Inspection and Testing of Wind Turbine Rotor Blades

合集下载

风力发电机定检实习报告

风力发电机定检实习报告

风力发电机定检实习报告英文回答:Wind Turbine Regular Inspection Internship Report.Introduction.Wind turbines are an increasingly important source of renewable energy, but they also require regular inspection and maintenance to ensure their safety and efficiency. This internship report describes the work I carried out during a regular inspection internship at a wind farm.Methods.The inspection involved a thorough examination of the wind turbine's components, including the blades, tower, nacelle, and generator. The inspection was carried out using a variety of methods, including visual inspection, ultrasonic testing, and vibration analysis.Results.The inspection revealed several minor defects, which were repaired during the internship. The inspection also identified one major defect, which required the replacement of a blade.Discussion.The inspection results highlight the importance of regular inspection and maintenance of wind turbines. The minor defects that were repaired during the internship could have led to more serious problems if they had not been identified and fixed. The major defect that was identified could have caused the wind turbine to fail, which would have resulted in a loss of production and potential safety hazards.Conclusion.The regular inspection internship provided me withvaluable experience in the inspection and maintenance of wind turbines. The internship also highlighted the importance of regular inspection and maintenance to ensure the safety and efficiency of wind turbines.中文回答:风力发电机定检实习报告。

低电压穿越(LVRT)要求及测试

低电压穿越(LVRT)要求及测试

Wind power in Germany 德国风力发电 State 30th June 2007 2007年6月30日状况
Installed: 21,3 GW 装机容量: 21.3 GW Number: 18.700WEA 台数: 18700 台 Generated: 37,5 TWh 发电量: 37.5 TWh Energy Share: 6,9% 能源比例: 6.9%
Basic requirement in Grid Codes fast disconnection at system faults 并网导则关于系统故障时快速脱网基本要求
Low-voltage protection 低压保护: 0,8 Un High-voltage protection 高压保护: 1,06 Un Low-frequency protection 低频保护: 49 Hz High-frequency protection 高频保护: 51 Hz
Power generation of Wind Turbines - State 2001 2001年风电状况
Skv ≈ 10000 MVA G
Transmission输电网 UCTE 400 kV
Skv ≈ 1500 MVA
G
Subtransmission 次输电网 110/132 kV Industry工业 Distribution 配电网 Small Industry小工业
WT
Voltage and load-flow in transmission and subtransmission influenced 输电网和次输电网的电压和潮流受 到影响
Large scale disconnection of WT from the system at system faults leads to 系统故障时大规模风电从系统解列导致

