若则命题 命题的常见形式为“若 p 则 q ”,其中 p 叫做命题的条件, q 叫做命题的结论. 逆命题 对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称 为互逆命题.其中一个命题称为原命题(original proposition),另一个称为原命题的逆命 题(inverse proposition).也就是说,如果原命题为“若 p ,则 q ”,那么它的逆命题 为“若 q ,则 p ”. 否命题 对于两个命题,如果一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,那么 这两个命题称为互否命题.其中一个命题称为原命题,另一个称为原命题的否命题(negative proposition).也就是说,如果原命题为“若 p ,则 q ”,那么它的否命题为“若 ¬p ,则 ¬q ”. 逆否命题 对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么 这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命

人教版高中数学选修1-1课件:1.1.3 四种命题间的相互关系

人教版高中数学选修1-1课件:1.1.3 四种命题间的相互关系
第一章
常用逻辑用语
1.1 命题及其关系 1.1.2 四种命题 1.1.3 四种命题间的相互关系
三维目标
1.知识与技能 (1)了解原命题、逆命题、否命题、逆否命题这四种命题的概念. (2)掌握四种命题的形式和四种命题间的相互关系,会用等价命题判断四种命题的真假. 2.过程与方法 多让学生举例,培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能 力;培养学生的抽象概括能力和思维能力. 3.情感、态度与价值观 通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及分析 问题和解决问题的能力.
备课素材
对于含有大前提的命题,在改写时大前提不动.如“已知a,b为正数,若a>b,则 |a|>|b|”中,“已知a,b为正数”在四种命题中是相同的大前提,写其他命题时都 把它作为大前提. 在写一个命题的否命题时要将命题中的关键词语改写成否定词语,特别地,“且” 的否定是“或”,“都是”的否定是“不都是”等.
备课素材
[例]写出下列命题的逆命题、否 命题和逆否命题. (1)若 a+ 5是有理数,则 a 是无 理数; (2)若 ab=0,则 a,b 中至少有 一个为零; (3)垂直于同一平面的两条直线 平行.
解: (1)逆命题:若 a 是无理数,则 a+ 5是 有理数; 否命题:若 a+ 5不是有理数,则 a 不是无 理数; 逆否命题:若 a 不是无理数,则 a+ 5不是 有理数.
新课导入
[导入一] 情景引入 在商品大战中,广告成了电视节目中一道美丽的风景线.几乎所有的广告商都熟 谙这样的命题变换艺术,如宣传某种食品,其广告词为:“拥有的人们都幸福, 幸福的人们都拥有”,初听起来,这似乎只是普通的赞美说词,然而它的实际效 果相当大.哪个家庭不希望幸福呢,掏钱买一盒就得了.你能写出其广告词的一 个等价命题吗?