风电中英词汇新

风电中英词汇新

风电中英词汇新英文中文AA50-years-gust50年一遇阵风AC current交流电流AC generator交流发电机AC voltage交流电压acceleration amplitude/RMS加速度幅值/有效性acceptance test验收试验accuracy(for WTGS)精度(风力发电机组)acoustic reference wind speed声的基准风速active current有功电流active power有功功率active stall power control主动失速active yawing主动偏航Active-stall主动失速Actual extracted poweradjustable pliers可调钳adjusting plate调整板Aerodynamic brake空气动力刹车aerodynamic characteristics ofrotor风轮空气动力特性aerodynamic chord of airfoil气动弦线Aerodynamics空气动力ageing tests老化试验Air boundary layerair braking system空气制动系统Air density空气密度air humidity空气湿度airfoil翼型airfoil chordAirfoil sectionAir-termination system接闪器alarm告警alternating current(AC)交流电alternatorAlternative machinealtitude海拔ambient temperature环境温度America windmill/Western windmill美国风车,西部风车amplifier放大器amplitude幅值analog signal模拟信号analogue control模拟控制Anemometer风速计Angel of attack叶片攻角angle of attack of blade叶片攻角angle of rotor shaft风轮仰角annual average wind speed年平均风速annual mean wind speedAnnual energy output年发电量annual energy production年发电量annual variation年变化apparent sound power level视在声功率级arc-control device turbines灭弧装置Array of windaspect ratio叶片展弦比asynchronous generator异步电机Atmosphere stability大气稳定性attenuation衰减auto-transformer自耦变压器auxiliary circuit辅助电路auxiliary device辅助装置Availability可用率availability(for WTGS)可用率availability factor可用系数average noise level平均噪声Average wind speedaxial pitch轴向齿距Axial thrustAxisAxis-schub/rotor-schub轴向推力,风轮推力axleazimuth angle方向角Azimuth angle,yaw angle角度,偏航BBack-up system备用系统batterybattery charger电池充电器Beaufort scale蒲田风级表bearing Bend natural frequency弯曲固有频率Belt driveBetz贝兹Betz'law贝兹定律binBlade叶片Blade assembly叶片组装Blade axis叶片轴Blade chordBlade of constant chord widthBlade calculation叶片计量Blade connection叶片连接Blade elements method叶素方法blade losses叶片损失Blade material叶片材料Blade pitch angel叶片安装角度Blade pitch changeBlade pitch controlBlade profile叶片翼型Blade roof叶根Blade root load叶根载荷Blade sectionBlade shapeBlade solidityBlade tip speed叶尖速度Blade twistBlade vibration叶片振动Blades bearing叶片轴承blocking(for wind turbines)锁定(风电机)Block building systembolt assembly螺栓组装bonding bar等电位连接带bonding conductor等电位连接导体boundary layer界面层brake(for wind turbines)刹车(风电机) brake disc刹车盘Brake flapbrake fluid刹车油brake lining闸衬片brake mechanism制动机构brake pad闸垫brake setting制动器设定braking releasing制动器释放breakdown击穿Building up建造Built-in coningbusbar母线byte字节CC O2emission C O2排放cable cutter电缆剪cage笼型Cage rotor笼型转子calmcapacitance电容capacitor电容器capacitor for voltage protection保护电容器capacity credit能力信用capacity factor能力系数castellated coupling牙嵌式联接catastrophic failure(for windturbines)严重故障(风电机)center distance中心距center gear中心轮centralized control集中控制change-over switching换接characteristic特性characteristic curves特性曲线charging充电chemical corrosion化学腐蚀chordChord width,chord lengthchordlinechordwiseChordwise bendingcircuit breaker断路器climate气候closed circuit闭合电路code代码coefficient of tensional rigidity扭转刚度系数coil线圈collector ring集电环command命令commissioning test投运试验common earth system共用接地系统commutate换向器commutate segment换向片commutation换向complex terrain复杂地形带Compressed air storagecomputational fluid dynamics(CFD)计算流体力学Concrete tower混凝土塔筒Condition monitoring system状态监视系统conductivity导电性conductor导体conductor clamp卡线钳conductor holder夹线器Cone angleConing hingeconnection联结Constant恒量constant chord blade等截面叶片contact触头contactor接触器continental climate大陆性气候continuous operation持续运行control apparatus控制电器Control by stallingControl mechanismcontrol cabinet控制柜control circuit控制电路control desk控制台control device控制装置control system(for wind turbines)控制系统(风电机)controllerControl-gear控制齿轮Conventional power plantscapacity传统电厂容量converter转换器cooler冷却机cooling system冷却系统Coriolis force科里奥利力Coriolis force科里奥利斯力(旋转力) corrosion腐蚀corrosion(offshore)侵蚀(海上)corrosion of metals金属腐蚀corrosion resistance tests耐腐试验cost成本cost of electricity发电成本coupling联轴器Coupling耦合Counter-rotating wind turbinecrane吊车critical damping临界阻尼curvature function of airfoil整形弯度函数cut in wind speed切入风速cut out wind speed切出风速Cup anemometercylindrical gear圆柱齿轮Ddaily mean value日平均值damper阻尼器damping阻尼damping coefficient阻尼系数damping ratio阻尼比Danish concept丹麦概念Darrieus rotor达里厄风轮data base数据库data set(for power performance measurement)数据集data terminal equipment(DTE)数据终端设备date set(for power performance measurement)数据组(测试功率特性)dB(A),decibel(A)scale分贝decode译码degree of curvature弯度degree of freedomdelta connection三角形联结delta connection三角形接法density of air空气密度design lifetime设计寿命design limits设计极限design limits设计极限design situation设计工况design situation设计状况Design wind speed设计风速dew露diameter and radius直径和半径dielectric test介质试验digital control数字控制Diffuser augmented wind turbinediode二极管direct current(DC)直流电流direct current machine(DC)直流电机Direct generatordirect grid connection直接栅极接线direct solar radiation(DC)直接太阳辐射direct voltage(DC)直流电压direction方向directivity(for WTGS)指向性(风力发电机组)discharging放电displacement amplitude位移幅值display lamp指示灯distance constant距离常数distortion畸变Distributed grid分布栅极distributing apparatus配电电器Distribution function分布函数diurnal variation日变化double clamp双卡头Double-fed双溃Double-feds双馈double-helical gear人字齿轮down wind下风向down-conductor引下线Downwind rotor下风向风轮drag阻力drag coefficient阻力系数Drag hinge阻力铰drain泄油Drive train驱动力系driven gear从动齿轮Driving gear主动齿轮dry-type transformer干式变压器Ducted wind turbine Dump loadduplex transmission双工传输durability耐久性Duration耐久性dust-protected防尘duty ratio负载比dynamic coupling齿啮式联接Dynamic regulated动态控制Eearth conductor接地线earth electrode接地体earth reference points(ERP)接地基准点earth resistance接地电阻earth switch接地开关Earth/ground地earthed circuit接地电路earth-termination system接地装置Economic factor经济系数Economics经济性economies of scale规模经济eddyedgewiseEdgewise bendingefficiency of WTGS机组效率Effect of altitudeEffective powereigenfrequencyelastic coupling弹性联接electric电的electric charge电荷electric circuit电路electric coupling电藕荷器electric current电流electric energy transducer电能转换器electric machine电机electric shock触电;电击electric wire and cable电线电缆electrical contact电触头electrical device电气元件electrical discharge放电electrical endurance电气寿命electrical rotating machine旋转电机electricity电electrode电极electromagnetic braking system电磁制动系统electromagnetic induction电磁感应electromagnetism电磁学electrostatics静电学emergency braking system紧急制动系emergency shutdown(for windturbines)紧急停机(风电机) encode编码endurance test耐久性试验energy能量energy balance能量平衡Energy demand能量需求Energy extractionEnergy generation cost发电成本Energy rose能量玫瑰图Energy storage能量存储Energy yield发电量Engagement/mesh啮合environment环境environment condition环境条件Epoxy环氧equipment failure information设备故障信息event information事件信息excitation response励磁响应excitation response励磁Excitation of vibrationsexciter励磁机external conditions(for WTGS)外部条件(风电机)external gear外齿轮external lightning protectionsystem外部防雷系统External pole machine外电板设备external power supply外部动力源extrapolated power curve 外推功率曲线extreme极端extreme load极端负荷Extreme wind speed极限风速Fface width齿宽fantailfail-safe失效Fail-safe-system失效系统failure失效Fatigue疲劳Fatigue load疲劳负荷fault故障fault grounding故障接地Feather顺桨Feathering of the bladeFeathering positionfeeding馈送field data现场数据field reliability test现场可靠性试验field test with turbine外联机试验filter滤波器Financial plan财务计划Fixed hubflange轮缘Flapping hingeFlaps,brake flapsflapwiseFlapwise bendingflatwiseFlatwise directionflashover闪烙Flettner rotorFlexible rotorflexible gear柔性齿轮flexible rolling bearing柔性滚动轴承flexural rigidity弯曲刚度flicker闪变flicker coefficient for continuousoperation持续运行的闪变系数flicker step factor闪变阶跃系数flow distortion气流畸变Flow separetionflutter颤振Fly-ball force离心力Fly-ball weight离心重量Fly-ball governorfoundation基础foundation earth electrode基础接地体Free yawing free stream wind speed自由流风速free stream velocityfree wheelingfreezing rain冻雨frequency频率frequency频率frequency converter变频器Frequency distribution频率分布frequency of wind speed风速频率Fuel savingfull load满负荷Full-load equivalent hours等效满负荷小时数fuse熔断器GGalerie-windmill城堡式风车gapGauss distribution高斯分布gear齿轮gear motor齿轮马达gear motor齿轮马达gear pair齿轮副gear pair齿轮副gear pair with parallel axes平行轴齿轮副gear pair with parallel axes平行轴齿轮副gear pump齿轮泵gear pump齿轮泵Gearbox齿轮箱Gearless无齿轮gears with addendum modification变位齿轮gears with dendum modification变位齿轮Gedser wind turbine盖兹风电机generator发电机Generator name plate ratingGenerator ratingGenerator shortage发电机短路geometric chord of airfoil几何弦长geostrophic wind地转风glaze雨淞global winds全球风Glass fibre reinforced plasticgiromillgrading ring均压环gravity foundation(offshore)重力桩(海上风电) Gravitational loadsgrazing angle掠射角greenhouse effect温室效应grid(electrical)电网grid codes电网码Grid connected并网Grid connected time并网时间Grid failure电网毁坏grid frequency电网频率Ground boundary地面边界层Ground roughness地面粗糙度governorgust阵风gustygust influence阵风影响gust speed阵风速度gustiness factor阵风系数guy(wire)线guy clip线卡子guyed tower拉索式塔架guyed tower拉索式塔架Gyroscopic loadsHHAWEChail冰雹half-duplex transmission半双工传输hanger吊架hardware硬件harmonics谐波heater加热器helical gear/single-helical gear斜齿轮High exponent高度幂指数High profile高轮廓线High voltage DC transmission高压系统输电High-speed rotor 高速转子Holand windmill荷兰风车hook挂钩Horizon axis水平轴Horizon axis rotorhorizontal axis wind turbine水平轴风电机Horizontal axis wind turbine(HAWT)横轴风车Horizontal axis windmillHot wire anemometerhub(for wind turbines)hub height轮毂高度hub(for wind turbines)轮毂(风电机)Hybrid system混合系统hydraulic液压hydraulic braking system液压制动系hydraulic cylinder液压缸hydraulic filter液压过滤器hydraulic fluid液压油hydraulic motor液压马达hydraulic pump液压泵hydraulics system液压系统Hydrogen storageHz(Hertz)赫兹Iidling空转idling(for wind turbines generatorsystems)空转(风电机) impedance阻抗impedance voltage阻抗电压impulse load tests冲击动荷试验Incidence(angle)Indirect grid connection间接并网induction电感induction generator感应电机inductor电感器inertial sub-range湍流惯性负区influence by the tower shadow塔影响效应influence by the wind shear风切变影响inspection检查inspection earthing检修接地installation costs安装费instantaneous power瞬时功率insulant绝缘物insulating boots绝缘靴insulating bushing绝缘套管insulating glove绝缘手套insulation绝缘insulation level绝缘比insulation resistance绝缘电阻insulator绝缘子integrated coupling固定联接integrated total/integrated value累计值interconnection(for WTGS)互连(风力发电机组)Interconnection of aerogenerators interface接口interlocker联锁装置internal gear内齿轮internal gear pair内齿轮副internal lightning protection system内部防雷系统intervalinverter变频器Investment cost投资成本Island operation岛上运行islanding岛isolate隔离isoventsiterative earth重复接地Jjumper clamp跳线线夹KKilled steel脱氧钢LLaminar flowlatent fault/dormant failure潜伏故障lattice tower推架塔Large unitlayer层Lead-lag hingeleading edge前缘leakage current泄漏电流length of blade叶片长度Length of full load/overload(P10Hz>=100%Prated)满负荷/过负荷Length of partial load(P10Hz<100%Prated)部分负荷life寿命life test寿命试验Lift升力Lift coefficient升力系数Lift force力Lift-drag rationLight structure轻结构lightning current雷电流lightning protection避雷保护lightning protection system(LPS)防雷系统lightning protection zone(LPZ)防雷区limit speed switch限速开关limit state极限状态limit switch限位开关limited current circuit限流电路limiting value极限值link挂环load负载load case载荷情况load characteristic负载特性Load distribution Load factorLoan贷款local control就地控制locking device锁定装置logarithmic wind shear law对数风切变律loss损耗low voltage apparatus低压电器lullMMain bearingmain circuit主电路main contact主触头main shafting bearing主轴承maintenance维护Maintenance contract维护合同Maintenance cost维护成本maintenance test维护试验Manufacturers制造厂家manufacturing cost制造成本masking noise遮蔽噪音mast桅杆maximum bare table acceleration空载最大加速度Maximum designed wind speedmaximum measured power最大测量功率maximum permitted power最大允许功率maximum power(of a wind turbine generator system)最大功率maximum power of wind turbine风电机最大功率maximum power(for wind turbines)最大功率maximum rotational speed最大转速maximum torque coefficient最大系数maximum turning speed of rotor风轮最高转速Maximum value of active最大有效值Maximum value of wind direction风向最大值Maximum value of wind speed最大风速mean geometric chord of airfoil平均几何弦长mean life平均寿命mean line中弧线mean monthly temperature月平均温度mean sea level平均海平面mean wind speed平均风速measured power curve测量功率曲线measurement parameters测量参数measurement period测量周期measurement sector测量扇区measurement sector测量扇区measurement set测量位置Mechanical brake机械刹车mechanical braking system机械制动系统mechanical endurance 机械寿命Mechanical powerMegawatt turbine MW级风电机组meshing interference啮合干涉method of bins比恩法Micro-scale微观测量Micro-sitting微观选址Medium-sized unitMethod of binsMinimum value active power最小效值Minimum value wind direction风向最小Minimum value wind speed最小风速model模型modulator-demodulator(modem)调制解调器Modular sections module模数Moment coefficient力矩系数Momentummonitored information监视信息Monopile单管桩monopile foundation(offshore)单管桩motor电动机mountain wind山风Multi-blades rotor多锋面转子multiple-stage planetary gear train多级行星齿轮系NNacelle机航Nacelle vibration机航振动natural frequency固有频率Natural frequency固有频率net electric power output净电功率输出network connection point(for WTGS)电网连接点(风力发电机组)network impedance phase angle电网阻抗相角neutral point 中性点noise噪声no-load空载no-load operation空载运行non-load current空载电压non-working flank非工作齿面normal braking system正常制动系normal condition正常状态normal operation正常运行normal pitch法向齿距Normal shutdown(for windturbines)正常停机normal shutdown(for wind turbines)正常关机nose cone整流罩number of teeth齿数Numbers of Blade叶片数Oobstacles障碍物occupatiol safety职业安全ocean climate海洋性气候offshore wind energy陆风风能oil cooler油冷却器oil seal油封oil-immersed type transformer油浸式变压器Oldham coupling滑块联接one-to-one control mode一对一控制方式on-load indicator有载指示器on-load operation有载运行open circuit断开电路open-air climate露天气候open-circuit characteristic开路特性open-circuit operation开路运行open-phase protection断相保护operating conditions工况Operating data collection运行数据统计operating rotational speed range运行转速范围operating time工作时间operation and maintenance costs运维成本Operation brake运行刹车Operation cost运行费用Operation hours运行小时Operation load运行负荷operation management运行管理operational environment工作环境orientation mechanism迎风机构Orientation driveOrientation of the rotoroscillation振荡oscillator振荡器Outage timeoutput输出output characteristic of WTGS风力发电机组输出特性output coupling输出联接output power(for WTGS)输出功率(风力发电机组)output shaft输出轴over power(for wind turbines)过载功率Over speedOver speed controlover-current过电流over-current protection过电流保护over-current protective device过电流保护装置over-voltage过电压over-voltage protection过电压保护Pparallel connection并联Park effect停机影响parked wind turbine风电机停机parking停机parking brake(for wind turbines)停机制动(风电机)passive yawing被动偏航Peak loadpeak value峰值period周期periodic vibration周期振动Permanent magnet永磁phase相位photoelectric device光电器件pinion小齿轮pinion柱销pitch桨距pitch angle桨距角pitch circle节圆Pitch momentpitch point节点Pitch-regular叶片可变桨Pitch-regulation变桨距调节planetPlanet factorplanet carrier行星架planet gear行星齿轮planetary gear drive mechanism行星齿轮传动机构planetary gear train行星齿轮系PLC controlling PLC控制point of common coupling公共供电点pole(magnetic)极(磁)Pole towerPole millpole changing generator变极电动机Poles change极对数变化porosity多孔性position indicator位置指示器Position of rotor转子位置potential bonding等电位连接Power功率power(electrical)功率(电)power cable电力电缆Power coefficient功率系数power coefficient功率系数power collection system(forWTGS)电力汇集系统(风电机组)Power control功率控制Power curve功率曲线Power curve measurement功率曲线测量power density功率密度Power duration curvepower factor功率因数power law for wind shear对数变幂律Power limitPower level duration curvePower in the wind功率极限Power of grid connected并网功率power of the wind风力功率Power outputpower performance功率特性power quality电能能量Power regulation功率调节Power spectrum功率铺Power transistor功率管precipitation降水pressure angle压力角pressure control valve压力控制阀pressure switch压力继电器pressured gauge压力表Prevailing wind directionpreventive maintenance维护primary current一次电流primary voltage一次电压profile modification齿廓修形programmable control可编程序控制projected area of blade叶片投影面积proof voltage耐电压Propeller type windmillprotected against dropping water防滴protected against splashing防溅protected against the effects ofimmersion防浸水protection lever保护等级protection spectacles护目镜protection system(for WTGS)保护系统(风力发电机组)protective circuit保护电路protective earthing保护接地protective relay保护继电器protocol协议pulsating current脉动电流pulsating voltage脉动电压Pumped storageQquality factor品质因数RRacing of the rotorradial pin coupling径向销联接radiant flux辐射通量radiation辐射rain雨random vibration随机振动ratchet spanner棘轮扳手rated apparent power额定视在功率rated condition额定工况rated current额定电流rated frequency额定频率rated load额定负载rated load torque额定转矩rated operational current额定工作电流rated operational voltage额定工作电压rated power(for WTGS)额定功率(风电机组)Rated power,nameplate power额定功率,铭牌功率rated reactive power额定无功功率rated speed额定转速rated tip-speed ratio 额定叶尖速度比(标准高速性系数)rated torque coefficient额定力矩系数rated turning speed of rotor风轮额定转速rated value额定值rated voltage额定电压rated wind speed(for windturbines)额定风速(风电机)ratio of over load过载度ratio of tip-section chord to root-section chord叶片根梢比Rayleigh distribution瑞利分布reactance电抗reactance voltage电抗电压reactive current无功电流reactive power无功功率real time实时rectifier整流器Rectangular bladeReefing mechanismreducing valve减压阀redundancy冗余技术Reference area of the ratorreference distance基准距离reference height基准高度reference roughness length基准粗糙长度reference wind speed参考风速regulationregulating characteristics调节特性regulating mechanism调速机构regulating mechanism by adjustingthe pitch of blade变桨距调节机构regulating mechanism of turningwind rotor out of the windsideward风轮偏侧式调速机构relative humidity相对湿度relative thickness of airfoil翼型相对厚度Relative velocityrelay继电器reliability可靠性reliability test可靠性测定试验relief valve溢流阀remote monitoring远距离监控remote terminal unit(RTU)运动终端renewable energy可再生能源Renewable-energy-law可再生能源法repair sleeve补修管repair time修复时间residual current残余电流residual current circuit-breaker漏电断路器resistance电阻resistance voltage电阻电压resistivity电阻率resistor电阻器resonance共振response time响应时间return information返回信息Reynold number雷诺/雷诺数rigid coupling刚性联轴器rigid coupling刚性联接rigidity刚度rigidity gear刚性齿轮rime霜淞ring earth electrode环形接地体ring gear/annulus gear内齿圈rip of blade叶尖roller柱销套Roller bearingroot circle齿根圆root of blade叶根rotating union旋转接头Rotation counter/azimuth-logger旋转圈数/角度记录器Rotation moment转动力矩Rotation moment转矩Rotation moment support转动力矩支撑Rotation process旋转过程Rotation speed转速Rotation speed converter转速变换器Rotation speed limit转速限制rotationally sampled wind velocity旋转采样风矢量rotor(of a generator)发电机转子rotor(of a wind turbine)风轮(风电机)rotor area(swept)rotor area风轮区域Rotor bearing转子轴承rotor blade风轮叶片rotor blade twist风轮叶片扭转rotor diameter风轮直径Rotor hub旋翼毂rotor power coefficient风能利用系数Rotor rotation moment风轮转距Rotor shaft转轴rotor solidity风轮实度rotor speed(for wind turbines)风轮转速(风电机)rotor swept area风轮扫掠面积Rotor of low tip speed rationRotor of medium tip speed rationrotor wake风轮尾流roughness class粗糙种类roughness length粗糙长度roughness roseroutine test常规试验Runaway of the rotorSsafe distance安全距离safe life安全寿命safety安全safety belt安全带safety color安全色safety concept安全方案safety helmet安全帽safety impedance安全阻抗safety isolating transformer安全隔离变压器safety marking安全标志safety switch安全开关safety system安全系统safety valve安全阀salt fog盐雾Sail wingsampling test抽样试验saturation characteristic饱和特性Savonius rotor赛沃尼斯风轮Scale parameter(Weibull distribution)尺度参数screen display屏幕显示sea bird海鸟sea breeze海风seam welding machine缝焊机secondary current二次电流secondary voltage二次电压security coupling安全联轴器Self mass Self orientationsemiconductor半导体semiconductor device半导体器件sensor传感器sequential order of the phases相序series circuits串联电路series connection串联service conditions使用条件service life使用寿命serviceability limit states使用极限状态set point value设定值setting angle of blade叶片安装角setting pressure设定压力shackle U形挂环shadow casting投影电子显微术shaft轴shape parameter(Weilbulldistribution)形状参量shelter effect保护影响shielding ring屏蔽环shock current触电电流short circuit短路short circuit current短路电流Shortage behaviorShortage currentShortage rotorshort-circuit characteristic短路特性short-circuit operation短路运行short-circuit ratio短路比short-term cut-out wind speed短时切出风速Shrouded wind turbineshutdown(for wind turbines)关机(风电机)signal信号signal circuit信号电路Similar theory相似理论simplex transmission单身传输Single bladed rotorsingle clamp单卡头single planetary gear train单级行星齿轮系sinusoidal正弦曲线site电场位置site electrical facilities风场电气设备Site evaluate场地评估Siting densitysite,siting风场,风场选择sky radiation天空辐射Skew wind Slender rotorsliding shoes滑动制动器slip转差率slip转差率slip(generator)滑(发电机) slopeSlow running rotorSlow speed rotorSmall unitSmooth running of the machinesnow load雪载soft start软启动Soft towersoftware软件software platform软件平台solar constant太阳常数solar radiation太阳辐射solar spectrum太阳光谱solenoid螺线管solenoid valve电磁阀solidity losses实度损失Solidity ratiosound声sound pressure level声压级spacer间隔棒Spacing of plantsspecial purpose spanner专用扳手specified breakaway torque规定的最初起动转矩Specific powerSpeed characteristics转速特性speed increasing gear pair增速齿轮副speed increasing gear train增速齿轮系speed increasing ratio增速比Speed three angles速度三角形speed up effect加速效应splicing sleeve接续管splinted coupling花键联接spoiler扰流板spoiling flap阻尼板spot corrosion点腐蚀spur gear直齿圆柱齿轮stall失速stall control ratorstall regular失速规律Stall-strips失速条standard air pressure标准大气压standard atmospheric state 标准大气状态Standard deviation of wind标准差standard uncertainty标准误差standardized wind speed规格化风速standby time待命时间standstill静止star connection星形联结starting moment启动力矩starting signal起动信号starting torque coefficient起动力矩系数starting torque coefficient起动力矩start-up起动state information状态信息stator定子Stay cableSteel tower钢塔step voltage跨步电压Stepped阶梯式storage贮存Storage in flywheelsstorage condition贮存条件strain clamp耐张线夹stream tube流线管Strength强度stress应力strong current control强电控制structural dynamics结构动力学sun gear太阳轮support structure(for wind turbines)支撑结构(风电机)surface temperature表面温度surge arrester/lightning arrester避雷器surge suppressor电涌保护器survival wind speed(deprecated)安全风速suspension clamp悬垂线夹swept area扫掠面积switch开关switch board配电盘switchgear开关设备switching通断switching切换switching operation切换运行Swivel bendingsynchronizing coefficient同步系数Synchronous同步synchronous generator同步电机synchronous speed同步转速synchronous speed同步速度system software系统软件system with effectively earthedneutral中性点有效接地系统TTapered bladetap position information分接头位置信息tapping分接T-connector T形线夹Teetered hubtelecommunicationcable/communication cable通信电缆Tele-monitoring远程监视temperature coefficient温度系数temperature rise温升terminal接线端子terminal connector设备线夹terminal voltage端电压test data试验数据test on bed台架试验test site试验场地test-bed试验台the family of airfoil翼型族Thermal stiragethickness function of airfoil厚度函数thickness of airfoil翼型厚度thimble心形环Three angels connect三点支撑Three blade ratorThree phase alternating current三相电流Three points bearing三点轴承thrust coefficient推或拉力系数thunderstorm雷暴thyristor晶闸管Tilt angleTip Blade可变叶尖Tip braketip circle齿顶圆tip losses叶尖损失tip speed叶尖速度tip-speed ratio叶尖速度比(高速性系数)tonality音值tooth齿Tornado towertorque coefficient力矩系数torsion rigidity扭转刚度Total efficiency/turbine efficiency风机总效率Total power available in the windtouch voltage接触电压tower塔架Tower shadowtowing plate牵引板Tracked vehicle airfoil concepttrailing edge后缘train of gears齿轮系transfer ratio传递比transformer变压器tripod foundation(offshore)三项基础Truss towertubular tower塔筒Turbine operation机组运行turbulenceTurbine wheelTurbulence flowturbulence intensity紊流强度turbulence scale parameter湍流尺度参数Turning direction of rotor风轮转方向Type of generator发电机结构twistTwo blade rotorUunitultimate limit state极限状态uncertainty in measurement测量误差Untwisting(of cable)解缆Upwind location of the rotor上风向Upwind speed末流速度Utility gridUtilisation time of rated powerutilityVV-beltVariable变量Variable(rotational)speed变速Variables/constant operation变速/恒速运行Variation of blade pitchVelocity duration curveVelocity in the rotor planeVenture wind turbineVertical axis纵轴Vertical axis wind energyconvertervertical axis wind turbine(VAWT)竖轴风车Vertical wind profile viscosity粘性vibrationvortex generator扰流器Vortex losses涡流损失wWake effect伴流影响weak gridWeibull distribution威布尔分布weighted sound pressure level加权声压级Wind风wind breakWind directionwind energy风能wind energy conversion systemwind energy converterWind farm layout风场布局Wind forceWind frequency distributionwind map风图Wind measurement风的测定wind power风力wind power plant风场wind profile风速轮廓线Wind pump风力泵wind rose风向玫瑰图wind shadewind shear风切变wind shear exponent风切变指数wind speed风速wind speed distribution风速分布Wind strengthWind regimewind turbine风机Wind tunnelwind turbine generator system风力涡轮发电机wind vane风标wind velocity风速Wind-atlas风图谱Wind-diesel-system风柴系统Windmill风车Worm gearYYaw偏航Yaw controlyaw mechanism偏航结构yawing偏航。