人教版高中数学【选修1-1】[知识点整理及重点题型梳理]_全称量词与存在量词_基础

人教版高中数学【选修1-1】[知识点整理及重点题型梳理]_全称量词与存在量词_基础

人教版高中数学选修1-1知识点梳理重点题型(常考知识点)巩固练习全称量词与存在量词【学习目标】1.理解全称量词、存在量词和全称命题、特称命题的概念;2.能准确地使用全称量词和存在量词符号“∀” “∃ ”来表述相关的教学内容;3.掌握判断全称命题和特称命题的真假的基本原则和方法;4. 能正确地对含有一个量词的命题进行否定.【要点梳理】要点一、全称量词与全称命题全称量词全称量词:在指定范围内,表示整体或者全部的含义的量词称为全称量词.常见全称量词:“所有的”、“任意一个”、“每一个”、“一切”、“任给”等.通常用符号“∀”表示,读作“对任意”.全称命题全称命题:含有全称量词的命题,叫做全称命题.一般形式:“对M 中任意一个x ,有()p x 成立”,记作:x M ∀∈,()p x (其中M 为给定的集合,()p x 是关于x 的语句).要点诠释:有些全称命题在文字叙述上可能会省略了全称量词,例如:(1)“末位是0的整数,可以被5整除”;(2)“线段的垂直平分线上的点到这条线段两个端点的距离相等”;(3)“负数的平方是正数”;都是全称命题.要点二、存在量词与特称命题存在量词定义:表示个别或一部分的含义的量词称为存在量词.常见存在量词:“有一个”,“存在一个”,“至少有一个”,“有的”,“有些”等.通常用符号“∃ ”表示,读作“存在 ”.特称命题特称命题:含有存在量词的命题,叫做特称命题.一般形式:“存在M 中一个元素0x ,有0()p x 成立”,记作:0x M ∃∈,0()p x (其中M 为给定的集合,()p x 是关于x 的语句).要点诠释:(1)一个特称命题中也可以包含多个变量,例如:存在,R R αβ∈∈使sin()sin sin αβαβ+=+.(2)有些特称命题也可能省略了存在量词.(3)同一个全称命题或特称命题,可以有不同的表述要点三、 含有量词的命题的否定对含有一个量词的全称命题的否定全称命题p :x M ∀∈,()p xp 的否定p ⌝:0x M ∃∈,0()p x ⌝;从一般形式来看,全称命题“对M 中任意一个x ,有p (x )成立”,它的否定并不是简单地对结论部分p(x)进行否定,还需对全称量词进行否定,使之成为存在量词,也即“任意,()x M p x ∈”的否定为“0x M ∃∈,0()p x ⌝”.对含有一个量词的特称命题的否定特称命题p :0x M ∃∈,0()p xp 的否定p ⌝:x M ∀∈,()p x ⌝;从一般形式来看,特称命题“0x M ∃∈,0()p x ”,它的否定并不是简单地对结论部分0()p x 进行否定,还需对存在量词进行否定,使之成为全称量词,也即“0x M ∃∈,0()p x ”的否定为“x M ∀∈,()p x ⌝”.要点诠释:(1)全称命题的否定是特称命题,特称命题的否定是全称命题;(2)命题的否定与命题的否命题是不同的.(3)正面词:等于 、 大于 、小于、 是、 都是、 至少一个 、至多一个、 小于等于否定词:不等于、不大于、不小于、不是、不都是、 一个也没有、 至少两个 、 大于等于.要点四、全称命题和特称命题的真假判断①要判定全称命题“x M ∀∈,()p x ”是真命题,必须对集合M 中的每一个元素x ,证明()p x 成立;要判定全称命题“x M ∀∈,()p x ”是假命题,只需在集合M 中找到一个元素x 0,使得0()p x 不成立,即举一反例即可.②要判定特称命题“0x M ∃∈,0()p x ”是真命题,只需在集合M 中找到一个元素x 0,使得0()p x 成立即可;要判定特称命题“0x M ∃∈,0()p x ”是假命题,必须证明在集合M中,使 ()p x 成立得元素不存在.【典型例题】类型一:量词与全称命题、特称命题【全称量词与存在量词395491例1】例1. 判断下列命题是全称命题还是特称命题.(1)∀x ∈R ,x 2+1≥1;(2)所有素数都是奇数;(3)存在两个相交平面垂直于同一条直线;(4)有些整数只有两个正因数.【解析】(1)有全称量词“任意”,是全称命题;(2)有全称量词“所有”,是全称命题;(3)有存在量词“存在”,是特称命题;(4)有存在量词“有些”;是特称命题。

【知识点归纳】高中数学选修1-1知识点总结归纳

【知识点归纳】高中数学选修1-1知识点总结归纳

高中数学选修1-1知识点总结归纳常用逻辑用语1.1 命题及其关系1.1.1 命题1、命题:一般地,在数学中我们把语言、符号或式子表达的,可以判断真假的陈述句叫做命题。

其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。

2、命题的构成:在数学中,命题通常写成“若p ,则q ”的形式。

其中p 叫做命题的条件,q 叫做命题的结论。

1.1.2 四种命题3、互逆命题:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们这样的两个命题叫做互逆命题。

其中一个命题叫做原命题,另一个叫做原命题的逆命题。

如果原命题为“若p ,则q ”,则它的逆命题为“若q ,则p ”.4、互否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。

如果把其中的一个命题叫做原命题,,那么另一个叫做原命题的否命题。

如果原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、互逆否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题。