风电专业术语中英文对照

风电专业术语中英文对照

风力机wind turbine风力发电机组wind turbine generator system (WTGS)风电场wind power station; wind farm水平轴风力机horizontal axis wind turbine垂直轴风力机vertical axis wind turbine轮毂(风力机)Hub(for wind turbines)机舱nacelle支撑结构(风力机)support structure (for wind turbine)关机(风力机)shutdown (for wind turbine)紧急关机(风力机)emergency shutdown(for wind turbine) 空转(风力机)idling(for wind turbine)锁机(风力机)blocking (for wind turbine)停机(风力机)parking静止standstill制动器(风力机)brake(for wind turbine)停机制动(风力机)parking brake (for wind turbine)风轮转速(风力机)rotor speed (for wind turbine)控制系统(风力机)control system (for wind turbine)保护系统(风力发电系统)protection system (for WTGS) 设计工况design situation载荷情况load case外部条件(风力机)external conditions (for wind turbine) 设计极限design limits极限状态limit state安全寿命safe life风速wind speed风矢量wind velocity额定风速(风力机)rated wind speed(for wind turbine)切入风速cut-in wind speed切出风速cut-out wind speed年平均annual average年平均风速annual average wind speed平均风速mean wind speed极端风速extreme wind speed风切变wind shear下风向down wind上风向up wind阵风gust粗糙长度roughness length湍流强度turbulence intensity风场wind site测量参数measurement parameters测量位置measurement seat最大风速maximum wind speed风功率密度wind energy density阵风影响gust influence环境environment气候climate海洋气候ocean climate室内气候indoor climate极端最高extreme极端最高extreme maximum年最高annual maximum月平均温度mean monthly temperature空气湿度air humidity绝对湿度absolute humidity相对湿度relative humidity雨rain冻雨freezing rain雾凇;霜rime雾fog盐雾salt fog标准大气压standard air pressure平均海平面mean sea level太阳辐射solar radiation直接太阳辐射direct solar radiation天空辐射sky radiation太阳常数solar constant黑体black body白体white body温室效应greenhouse effect表面温度surface temperature输出功率(风力发电机组)output power额定功率(风力发电机组)rated power功率特性power performance功率系数power coefficient扫掠面积swept area测量功率曲线measured power可利用率(风力发电机组)availability(for WTGS)数据组(测试功率特性)data set(for power performance measurement) 精度(风力发电机组)accuracy(for WTGS)测量误差uncertainty in measurement测量周期measurement period实验场地test site气流畸变flow distortion障碍物obstacles风障wind break声压级sound pressure level声级weighted sound pressure level; sound level值向性(风力发电机组)directivity(for WTGS)音值tonality风的基准风速acoustic reference wind speed标准风速standardized wind speed基准高度reference height基准粗糙长度reference roughness length基准距离reference distance掠射角grazing angle比恩法method of bins标准误差standard uncertainly风能利用系数rotor power coefficient力矩系数torque coefficient额定力矩系数rated torque coefficient起动力矩系数starting torque coefficient最大力矩系数maximum torque coefficient过载度ratio of over load风力发电机组输出特性output characteristic of WTGS调节特性regulating characteristics平均噪音average noise level机组效率efficiency of WTGS机组寿命service life度电成本cost per kilowatt hour of the electricity generated by WTGS 风轮wind rotor风轮直径rotor diameter风轮扫掠面积rotor swept area风轮仰角tilt angle of rotor shaft风轮偏航角yawing angle of rotor shaft风轮额定转速rated turning speed of rotor风轮最高转速maximum turning speed of rotor风轮尾流rotor wake尾流损失wake losses风轮稳定rotor stability实度损失the degree of actual loss叶片数number of blades叶片blade等截面叶片constant chord blade变截面叶片面积variable chord blade叶片投影面积projected area of blade叶片长度length of blade叶根root of blade叶尖tip of blade叶尖速度tip speed桨距角pitch angle翼型airfoil前缘leading edge后缘tailing edge几何弦长geometric chord of airfoil平均几何弦长mean geometric chord of airfoil气动弦线aerodynamic chord of airfoil翼型厚度thickness of airfoil翼型相对厚度relative thickness of airfoil厚度函数thickness function of airfoil翼型族the family of airfoil叶片根梢比ratio of tip-section chord to root-section chord叶片展弦比aspect ratio叶片安装角setting angle of blade叶片扭角twist of blade叶片几何攻角angle of attack of blade叶尖损失tip losses叶片损失blade losses颤振flutter迎风机构orientation mechanism调速机构regulating mechanism风轮偏侧式调速机构regulating mechanism of turning wind rotor out of the wind sideward 变桨距调节机构regulating mechanism by adjusting the pitch of blade导流罩nose顺桨feathering阻尼板spoiling flap风轮空气动力特性aerodynamic characteristics叶尖速比tip-speed ratio额定叶尖速比rated tip-speed ratio升力系数lift coefficient阻力系数drag coefficient推或拉力系数thrust coefficient传动比transmission ratio齿轮gear齿轮副gear pair平行轴齿轮副gear pair with parallel axes齿轮系train of gears行星齿轮系planetary gear train小齿轮pinion大齿轮wheel gear主动齿轮driving gear从动齿轮driven gear行星齿轮planet gear行星架planet carrier太阳轮sun gear内齿圈ring gear外齿轮external gear内齿轮internal gear内齿轮副internal gear pair增速齿轮副speed increasing gear pair增速齿轮系speed increasing gear train中心距离center distance增速比speed increasing ratio齿面tooth flank工作齿面working flank非工作齿面non-working flank模数module齿数number of teeth啮合engagement ; mesh齿轮的变位addendum modification on gear变位齿轮gear with addendum modification圆柱齿轮cylindrical gear直齿圆柱齿轮spur gear斜齿圆柱齿轮helical gear; single-helical gear节点pitch point节圆pitch circle齿顶圆tip circle齿根圆root circle直径和半径diameter and radius齿宽face width齿厚tooth thickness压力角pressure angle蜗杆worm蜗轮worm wheel联轴器coupling刚性联轴器rigid coupling万向联轴器universal coupling安全联轴器security coupling齿tooth齿槽tooth space斜齿轮helical gear人字齿轮double-helical gear齿距pitch法向齿距normal pitch齿高tooth depth输入轴input shaft输出轴output shaft柱销pin柱销套roller行星齿轮传动机构planetary gear drive mechanism 中心轮center gear单级行星齿轮系single planetary gear train多级行星齿轮系multiple-stage planetary gear train 柔性齿轮flexible刚性齿轮rigidity gear柔性滚动轴承flexible rolling bearing输出联接output coupling刚度rigidity扭转刚度torsional rigidity扭转刚度系数coefficient of torsional rigidity 起动力矩starting torque传动误差transmission error传动精度transmission accuracy固有频率natural frequency弹性联接elastic coupling刚性联接rigid coupling滑块联接Oldham coupling固定联接integrated coupling齿啮式连接dynamic coupling花键联接splined coupling牙嵌式联接castellated coupling径向销联接radial pin coupling周期振动periodic vibration随机振动random vibration峰值peak value临界阻尼critical damping阻尼系数damping coefficient阻尼比damping ratio减震器vibration isolator幅值amplitude位移幅值displacement amplitude速度幅值velocity amplitude加速度幅值acceleration amplitude同步发电机synchronous generator异步发电机asynchronous generator感应电机induction generator转差率slip瞬态电流transient current笼型cage绕线转子wound rotor绕组系数winding factor换向器commutator集电环collector ring换向片commutator segment励磁响应excitation response制动系统braking system制动机构brake mechanism正常制动系normal braking system紧急制动系emergency braking system空气制动系air braking system液压制动系hydraulic braking system电磁制动系electromagnetic braking system 机械制动系mechanical braking system辅助装置auxiliary device制动器释放braking releasing制动器闭合brake setting液压缸hydraulic cylinder溢流阀relief valve泄油drain齿轮马达gear motor齿轮泵gear pump电磁阀solenoid valve液压过滤器hydraulic filter液压泵hydraulic pump液压系统hydraulic system油冷却器oil cooler压力控制阀pressure control valve安全阀safety valve设定压力setting pressure切换switching旋转接头rotating union压力表pressure gauge液压油hydraulic fluid液压马达hydraulic motor油封oil seal刹车盘brake disc闸垫brake pad刹车油brake fluid闸衬片brake lining滑动制动器sliding shoes偏航yawing主动偏航active yawing被动偏航passive yawing偏航驱动yawing driven解缆untwist塔架tower独立式塔架free stand tower拉索式塔架guyed tower塔影效应influence by the tower shadow 远程监视telemonitoring协议protocol实时real time单向传输simplex transmission半双工传输half-duplex transmission双工传输duplex transmission前置机front end processor运动终端remote terminal unit (RUT)调制解调器modern数据终端设备date terminal equipment 接口interface数据电路date circuit信息information状态信息state information分接头位置信息tap position information监视信息monitored information事件信息event information设备故障信息equipment failure information返回信息return information告警alarm设定值set point valve瞬时测量instantaneous measured计量值counted measured ; metered measured ; metered reading 确认acknowledgement信号signal模拟信息analog signal命令command字节byte位:比特bit地址address波特BD编码encode译码decode代码code集中控制centralized control可编程序控制programmable control微机程制minicomputer program control模拟控制analogue control数字控制digital control强电控制strong current control弱电控制weak current control单元控制unit control就地控制local control联锁装置interlocker模拟盘analogue board配电盘switch board控制台control desk紧急停车按钮emergency stop push-button限位开关limit switch有载指示灯on-load indicator位置指示灯position indicator屏幕显示screen display指示灯display lamp起动信号starting signal公共供电点point of common coupling闪变flicker数据库data base硬件hardware硬件平台hardware platform层layer ; level ; class模型model响应时间response time软件software软件平台software platform系统软件system software自由脱扣trip-free基准误差basic err一对一控制方式one-to-one control mode一次电流primary current一次电压primary voltage二次电流secondary current二次电压secondary voltage低压电器low voltage额定工作电压rated operational voltage运行管理operation management安全方案safety外部条件external condition(for WTGS)失效failure故障fault控制柜control cabinet冗余技术redundance正常关机normal shutdown (for wind turbine)失效-安全fail-safe排除故障clearance空转idling (for wind turbine)外部动力external power supply锁定装置locking set临界转速activation rotational speed最大转速maximum rotational speed过载功率over power (for wind turbine)临界功率activation power (for wind turbine)最大功率maximum power (for wind turbine)外联机试验field test with turbine试验台test-bed台架试验test on bed防雷系统lighting protection system(LPS)外部防雷系统external lighting protection system 内部防雷系统internal lighting protection system 接闪器air-termination system等电位连接equipotential bonding引下线down-conductor接地装置earth-termination system接地线earth conductor接地体earth electrode环行接地体ring earth electrode基础接地体foundation earth electrode等电位连接带bonding bar等电位连接导体bonding conductor保护等级protection lever防雷区lightning protection zone雷电流lightning current电涌保护区surge suppressor共用接地系统common earthing system接地基准点earthing reference point (ERP)持续运行continuous operation持续运行的闪变系数flicker coefficient for continuous operation 闪变阶跃系数flicker step factor最大允许功率maximum permitted power最大测量功率maximum measured power电网阻抗相角network impedance phase angle正常运行normal operation功率采集系统power collection syetem额定电流rated current额定无功功率rated reactive power停机standstill起动start up切换运行switching operation风力机最大功率maximum power of wind turbine风力机停机parked wind turbine安全系数safety system控制装置control device额定负载rated load周期period相位phase频率frequency阻尼damping电electricity电的electric电流electric current导电性conductivity电压voltage电磁感应electromagnetic induction励磁excitation电阻率resistivity导体conductor半导体semiconductor电路electric circuit串联电路series circuit电容capacitance电感inductance电阻resistance阻抗impedance电抗reactance传递比transfer ration交流电压alternating voltage交流电流alternating current脉动电压pulsating voltage脉动电流pulsating current直流电压direct voltage直流电流direct current瞬时功率instantaneous power有功功率active power无功功率reactive power有功电流active current无功电流reactive current功率因数power factor中性点neutral point相序sequential order of the phase电气元件electrical device接线端子terminal电极electrode地earth ; ground接地电路resistance of an earthed conductor 绝缘子insulator绝缘套管insulating bushing母线busbar线圈coil螺线管solenoid绕组winding电阻器resistor电感器inductor电容器capacitor继电器relay电能转换器electric energy transducer电机electric machine发电机generator电动机motor变压器transformer变流器converter变频器frequency converter整流器rectifier逆变器inverter传感器sensor偶合器electric coupling放大器amplifier振荡器oscillator滤波器filter触头contact开关设备switchgear控制设备controlgear闭合电路closed circuit断开电路open circuit通断switching联结connection串联series connection并联parallel connection星型联结star connection三角形联结star connection主电路main circuit辅助电路auxiliary circuit控制电路control circuit信号电路signal circuit保护电路protective circuit换向commutation输入功率input power输入input输出output负载load加载to load充电to charge放电to discharge有载运行on-load operation空载运行no-load operation开路运行open-circuit operation 短路运行short-circuit operation 满载full load效率efficiency损耗loss过电压over-voltage过电流over circuit欠电压under-voltage特性characteristic绝缘物insulant隔绝to isolate绝缘电阻insulation resistance 泄漏电流leakage current短路short circuit噪音noise额定值rated value环境条件environment condition 工况operating condition额定工况rated condition极限数limiting value绝缘比insulation level负载比duty ratio抽样试验sampling test维护试验maintenance test投运试验commissioning test加速accelerating特性曲线characteristic curve额定电压rated voltage额定频率rated frequency额定转速rated speed温升temperature rise温度系数temperature coefficient端电压terminal voltage短路电流short circuit current可靠性reliability有效性availability耐久性durability维修maintenance修复时间repair time寿命life寿命试验life time使用寿命useful life平均寿命mean life耐久试验endurance test可靠性测定试验reliability determination现场可靠性试验field reliability test加速试验accelerated test安全性fail safe应力stress强度strength试验数据test data现场数据field data电触头electrical contact主触头main contact击穿breakdown电线电缆electrical wire and cable电力电缆power cable通讯电缆telecommunication cable ; communication cable 油浸式变压器oil-immersed type transformer干式变压器dry-type transformer自耦变压器auto-transformer空载电流non-load current阻抗电压impedance voltage电抗电压reactance voltage电阻电压resistance voltage配电电器distributing apparatus控制电器control apparatus开关switch熔断器fuse断路器circuit breaker控制器controller接触器contactor机械寿命mechanical endurance电气寿命electrical endurance旋转电机electrical rotating machine直流电机direct current machine交流电机alternating current machine同步电机synchronous machine异步电机asynchronous machine感应电机induction machine开路特性open-circuit characteristic负载特性load characteristic短路特性short-circuit characteristic额定转矩rated load torque同步转速synchronous speed转差率slip短路比short-circuit ratio同步系数synchronous speed空载no-load系统system正常状态normal condition接触电压touch voltage跨步电压step voltage对地电压voltage to earth安全阻抗safer impedance安全距离safe distance安全标志safe marking安全色safety color中性点有效接地系统system with effectively earthed neutral 检修接地inspection earthing工作接地working earthing保护接地protective earthing过电压保护over voltage protection过电流保护over current protection断相保护open-phase protection电力电子器件power electronic device晶闸管thyratron电力二级管power diode半导体整流器semiconductor rectifier –SR绝缘栅双级晶体管insulated-gate bipolar transistor------IGBT 普通二级管(整流二级管)general purpose diode。

风力发电机组 测风激光雷达 技术要求与试验方法

风力发电机组 测风激光雷达 技术要求与试验方法

风力发电机组测风激光雷达技术要求与试验方法1.风力发电机组是一种利用风力发电的装置。

Wind turbine is a device that generates electricity using wind power.2.测风激光雷达是一种用激光技术测量风速和方向的设备。

Lidar for wind measurement is a device that measures wind speed and direction using laser technology.3.风力发电机组的转子叶片需要根据测风激光雷达的数据进行调整。

The rotor blades of the wind turbine need to be adjusted based on the data from the wind measuring lidar.4.测风激光雷达的技术要求包括高精度、远距离测量、快速响应等。

Technical requirements for wind measuring lidar include high precision, long-range measurement, and quick response.5.测风激光雷达需要经过严格的校准和测试,以确保准确性和可靠性。

Wind measuring lidar needs to undergo rigorouscalibration and testing to ensure accuracy and reliability.6.测风激光雷达的测试方法包括对比分析、场地实测等。

Testing methods for wind measuring lidar include comparative analysis and on-site measurements.7.风力发电机组的测风激光雷达需要定期维护和校准。

Wind turbine's wind measuring lidar needs regular maintenance and calibration.8.测风激光雷达的数据可以用于预测风力发电机组的发电量。