如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题。

如果原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”.6、以上总结概括:1.1.3 四种命题间的相互关系7、四种命题间的相互关系:一般地,原命题、逆命题、否命题与逆否命题这四种命题之间原命题 若p ,则q 逆命题 若q ,则p 否命题 若p ⌝,则q ⌝ 逆否命题 若q ⌝,则p ⌝原命题逆命题否命题逆否命题 互为 逆 否互为 逆否 互 逆 互 否互否若p ⌝,则q ⌝若q ⌝,则p ⌝若p ,则q若q ,则p互 逆的相互关系:8、四种命题的真假性:一般地,四种命题的真假性之间的关系: (1)两个命题和互否命题,它们有相同的真假性;(2)两个命题为互逆否命题或互否命题,它们的真假性没有关系。

高中数学选修1-1公式概念总结

高中数学选修1-1公式概念总结

选修1-1数学公式概念第一章 常用逻辑用语1.1 命题及其关系1.1.1 命题1、命题:一般地,在数学中我们把语言、符号或式子表达的,可以判断真假的陈述句叫做命题。

其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。

2、命题的构成:在数学中,命题通常写成“若p ,则q ”的形式。

其中p 叫做命题的条件,q 叫做命题的结论。

1.1.2 四种命题3、互逆命题:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们这样的两个命题叫做互逆命题。

其中一个命题叫做原命题,另一个叫做原命题的逆命题。

如果原命题为“若p ,则q ”,则它的逆命题为“若q ,则p ”.4、互否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。

如果把其中的一个命题叫做原命题,,那么另一个叫做原命题的否命题。

如果原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、互逆否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题。

如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题。

如果原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”.6、以上总结概括:1.1.3 四种命题间的相互关系7、四种命题间的相互关系:一般地,原命题、逆命题、否命题与逆否命题这四种命题之间的相互关系:8、四种命题的真假性:一般地,四种命题的真假性之间的关系: (1)两个命题和互否命题,它们有相同的真假性;(2)两个命题为互逆否命题或互否命题,它们的真假性没有关系。

原命题 若p ,则q 逆命题 若q ,则p 否命题 若p ⌝,则q ⌝ 逆否命题 若q ⌝,则p ⌝原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 假 假假假假原命题逆命题否命题逆否命题互为 逆 否互为逆 否 互 逆 互否互否若p ⌝,则q ⌝ 若q ⌝,则p ⌝若p ,则q若q ,则p互逆1.2 充要条件与必要条件1.2.1 充分条件与必要条件1、充要条件与必要条件:一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q .这时,我们就说,由p 可推出q ,记作p q ⇒,并且说p 是q 的充分条件,q 是p 的必要条件。

人教版高中数学【选修1-1】[知识点整理及重点题型梳理]_命题及其关系_提高

人教版高中数学【选修1-1】[知识点整理及重点题型梳理]_命题及其关系_提高

人教版高中数学选修1-1知识点梳理)巩固练习重点题型(常考知识点命题及其关系【学习目标】1.了解命题、真命题、假命题的概念,能够指出一个命题的条件和结论;2.了解原命题、逆命题、否命题、逆否命题,会分析四种命题的相互关系,能判断四种命题的真假;3.能熟练判断命题的真假性.【要点梳理】要点一、命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.要点诠释:1.不是任何语句都是命题,不能确定真假的语句不是命题,如“x>2”,“2不一定大于3”.2.只有能够判断真假的陈述句才是命题.祈使句,疑问句,感叹句都不是命题,例如:“起立”、“π是有理数吗?”、“今天天气真好!”等.3.语句能否确定真假是判断其是否是命题的关键.一个命题要么是真,要么是假,不能既真又假,模棱两可.命题陈述了我们所思考的对象具有某种属性,或者不具有某种属性,这类似于集合中元素的确定性.要点二、命题的结构命题可以改写成“若p,则q”的形式,或“如果p,那么q”的形式.其中p是命题的条件,q是命题的结论.要点诠释:1.一般地,命题“若p则q”中的p为命题的条件q为命题的结论.2.有些问题中需要明确指出条件p和q各是什么,因此需要将命题改写为“若p则q”的形式.要点三、四种命题原命题:“若p,则q”;逆命题:“若q,则p”;实质是将原命题的条件和结论互相交换位置;否命题:“若非p,则非q”,或“若⌝p,则⌝q”;实质是将原命题的条件和结论两者分别否定;逆否命题:“若非q,则非p”,或“若⌝q,则⌝p”;实质是将原命题的条件和结论两者分别否定后再换位或将原命题的条件和结论换位后再分别否定.要点诠释:对于一般的数学命题,要先将其改写为“若p,则q”的形式,然后才方便写出其他形式的命题.要点四、四种命题之间的关系四种命题之间的构成关系原命题若p则q 互互互逆为逆否逆命题若q则p互否否命题互为逆否否逆否命题若⌝p则⌝q 四种命题之间的真值关系原命题真真假假逆命题真假真假互逆否命题真假真假若⌝q则⌝p逆否命题真真假假要点诠释:(1)互为逆否命题的两个命题同真同假;(2)互为逆命题或互为否命题的两个命题的真假无必然联系.要点五、反证法:1.反证法是假设结论的否定成立,利用已知条件,经过推理论证得出矛盾,判定结论的否定错误,从而得出要证的结论正确.2.反证法的步骤:(1)假设结论不成立.(2)从假设出发推理论证得到矛盾(3)判定假设错误,肯定结论正确.3.互为逆否命题的两个命题同真同假是命题转化的依据和途径之一,因此在直接证明. 原命题有困难时,可以考虑证明与它等价的逆否命题.要点诠释:反证法是间接证明的重要方法之一.【典型例题】类型一:命题的概念例 1.判断下列语句是否为命题?若是,判断其真假.(1) x > 1 ;(2)当 x = 0 时, x > 1 ; (3) 你是男生吗? (4) 求证: π 是无理数.【思路点拨】依据命题的定义判断。

人教版高中数学选修1-1知识点总结(全)

人教版高中数学选修1-1知识点总结(全)

高中数学选修1-1知识点总结第一章 简单逻辑用语● 命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.● “若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. ● 原命题:“若p ,则q ” 逆命题: “若q ,则p ”否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝” ● 四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. ● 若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件.若p q ⇔,则p 是q 的充要条件(充分必要条件). ● 逻辑联结词:⑴且:命题形式p q ∧;⑵或:命题形式p q ∨; ⑶非:命题形式p ⌝.● ⑴全称量词——“所有的”、“任意一个”等,用“∀”表示. 全称命题p :)(,x p M x ∈∀;全称命题p 的否定⌝p :)(,x p M x ⌝∈∃.⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示. 特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀.第二章 圆锥曲线● 平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.即:|)|2(,2||||2121F F a a MF MF >=+.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.焦距为2c X 2 y 2谁分母大,焦点在哪个轴上,分母大的为a 2 ,分母小的为b 2pqp q ∧p q ∨p ⌝真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真● 椭圆的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b +=>> 范围a x a -≤≤且b y b -≤≤b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<● 平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.焦距为2c X 2 y 2谁是正的,焦点在哪个轴上,正的分母为a 2 ,负的分母为b 2 ● 双曲线的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210,0x y a b a b-=>> ()222210,0y x a b a b-=>> 范围 x a ≤-或x a ≥,y R ∈y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率()2211c b e e a a==+>渐近线方程b y x a=±a y x b=±● 实轴和虚轴等长的双曲线称为等轴双曲线.● 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.焦点到准线距离为p. ● 抛物线的几何性质:标准方程22y px =()0p >22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形顶点()0,0对称轴x 轴y 轴焦点,02p F ⎛⎫ ⎪⎝⎭,02p F ⎛⎫- ⎪⎝⎭ 0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程2px =-2p x =2p y =-2p y =离心率1e =范围0x ≥ 0x ≤ 0y ≥ 0y ≤第三章 导数及其应用● 函数()f x 从1x 到2x 的平均变化率:()()2121f x f x x x --● 导数定义:()f x 在点0x 处的导数记作xx f x x f x f y x x x ∆-∆+='='→∆=)()(lim)(00000.● 函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率.● 求切线步骤:1、求导()f x ';2、斜率k=()f x ';3、代点斜式y-y o =k(x-x o ),(x o ,y o)为切点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学选修1-1知识点总结
1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.
2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.
3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”
4、四种命题的真假性之间的关系:
(1)两个命题互为逆否命题,它们有相同的真假性;
(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).
利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;
6、逻辑联结词:⑴且(and) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.
7、⑴全称量词——“所有的”、“任意一个”等,用“ 全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;
特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;
第二章 圆锥曲线 1、平面内与两个定点1
F ,
2
F 的距离之和等于常数(大于
12
F F )的点的轨迹称为
椭圆.
即:|)|2(,2||||2121F F a a MF MF >=+。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置
焦点在x 轴上
焦点在y 轴上
图形
标准方程 ()22
2210x y a b a b +=>> ()22
2210y x a b a b +=>>
范围
a x a -≤≤且
b y b -≤≤ b x b -≤≤且a y a -≤≤
顶点
()
1,0a A -、
()
2,0a A
()
10,b B -、
()
20,b B
()10,a A -、
()
20,a A
()
1,0b B -、
()
2,0b B
轴长 短轴的长2b = 长轴的长2a =
焦点 ()
1,0F c -、
()
2,0F c
()
10,F c -、
()
20,F c
焦距 ()
222122F F c c a b ==-
对称性 关于x 轴、y 轴、原点对称
离心率
()2
2101c b e e a a ==-<<
3、平面内与两个定点
1
F ,
2
F 的距离之差的绝对值等于常数(小于
12
F F )的点的
轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。