Design and testing of wind turbine blade

Design and testing of wind turbine blade

Publication collected by Risø DTULiterature – Design and testing of wind turbine blade Table of Contents1.Full-scale tests-Risø publications: (2)2.Full-scale tests-Excl. Risø publications: (3)3.Subcomponent testing Risø publications: (4)4.Subcomponent testing excl. Risø publications: (4)5.PhD Thesis: (5)6.Structural health monitoring: (6)7.Experimental Measuring Methods: (7)8.Certification: (7)9.Student Projects: (8)10.Optimization (9)11.Elastic mechanism: (9)12.Fracture mechanism: (10)posites: (11)14.Adhesive Joints: (12)15.Sandwich: (12)16.FEM: (14)17.Measuring Systems (15)18.Blade test facilities, wind turbine blades, Aero structures and Economical (15)19.Patents (16)20.Design Criteria: (16)21.Lessons from aircraft structures: (16)22.Archiving Code: (17)1.Full-scale tests-Risø publications:1.“Full Scale Test of SSP 34m blade, edgewise loading LTT. Data Report 1”M. Nielsen,F. M. Jensen, P. H. Nielsen, P. Berring, K. Martyniuk, A. Roczek, T. Sieradzan, V.Roudnitski, P. Kucio, R. Bitsche, P. Andreasen, T. Lukassen, Z. Andrlová, K. Branner, C.Bak, B. Kallesøe, M. McGugan, C. Bak. Risø-R-1718(EN). (January 2010). Code:R_E_z.2.“Investigating the impact of non-linear geometrical effects on wind turbine blades Part1: Current design status and future challenges in design optimization”, Find M. Jensen,Amit S. Puri 2, John P. Dear 2, Kim Branner 1, Andrew Morris, Journal paper (submittedWind Energy 2009). Code: P_E_L.3.“Investigation of structural behaviour due to bend-twist couplings in wind turbineblades”V.A.Fedorov, N.Dimitrov,C. Berggreen, S. Krenk, K. Branner, P. Berring(2009).Code: P_E_z.4.“The Brazier effect in Wind-Turbine Blades and its Influence on Design”. F.M. Jensen,P.M. Weaver, L.S. Cecchini, H. Stang, R.F. Nielsen. (Submitted Wind Energy 2009).Code: P_E_L5.“Full-scale Test of an SSP34m box girder 2 – Data Report”. F. M. Jensen, K. Branner, P.H. Nielsen, P. Berring, T. S. Antvorskov, M. Nielsen, J. H. Reffs, P. H. Jensen, M.McGugan. C. Skamris, F. Sørensen, R. S. Nielsen, J. H. Laursen, M. Klein, A. Morris, H.Stang, J. Wedel-Heinen, J. P. Dear, A. Puri, A. Fergusson Risø-R-1588(EN). (May2008). Code: R_E_L6.“Full-scale Test of an SSP34m box girder 1 – Data Report”. F. M. Jensen, K. Branner, P.H. Nielsen, P. Berring, T. S. Antvorskov, M. Nielsen, B. Lund, C. Jensen, J. H. Reffs, R.F. Nielsen; P. H. Jensen, M. McGugan, K. Borum, R. S. Hansen, C. Skamris, F.Sørensen, R. S. Nielsen, J. H. Laursen, M. Klein, A. Morris, A. Gwayne, H. Stang, J.Wedel-Heinen, J. P. Dear, A. Puri, A. Fergusson. Risø-R-1622(EN). (March 2008).Code: R_E_L7.“Full-scale testing and finite element simulation of a 34 metre long wind turbine blade”.F. M. Jensen, A. Morris. NAFEMS World Congress. (April 2007). Code: P_E_L8.“Torsional Performance of wind Turbine Blades – Part II: Numerical Validation”. K.Branner, P. Berring, C. Berggreen, H. W. Knudsen. (2007). Code: P_E_z9.“Torsional Performance of wind Turbine Blades – Part I: Experimental Investigation”. P.Berring, K. Branner, C. Berggreen, H. W. Knudsen. (2007). Code: P_E_L10.“On aspects of non-linear bending behaviour of a wind-turbine blade under full-scaletesting”. F. M. Jensen, P. M. Weaver, L.S. Cecchini, H. Stang. Abstract forCOMPTEST2006 conference in Porto. (April 2006). Code: P_E_L11.“On aspects of non-linear bending behaviour of a wind-turbine blade under full-scaletesting”. F. M. Jensen. Keynote presentation. NAFEMS-UK Seminar in UK, November 4 pages abstract. (2006). Code: P_E_L12.“Structural testing and numerical simulation of a 34m. Composite wind turbine blade”.F. M. Jensen, B.G. Falzon, J. Ankersen,H. Stang, Composite Structures 76. (2006).Code: P_H_L13.“Structural testing and numerical simulation of a 34m. Composite wind turbine blade”.F. M. Jensen, B.G. Falzon, J. Ankersen,H. Stang. ICCM15 Conference. (June 2005).Code: P_H_L14.”Improved design of large wind turbine blades of fibre composites (Phase2) – Summaryreport”. B.F. Sørensen, K. Branner, H. Stang, H.M. Jensen, E. Lund, T.K. Jacobsen, K.H.Halling. Risø-R-1526 (EN). (2005). Code: R_E_L15.“Full scale testing of wind turbine blade to failure – Flapwise loading”. E. R. Jørgensen,K. K. Borum, M. McGugan, C. L. Thomsen, F. M. Jensen, C. P. Debel, B. F. Sørensen Risø-R-1392(EN). (2004). Code: R_E_L16.”Improved design of large wind turbine blade of fibre composites based on studies ofscale effects (Phase 1) – Summary Report”. B.F. Sørensen, E. Jørgensen, C. P. Debel, F.M. Jensen, H. M. Jensen, T. K. Jacobsen, K. M. Halling. Risø-R-1390(EN). (2004).Code: R_E_L17.“Compression Strength of a Fibre Composite Main Spar in a Wind Turbine Blade”. F.M. Jensen. Risø-R-1393(EN). (June 2003). Code: R_E_L18.”K log af skade på vindmøllevinger”. G. Willumsen. Risø Nyt, 1. (2003.). Code: P_E_L19.“Modal A nalysis of wind turbine blades”. G. C. Larsen, M. H. Hansen, A. Baumgart, I.Carlén. Risø-R-1181(EN), Risø National Laboratory. Denmark. (2002). Code: R_E_L 20.“Kalibrering af Partiel l e sikkerhedsfaktorer for udmattelse af vindmøllerotorer”. C. J.Christensen., K. O. Ronold, M. Tøgersen Risø-R-1204(DA). (2000). Code: R_E_L 21.”Method to Predict Fatigue Liftimes of GRP Wind turbine Blades and Comparison withExperiments”. A.T. Echtermeyer. C. Kensche, P.Bach, M. Poppen, H. Lilholt, S.I.Andersen, P. Brøndsted. Det Norske Research AS (DNV), Deutsche Forschungsanstalt für Luft- und Raumfart (DLR). Netherland. (1996). Code: P_E_L2.Full-scale tests-Excl. Risø publications:1.“Necessity and Requirements of a Collaborative Effort to Develop a Large Wind TurbineBlade Test Facility in North America”. J. Cotrell, W. Musial, S. Hughes. TechnicalReport. (May 2006). Code: R_E_L2.“Structural Response Analysis of Vestas V52 Wind Turbine Blade” L. Overgaard, P.P.Camanho, E. Lund. CompTest2006 Composites Testing and Model Identification.Portugal, Abstract. (April 2006) Code: P_E_L3.“Structural Design Sensitivity Analysis and Optimization of Vestas V52 Wind TurbineBlade”. L. C. T. Overgaard, E. Lund. In: Proc. of the 6th World Congress on Structural and Multidisplinary Optimization, (June 2005) Code: P_E_L4.“On Structural Assessment of Failure Mechanisms and Instability Phenomena in the V52Wind Turbine Blade Static Test Performed within the EFP2003 Programme”. L. C. T Overgaard. Internal Report. (July 2005) Code: R_E_L5.“Static Test to Structural Collapse of a V52 Wind Turbine Blade, Part A: Assessment ofStructural Collapse”, L. Overgaard, E. Lund (2005). Code: P_T_z6.“Static Test to Structural Collapse of a V52 Wind Turbine Blade, Part B: Synthesisbetween Blade Response and Predictive Models”. L. Overgaard, E. Lund (2005)C. In Progress. Code: P_T_z7.“Full Scale Structural Experimental Investigation of an E-Glass/Epoxy Composite WindTurbine Blade”. C. Kong, Y. Sugiyama, J. Lee, C. Soutis. (October 2002) Code: P_E_L 3.Subcomponent testing Risø publications:1.“Investigating the impact of non-linear geometrical effects on wind turbine blade. Part 2:Experimental investigations of the interlaminar failure of load carrying laminates, A.S.Puri, F.M. Jensen, J. P. Dear, A.P. Morris, I. Palmer and J. Ankersen,In Production.Code: P_E_L2.“Stochastic models for strength of wind turbine blades using tests” H. Stensgaard, J.D.Sørensen. Aalborg University, Denmark and Risø National Laboratory. EWEC (2008) Code: P_E_L3.”Modelling Failure in Cross-Section of Wind Turbine Blade” K. Branner. Risø NationalLaboratory, NAFEMS-Seminar. Denmark (June 2006) Code: P_E_L4.“Buckling-driven delamination growth in composite laminates: Guideline for assessingthe threat posed by interlaminar matrix delamination” B. L. Karihaloo, H. Stang.Composites Science and Technology, (2006). Code: P_E_L5.“Finite Element Analysis of the Cross-section of Wind Turbine Blades; a Comparisonbetween Shell and 2D-Solid Models”. D.R. Pardo, K. Branner. Wind. Engineering,Volume 29, No. 1, (2005). Code: P_E_L4.Subcomponent testing excl. Risø publications:1.“Large scale buckling experiment and validation of predictive capabilities” L.Kühlmeier, O.T. Thomsen, E. Lund – Vestas Wind Systems Denmark. AalborgUniversity. Code: P_E_L2.“Postbuckling Analysis of a Wind Turbine Blade Substructure” T. M. Hermann,D.Mamarthupatti, J. E. Locke,(Director, Research and Development; Airbus Engineering).Faculty Fellow National Institute for Aviation Research. Wichita State University.(November 2005) Code: P_E_L3.“Nye fremskridt inden for afprøvning af designdetaljer”, LM Newsletter, (Februar 2005)Code: P_E_L4.”Development of Large CFRP Rotor Blade Components” P.A. Joosse, D.R.V. van Delft,A.M. van Wingerde, Ch. W. Kensche, J.F. Kooij, R.M. Van den Berg, D. Søndergaard, J.Korsgaard, F. Hagg. (January 2002) Code: R_H_L5.”Design, Structural testing, and cost effectiveness of sectional wind turbine blades” A.G. Dutton, C. Kildegaard, T. Dobbe, R. Bensoussan, C. Kensche, F. Hahn, D.R.V. vanDelft, G. D. de Winkel. (November 2000) Code: R_H_L6.“Computational structural Analysis and Testing”. R. Krüger, S. Rinderknecht, C. Hänsel,M. König. University of Stuttgart Germany (1996) Code: P_E_L7.“Integrated testing in reliable design of large wind turbine blades”. J. Korsgaard, T. K.Jacobsen. LM Glassfiber A/S, Denmark. Code: P_E_L8.“Subcompo nent Testing for Wind Turbine Blades” E. Stammes, A. González Canales,R.P. L Nijssen Code: R_E_L5.PhD Thesis:1.“Researching the Non-Linear Geometrical Effects Caused by Static Flap-Wise Loadingof a Wind Turbine Blade” A. Puri, PhD Thesis. Imperial College London, February 2010, In Progress. Code: R_E_L2.“Ultimate strength of a large wind turbine blade” F. M. Jensen. PhD Thesis. RisøNational Laboratory, Technical University of Denmark. (Submitted May 2008) Code: R_E_L3.“Interface fracture in composite materials and structures” R. C. Østergaard. PhD Thesis.DCAMM Special report No. S102 (November 2007) Code: B_H_F4.“Buckling of wind turbine rotor blades. Analysis, design and experimental validation” L.Kühlmeier. PhD-Thesis. Special Report No. 58 (November 2007) Code: B_H_F5.“Modelling of ECC materials using numerical formulations ba sed on plasticity” L. D.Nielsen. PhD Thesis. Department of civil engineering. DTU. Denmark (October 2007) Code: R_E_L6.“Thermoplastic Composite Wind Turbine Blades”. K. Van Rijswijk. PhD - Thesis (April2007) Code: B_E_L7.“Fatigue life prediction and stre ngth degradation of wind turbine rotor bladecomposites” R. P. L. Nijssen. Technical University Delft. PhD Thesis Code: R_E_L8.“The non-linear flexural response of thin-walled beams” L. S. Cecchini. PhD Thesis.University of Bristol, (2006) Code: R_E_L9.“In-plane compressive behaviour of stiffened thin-skinned composite panels with a stressconcentrator” M. Koundouros. PhD - Thesis (April 2005). Code: R_E_L10.“Impact Response and Delamination of Composite Plates”. R. Olsson. Royal Institute ofTechnology. PhD Thesis. Sweden, (April 1998) Code: R_H_F11.“Response Analysis of Dynamically Loaded Composite Panels”. H. J. Riber. PhD Thesis.(June 1997) Code: R_H_F12.“Capacity and Lifetime of Foam Core Sandwich Structures” K. Branner. PhD Thesis.Technical University of Denmark (1995). Code: R_E_F13.“Damage tolerance of foam core sandwich constructions”. D. Zenkert. PhD Thesis. Theroyal institute of technology Sweden (July 1990) Code: R_H_F6.Structural health monitoring:1.“Future persp ectives for design and testing of win d turbine blades”. J. Wedel-Heinen.Energy Report. Det Norske Veritas. (April 2008) Code: R_E_L.2.“Analysis of Wind Turbine Material using Digital Image Correlation”A. Puri, J. P.Dear, A. Morris, F. M. Jensen. EWEC Conference (2008) Code: P_E_L3.“Nonlinear System Identification for Damage Detection” C. R. Farrar, K. Worden, M.D. Todd, G. Park, J. Nichols, D.E. Adams, M. T. Bement, K. Farinholt. (November2007) Code: R_E_L4.“Fundamentals for remote condition monitoring of offshore wind turbine blades”. M.McGugan.DTU – Risø. (September 2007) Code: P_E_L5.“Damage detection in a stiffened curved plate by measuring differential strains”. A.Fernández-López, J.M. Menendez, A. Güemes. Universidad Politécnica de Madrid and Airbus España. (2007) Code: P_E_L6.“Stru ctural Health Monitoring of a rotor blade during statical load test”. L. Schubert,M. Küttner, B. Frankenstein, D. Hentschel. (2007) Code: P_E_L7.“Smart sensor system for structural condition monitoring of wind turbines”. M.J. Schulz,M.J. Sunderaresan, University of Cincinnati, Ohio and North Carolina A&T stateUniversity Greensboro. (April 2006) Code: R_E_L8.“Improving the Structural Testing of Wind Turbine Blades by Monitoring AcousticEmission”, M. McGugan, T. Bech, B. F. Sørensen, E. Jørgensen, O. J. D. Kristensen.Proceedings of the 4th International Workshop on Structural Health Monitoring. Stanford University. USA. (September 2003). Code: P_E_L9.“Fundamentals for remote structural health monitoring of wind turbine blades - apreproject”. B. F. Sørensen, L. Lading, P. Sendrup, M. McGugan, C. P. Debel, O. J. D.Kristensen, G. C. Larsen, A. M. Hansen, J. Rheinländer, J. Rusborg, J. D. Vestergaard, Risø-R-1336(EN) (2002) Code: R_E_L10.“Shearography inspections on panels from VTT”. J. Gustafsson. CSM MaterialteknikAB. SanNDI Inspection and Repair of sandwich Structures in Naval Ships. (2001) Code: P_E_L11.“Development of wind turbine rotor blade structural health monitoring techniques usingdigital image correlation”. A. Puri, A. Fergusson, J. Dear, A. Morris, F M. Jensen. 2007 British Wind Energy Association Conference. Abstract only. Code: P_E_L12.“Impedance-based on Health Monitoring of Composites”. B. L. Grisso, D. M. Peairs, D.J. Inman. Code: R_E_L13.“Guided elastic waves and their impact interaction in CFRP s tructures characterized by3D laser scanning vibrometry”. L. Schubert, M. Barth, T. Klesse, B. Köhler, B.Frankenstein. Fraunhofer Institute for Non-Destructive Testing. Germany. Code: P_E_L.14.“Comparison of the Three Different Approaches for Damage Detecti on in the Part of theComposite Wind Turbine Blade” M. Luczak, B. Peeters, W. Szkudlarek, L. Mevel, M.Döhler, W. Ostachowicz, K. Martynuik, K. Branner7.Experimental Measuring Methods:1.“Digital image correlation and finite element analysis of wind turbine blade structuralcomponents” A. Puri, A. Fergusson, J. Dear, A. Morris, F.M. Jensen. 2007 European Offshore Wind Energy Association Conference, Lindvig, K.ed, Estrel Convention centre, Berlin, Germany (December 2007), Paper AP3B.3. Code: P_E_L2.“Experimental techniques for improving life assessment and qualification of wind turbineblades”, A. Pielbalgs, 2008 European Wind Energy Conference, Bussels Expo, Belgium, March 2008. Code: P_E_L3.“Failure analysis of wind turbine material using non-destructive techn iques”, A. Puri, J.Dear, A. Morris and F.M. Jensen, SEM XI, International Congress and ExpositionExperimental and Applied Mechanics, K. Ramsay ed, Orlando, Florida, July 2008, paper29. Code: P_E_L4.“Non-destructive analysis of wind turbine blade structur al integrity”. A. Puri, I. Palmer,J.P. Dear, A. Morris, F. Jensen, M. McGugan, ASME Pressure Vessels and PipingConference 2009, L.H. Geraets, Y.W. Kwon, A.A. Dermenjan, eds, Prague, CzechRepublic, July 2009, PVP2009_77501. Code: P_E_L8.Certification:1.“Full Scale Testing of Blades. Now, and For the Future” J. K. Tadich and J. W-Heinen.European Wind Energy Conference (EWEC 2007) Code: R_E_L2.“A Comparison of Wind Turbine Aeroelastic Codes Used for Certification”. M.L. Buhl,A. Manjock. Reno, Nevada. (January 2006). Code: R_E_L3.“New guidance for the development of wind turbine blades”Josef Kryger Tadich, Jakob Wedel-Heinen, and Peter Petersen. Det Norske Veritas –Global Wind Energy conference. Denmark (2005) Code: P_H_L4.“Design and manufacture of wind turbine blades” DNV-OS-J102. Det Norske Veritas(October 2005) Code: P_E_L5.IEC 61400-1 Code: x_y_z6.“Wind turbine generator systems - Part 23. Full-scale structural testing of rotor bladesfor WTGSs”. IEC 61400-23 TS Ed. 1 Code: x_y_z7.”Materials Challenges in Present and Future Wind Energy” B. Hayman, J. Wedel-Heinen, P. Brøndsted, MRS Bulletin, Vol. 33, April 2008 Code: R_E_L9.Student Projects:1.“Optics measurement and numerical simulation of a wind turbine blade”W. Ma. Master Project. Technical University of Denmark - Risø National Laboratory, (July 2007) Code: B_E_L2.“Simulation of non-linear structural effects in wind turbine blades” B. Lund. MasterProject. Aalborg University (June 2007) Code: B_H_L3.“Resultat behandling fra fuldskalaforsøg”. T. S. Antvorskov. Final Project. Engineerschool in Copenhagen (December 2006) Code: B_H_L4.”Defects in FRP Panels and their influence on Compressive Strength” C. Jensen.Master’s t hesis. Technical University of Denmark and Risø National Laboratory.(February 2006) Code: R_E_L5.“Torsional performance of large wind turbine blades – experimental and numericalanalysis” P. Berring, H.W. Knudsen. Master‟s t hesis. Technical University of Denmark and Risø National Laboratory, (September 2006) Code: R_E_L6.“Application of Load Carrying Sandwich Elements in Wind Turbine Blades”, J.P.Schultz, J. F. Jensen. Master‟s t hesis. Technical University of Denmark and RisøNational Laboratory. (2005) Code: x_T_z7.“Finite Element Analysis of Wind Turbine Blade Sections” D. Pardo. Master thesis.Technical University of Denmark and Risø National Laboratory. (September 2004) Code: R_E_L8.“The Application of Aeroelastic Analysis Output Load Distributions to Finite ElementModels of Wind Turbine Blades” T. J. Knill. Master thesis. Technical University ofDenmark. (July 2004) – Revision B Code: R_E_L9.“Finite Elements for geometric non-linear analysis of composite laminates and sandwichstructures” L. R. Jensen, J. C. Rauhe, J. Stegmann. Master Thesis. Aalborg University.(2001). Code: R_E_L10.“Structural behaviour of trailing edge panels in an SSP34m wind turbine blade” Studentreport (Special course) A.Roczek, T.Sieradzan Technical University of Denmark and Risø National Laboratory. (February 2009) Code: R_E_L11.“Bestemmelse af den kritiske bulingslast på vingebjælker” Joan H. Reffs. Summerschool, FEM-course, 7, 5 ECTS. Technical University of Denmark and Risø National Laboratory (August 2008) Code: R_H_L12.“Buling i plader” Brian B. Rasmussen. Technical University of Denmark and RisøNational Laboratory (August 2008) Code: R_E_L13.“120m Future Generation Blade (FGB) Design for Manufacture Feasibility Study” P.C.Flower. Master thesis. Technical University of Denmark. (2009) Code: R_E_z14.“Optimization of Material Layup for Wind Turbine Blade Trailing Edge Panels” A.Roczek. Master thesis. Risø DTU National Laboratory for Sustainable Energy (2009) 15.“Weight cost efficiency of a new wind turbine blade concept” T. Sieradzan. Masterthesis. Risø DTU National Laboratory for Sustainable Energy (2009)10.O ptimization1.“Buckling Optimization of Laminated Hybrid Composite Shell Structures Using DiscreteMaterial Optimization”. E. Lund, L. Kühlmeier, J. Stegmann. In: Proc. WCSMO6 – 6th World Congress on Structural and multidisciplinary Optimization. Brazil (June 2005) Code: P_E_L2.“On Structural Optimization of Composite Shell Structures Using a Discrete ConstitutiveParameterization”. E. Lund, J. Stegmann, Wind Energy, Vol. 8. (2005)Code: P_E_L 3.“Discrete material optimization of General composite Shell Structures”. J. Stegmann, E.Lund. International Journal for Numerical methods in Engineering, Vol. 62, No. 14.(2005) Code: P_E_L4.“Discrete material optimization of Laminated Comp osite Shell Structures Using LocalStrain Criteria”. J. Stegmann, E. Lund.In: Proc. WCSMO6 – 6th World Congress on Structural and Multidisciplinary optimization. Brazil. (June 2005) Code: P_E_L5.“Nonlinear Topology Optimization of Layered Shell Structures.”Structural andMultidisciplinary Optimization, Vol. 29. J. Stegmann, E. Lund. (2005). Code: P_E_L 6.“Design Studies for Twist-Coupled Wind Turbine Blades”. J. Locke, U. Valencia (June2004) Code: R_E_L7.“Evaluation of Design Concepts for Adaptive Wind Turbine Blades”. D. Griffin. USA.(August 2002) Code: R_E_L8.“The Implementation of Braided Composite Materials in the Design of a Bend-TwistCoupled Blade”. J. Locke, I. C. Hidalgo (August 2002) Code: R_E_L9.“Implementation of bending-torsion coupling in the design of a wind turbine rotorblade”. W.C. de Goeij, M.J.L. van Tooren, A. Beukers. Netherlands. (1999) Code:P_E_L10.“Experimental, numerical and analytical results for bending and buckling of rectangularorthotropic plates” J.C. Roberts, G. Bao, G. J. White. (1999) Code: P_E_L11.“Optimization of Laminated Composite Structures Using. Delamination Criteria andAdaptive Models”(Slides.)L. S. Johansen, E. Lund. Code: P_E_L12.“Preliminary Design of Large Wind Turbine Blades Using Layout OptimizationTechniques” S. Joncas, M. Jan de Ruiter, F. van Keulen. Delft University of Technology, Delft, the Netherlands Code: P_E_L11.E lastic mechanism:1.”Buckling Analysis of Generally Laminated Cylindrical Shells. An Analytics Approach”.L. Kühlmeier, K. M. Halling, E. Lund, O. T. Thomsen. In: Proc. 17th Nordic Seminar on Computational Mechanics, (Eds. A. Eriksson, J. Månsson, G. Tibert) (2004) Code:P_E_L2.“Anticlastic effects and the transition from narrow to wide behaviour in orthotropicbeams” S. R. Swanson, Composite Structures 53 (2001) Code: P_E_L3.“BuckBlade.” Buckling Load Design Methods for Rotor Blades. …Programs for bucklingstrength prediction of rotor blades‟. C. Lindenburg (May 2001) Code: P_E_L4.“BuckBlade”. Buckling Load Design Methods for Rotor Blades. C. Lindenburg (May1999) Code: P_E_L5.“Thin-walled composite beams under bending, torsional and extensional loads”, R.Chandra, A. D. Stemple, I. Chopra, Journal of Aircraft, 27(7) (1990) Code: P_E_L6.“Direct Determination of Asymptotic Structural Postbuckling Beha viour by the FiniteElement Method” P. N. Poulsen, L. Damkilde. Denmark (1998) Code: R_E_L7.“Buck Blade”. T. Geiger. Report about buckling tests. (1998) Code: P_E_L8.“On t he flexure of thin cylindrical shells and other …thin‟ sections” Brazier, L.G. Late ofthe Royal Aircraft Establishment. Reports and Memoranda no1081 (M.49). (1926) Code: P_E_L9.“Buck Blade” Finite Element Buckling Analysis of Wind Turbine Blades. C.Lindenburg, T. Geiger, P. A. Joosse, B. Weisser. Netherland. Code: R_E_L10.“The Brazier effect in multi-bay aerofoil sections” Luca S. Cecchini, Paul M. WeaverUniversity of Bristol – UK Code: R_E_L11.“Application of load Carrying Sandwich Elements in Large Wind Turbine Blades”. J. F.Jensen, J. P. Schultz, C. Berggreen, K. Branner. Technical University of Denmark and Risø National Laboratory, Code: P_E_L12.“Postbuckling Analysis of a Wind Turbine Blade Substructure” T. M. Hermann, D.Mamarthupatti and J. E. Locke. 2005. Code: P_E_z12.F racture mechanism:1.“Damage Analysis of a Wind Turbine Blade” L. Ove rgaard, E. Lund. In: Proc. of theECCOMAS thematic Conference on Mechanical Response of Composites, Portugal,(September 2007) Code: P_E_L2.“Interdisciplinary Damage and Stability Analysis of a Wind Turbine Blade” L.Overgaard, E. Lund. In: Proc. of the 16th International Conference on CompositeMaterials, Japan. (July 2007) Code: P_E_L3.“Structural Instability Phenomena in Wind Turbine Blades”. L. Overgaard, E. Lund. 2ndPhD Seminar on Wind Energy in Europe, Risoe National Laboratory, Denmark (October 2006) Code: P_E_L4.“Computational fracture Mechanics for Composites State of the Art and Challenges” R.Krueger USA (June 2006) Code: R_H_L5.“Delamination growth in composite plates under compressive fatigue loads” S. Bennati,P.S. Valvo. Italy. (August 2005). Code: R_E_L6."Improved design of large wind turbine blade of fibre composites based on studies ofscale effects (Phase 1). Summary report". Sørensen, B. F., Jørgensen, E., Debel, C. P., Jensen, F. M., Jensen, H. M., Jacobsen, T. K., and Halling, K. Risø-R-1390(EN). (2004) Code: R_E_L7."A general mixed mode fracture mechanics test specimen: The DCB-specimen loadedwith uneven bending moments," Sørensen, B. F., Jørgensen, K., Jacobsen, T. K. and Østergaard, R. C. Report Risø-R-1394(EN), Risø National Laboratory. Denmark. (2003) Code: R_E_L8.“Accelerated Fatigue Testing og LM 19.1 Blades” Ole J.D. Kristensen. Risø-R-1358(EN)(April 2003) Code: R_E_L9.“Residual stress effects on the compressive strength of unidirectional fibre composites”H. M. Jensen. (Marts 2002) Code: P_E_L10.“Crack initiation and growth in brittle bonds”Henrik Myhre Jensen, (September 2003)Code: P_E_L11.“Buckling of Laminated Composite Plates and Shell Panels” W. Leissa (January 1985)Code: R_E_L12.”Generic Buckling Curves for Especially Orthotropic Rectangular Plates”. E.J. Brunelleand G. A. Oyibo. USA. (1982) Code: P_y_z13.“Simulation of delamination including fibre bridging using cohesive zone models” A. L.Hansen, E. Lund, B. F. Sørensen. ECCOMAS Thematic Conference on MechanicalResponse of Composites. (September 2007) Code: P_E_L14.“On the Effect of Curvature in Debonded Sandwich Panels Subjected to CompressiveLoading” R. Moslemian, C. Berggreen, K. Branner, L. A. Carlsson. 8th InternationalConference on Sandwich Structures (2008) Code: P_E_L15.“A Mixed Mode Constitutive Damage Model for Multi-scale Fracture Analysis ofComposite Structures” A. L. Hansen, E. Lund. XXII ICTAM August 2008, Adelaide, Australia. Code: P_E_L16.“Failure Investigation of Debonded Sandwich Columns: An Experimental and Numeric alStudy” R. Moslemian, C. Berggreen, L. A. Carlsson & F. Aviles. Code: R_E_L13.C omposites:1.“User‟s Guide to PreComp (Pre-Processor for Computing Composite BladeProperties)”. G.S. Bir. Technical Report (January 2006). Code: R_E_L.2.“Vacuum infused thermoplastic composites for wind turbines blades”. K. van Rijswijk,S. Joncas, O.J.A. Malek, H.E.N. Bersee and A. Beukers. (2006) Code: P_E_L3.“Composite materials for wind power turbine blades”. Povl Brønsted, Hans Lilholt, andAage Lystrup. Risø National Laboratory (Annu. Rev. Materials Res.2005) Code: R_E_L4.“Optimal use of carbon fibres in wind turbine blades”. Dayton A. Griffin. Global energyConcepts, LLC. (April 2004) Code: P_E_L5.“777 Empennage Certification Approach” A. Fawcett, J. Trostle, S. Ward. 11th edition.International Conference on Composite Materials(ICCM-11), Australia (July 1997) Code.P_E_L6.“Anisotropic laminates that resist warping during manufacture” Dr P. M. Weaver.University of Bristol. Code: P_E_L7.Evaluation of a Bamboo/Epoxy Composite as a Potential Material for Hybrid WindTurbine Blades”. P. Brøndsted, J. W. Holmes, B.F. Sørensen. Risø National Laboratory for Sustainable Energy, Technical University of Denmark. Code: P_E_L8.“Investigation of Structural Behaviour Due to Bend-twist Couplings in Wind TurbineBlades” V. A. Fedorov, N. Dimitrov, C. Berggreen, S. Krenk, K. Branner, P. Berring Code: P_E_L9.“Simulation of delamination including fibre bridging using cohesive zone models” A. L.Hansen, E. Lund, B. F. Sørensen. ECCOMAS Thematic Conference on MechanicalResponse of Composites. (September 2007) Code: P_E_L10.“A Hierarchical FE Approach for Simulation of Geometrical and Material InducedInstability of Composite Structures” A. L. Hansen, E. Lund, S. T. Pinho, K. Branner. 2nd ECCOMAS Thematic Conference on the Mechanical Response of Composites (April 2009) Code: P_E_L11.“A Mixed Mode Constitutive Damage Model for Multi-scale Fracture Analysis ofComposite Structures” A. L. Hansen, E. Lund. XXII ICTAM August 2008, Adelaide, Australia. Code: P_E_L12.“Wind Rotor Blade Materials Technology” P. Brøndsted, J. W. Holmes, B. F. Sørensen.European Sustainable Energy Review, Issue 2, 2008 Code: R_E_L13.“Rel iability of Wind Turbine Blades: An Overview of Materials Testing” J. W. Holmes,B. F. Sørensen and P. Brøndsted. Wind Power Shanghai 2007 (1-3 November 2007)Code: R_E_L14.A dhesive Joints:15.S andwich:1.“Investigating the impact of non-linear geometrical effects on wind turbine blade. Part3: Experimental and numerical investigations of the failure of shear we bs”, A.S. Puri,F.M. Jensen, J.P. Dear, P. Berring, R. Bitsche, K. Branner, M. McGugan, A.P. Morris.In Production. Code: P_E_L2.“Optimization of trailing edge sandwich panels for wind turbine blade” A. Roczek, K.Branner, F. M. Jensen, Wind Energy Division, Risø National Laboratory for sustainable。