这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距. 4、双曲线的几何性质: 焦点的位置
焦点在x 轴上
焦点在y 轴上
图形
标准方程 ()22
2210,0x y a b a b -=>> ()22
2210,0y x a b a b -=>>
范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈
顶点 ()
1,0a A -、
()
2,0a A
()
10,a A -、
()
20,a A
轴长 虚轴的长2b = 实轴的长2a =
焦点 ()
1,0F c -、
()
2,0F c
()
10,F c -、
()
20,F c
焦距 ()
222122F F c c a b ==+
对称性 关于x 轴、y 轴对称,关于原点中心对称
离心率
()2
211c b e e a a ==+>
渐近线方程
b
y x a =±
a y x
b =±
5、实轴和虚轴等长的双曲线称为等轴双曲线.
6、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.
7、抛物线的几何性质:
标准方程
22y px = ()0p >
22y px =- ()0p > 22x py = ()0p >
22x py =-
()0p >
图形
顶点
()0,0
对称轴
x 轴
y 轴
焦点 ,02p F ⎛⎫
⎪⎝⎭
,02p F ⎛⎫- ⎪⎝⎭
0,2p F ⎛
⎫ ⎪

⎭ 0,2p F ⎛
⎫- ⎪

⎭ 准线方程 2p
x =-
2p x =
2p y =-
2p y =
离心率
1e = 范围
0x ≥
0x ≤
0y ≥
0y ≤
8、过抛物线的焦点作垂直于对称轴且交抛物线于的“通径”,即
2p
AB =.
9、焦半径公式:
若点
()00,x y P 在抛物线
()
2
20y px p =>上,焦点为F ,则
02p F x P =+
; 若点()
00,x y P 在抛物线
()
2
20x py p =>上,焦点为F ,则
02p F y P =+

第三章 导数及其应用
1、函数()f x 从1x 到2x 的平均变化率:()()
2121
f x f x x x --
2、导数定义:()
f x 在点
x 处的导数记作
x x f x x f x f y x x x ∆-∆+='='
→∆=)
()(lim
)(000
00
;.
3、函数
()
y f x =在点
x 处的导数的几何意义是曲线
()
y f x =在点
()()
00,x f x P 处的
切线的斜率.
4、常见函数的导数公式:
①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④
x x sin )(cos '-=; ⑤a a a x x ln )('=;⑥x
x e e =')(; ⑦a x x a ln 1)(log '=
;⑧x x 1
)(ln '=
5、导数运算法则:
()1 ()()()()f x g x f x g x '
''±=±⎡⎤⎣⎦;
()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦;
()3()()()()()()
()()()2
0f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦.
6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增;

()0
f x '<,则函数
()
y f x =在这个区间内单调递减.
7、求函数
()
y f x =的极值的方法是:解方程
()0
f x '=.当
()00
f x '=时:
()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.
8、求函数
()
y f x =在
[],a b 上的最大值与最小值的步骤是:
()1求函数()y f x =在(),a b 内的极值;
()2将函数()
f b比较,其中最大的一个
f a,()
=的各极值与端点处的函数值()
y f x
是最大值,最小的一个是最小值.
9、导数在实际问题中的应用:最优化问题。

相关文档
最新文档