海上风电型式认证和项目认证

海上风电型式认证和项目认证

Offshore Type and Project Certification海上风电型式认证和项目认证DNV / Royal Norwegian Consulate: Technical Workshop on Offshore Wind DNV/挪威领事馆:海上风电技术研讨会 /挪威领事馆:Dayton Griffin 20 June 2011Agenda 内容1. Type and Project Certification 型式认证和项目认证 2. Pre-certification 预认证 3. Geotechnical design 地基设计 4. Structural design 结构设计 5. Supplementary services to project certification 项目认证的追加服务Offshore Turbine and Project Certification 16 June 2011 © Det Norske Veritas AS. All rights reserved. 2Type and Project Certification 型式认证和项目认证Offshore Turbine and Project Certification 16 June 2011 © Det Norske Veritas AS. All rights reserved. 3Why Type and Project Certification 型式认证和项目认证的必要性What is certification 什么是认证- Independent verification by 3rd party to ensure compliance with applicable codes, standards, regulatory requirements第三方为确保与规范、标准、 第三方为确保与规范、标准、法规要求一致性和符合性所做 的独立审核Why certification为何需要认证- It is an important risk mitigation measure:认证是降低风险的重要方法之一 - Ensures wind turbine/project meets performance and safety standards 确保风机或者风电项目符合性能以及安全方面的要求 - Builds trust and confidence 增强互信以及信心 - Assures that the documentation is in order and complete 确保资料的有序以及完整Other reasons:其他原因- Legislation, insurance or financial requirement法律、 法律、保险以及商业要求- Request from the turbine supplier风机整机供应商要求Offshore Turbine and Project Certification 16 June 2011 © Det Norske Veritas AS. All rights reserved. 4Type Certification 型式认证A Wind Turbine Type 针对不同类型风机 Common design, materials and major components 设计评估,包括通用设计、 设计评估,包括通用设计、材料以及主要零部件 Common manufacturing process 通用生产过程评估 Selected design parameters and conditions 设计参数以及设计条件评估Project Certification 项目认证One or more specific Wind Turbines, including the Foundation 项目中一台或多台特定风机(含地基) 项目中一台或多台特定风机(含地基)的评估 Evaluation for the specific external conditions 特定外部条件的评估 At a specific installation site 特定场址评估Offshore Turbine and Project Certification 16 June 2011 © Det Norske Veritas AS. All rights reserved. 5Combining DNV competencesDNV的综合实力 的综合实力+=25+ years of Type Certification of wind turbines 超过25年的风机型式认 证经验Offshore Turbine and Project Certification 16 June 2011 © Det Norske Veritas AS. All rights reserved.40+ years of offshore oil & gas experience 超过40年的海上石油、 天然气平台经验Global leader in Certification of offshore wind projects 海上风电项目认证的全 球领导者6DANAK accreditation 获得DANAK认证授权 获得DANAK认证授权 DANAK认证Accreditation according to 依据以下标准获得授权 - ISO/IEC 17020 - ‘General requirements for the operation of bodies performing inspection’Type A inspection body for inspection of: A类检验机构 类检验机构Wind farms onshore according to IEC WT 01:2001 IEC System for Conformity Testing and Certification of Wind Turbines section 13.1 and one or more of the sections 13.2-13.6 根据IEC WT 01:2001 风电机组认证和 试验系统标准对陆上风场进行符合性测试 Wind farms onshore and offshore according to Statutory order no. 651 of 2008-06-26 from the Danish Energy Agency on a technical approval scheme for constructions, manufacture, installation, maintenance and service of Wind Turbines, section 6.根据2008-06-26丹麦能源部颁布的651法规, 对陆上和海上风场批准的风机建造、生产、安装、运营和服务进行检 验 Wind Farms Offshore according to one or more of the 6 phases in DNV's documents: Scope of Work for project Certification of Offshore Wind Farms of 2005-12-08: DNV-OS-J101 Design of Offshore Wind Turbine Structures of October 2007 and DNV-OS-J101, appendix M Project Certification of Offshore Wind Farms of June 2004. 根据DNV六步海上风场认证文件的一个或多个对海上风场进行检验Offshore Turbine and Project Certification 16 June 2011 © Det Norske Veritas AS. All rights reserved. 7Type Certification 型式认证Project Certification项目认证 项目认证Offshore Turbine and Project Certification 16 June 2011 © Det Norske Veritas AS. All rights reserved. 8Offshore Wind Farm Project 海上风电场项目Offshore Turbine and Project Certification 16 June 2011 © Det Norske Veritas AS. All rights reserved. 9Standards hierarchy 标准等级分类Rules and procedures 规则和程序- DNV-OS-J101; ‘Design of Offshore Wind Turbine Structures’ - IEC 61400-22; ‘IEC System for Conformity Testing and Certification of Wind Turbines’ - BEK 651; ‘Bekendtgørelse om teknisk godkendelsesording for …’ (in Danish)Design Requirements 设计要求DNV-OS-J101; ‘Design of Offshore Wind Turbine Structures’ IEC 61400-1; ‘Design Requirements’ IEC 61400-2; ‘Design Requirements for Small Wind Turbines’ IEC 61400-3; ‘Design Requirements for Offshore Wind Turbines’Design codes 设计标准\规范DNV-OS-J101; ‘Design of Offshore Wind Turbine Structures’ EN 1993-x; ‘Eurocode 3; Part x: …’ DNV-OS-J102; ‘Design and Manufacture of Wind Turbine Blades …’ …Offshore Turbine and Project Certification 16 June 2011 © Det Norske Veritas AS. All rights reserved. 10DNV-OSS-901Certification of Offshore Wind Farm Projects 海上风场项目认证 Presents the principles and procedures for DNV services with respect to certification of Offshore Wind Farm Projects. 提出了DNV海上风电场项目认证中的相关规范和流程。

低电压穿越(LVRT)要求及测试

低电压穿越(LVRT)要求及测试

由德国联邦政府颁布的第一部关于可再生能源发电(EEG) 和热电联产
(BHKW) 的联邦法律
Fixed balance for power generation using renewable energy resources Wind, Water,
Biomass and Biogas, Photovoltaic
Low-Voltage Ride Through (LVRT) Requirements and Testing
低电压穿越(LVRT)要求及测试
Dr.-Ing. Karl-Heinz Weck
Forschungsgemeinsc
haft für Elektrische
Anlagen
und
Stromwirtschaft e.V.
常规的过流保护不起作用
Protection during faults by voltage and frequency variation
故障期间根据电压和频率变化进行保护
Basic requirement in Grid Codes fast disconnection at system faults
UCTE 400 kV
G
Subtransmission
个别地区超过20% WT connection to sub-transmission
次输电网110/132 kV
and transmission frequent
Industry工业
风电机组常接入次输电网及输电网
Voltage and load-flow in
History of Grid Codes in Germany since 2003 2003年后德国并网导则发展历程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Inspection and Testing of Wind Turbine Rotor Blades
Ullrich Knopf, Global Project Manager, Wind Energy
Industrial Services SGS Germany GmbH
Email: ullrich.knopf@
Abstract: The wind turbine sector is growing quickly regarding the number and capacity of the already
installed wind turbines, as well as the capacity of newly produced and newly developed turbine technologies. Compared to other industrial products the wind power is lacking reliability for each single component.
A key component is the rotor blade. The greater the capacity the longer the blade gets.
An indication of lacking reliability for blades are the world wide occurring quality problems:
Delamination, dry spots, faulty struts, white cracks, chalking, lightning damage
There are two approaches to cope with the missing quality level:
- blade inspection
- blade testing
Different inspection types exist, like:
-Visual inspection (rope access or lift)
-Inspections supported by Infra-red equipment (thermography)
-Inspections supported by ultra sonic
-Vibration measurement on the drive train
-Condition monitoring
The blades have to be inspected not only visually but also by using new UT-inspection techniques and thermography. As the blades are an important component the need for new relievable inspection techniques is
very high. This can be presented by SGS based on inspections of more than 500 blades using the inspection techniques. Inspections on a periodical interval can assure the public safety as well as the safety and reliability of
the wind turbine.
The following facts are important and have to be considered:
•Detection of defects at an early stage
•Avoidance of consequential damages and unscheduled downtime
•Choosing individual and applied inspection techniques and inspection sequences
The other approach to improve the blade quality is the blade test. The common base is the IEC 61400-23 (Full
Scale Blade Type Testing (Static and Dynamic)) for type testing. But blade testing could also be part of the periodically quality check and could indicate the quality after change of manufacturing method or introduction
of new materials.
New ways of testing are discussed to shorten the test time and to have a test situation close to reality.
SGS will show the possibilities of improvement and their experience.
1/2
风机叶片的检验和测试
摘要:随着装机数量和容量的增多,风力发电机行业迅速发展,包括新生产和新开发的风机技术。

相比
较其他工业产品,风电产业中各个零部件缺乏足够的可靠性,特别是风机的关键部件叶片。

单机容量越
高,叶片越长。

而全球范围内出现的质量问题,如脱胶、气孔、支撑不良、内含物、分层、雷电破坏
等,都说明叶片缺乏可靠性。

有两种途径可以应对质量问题:
- 叶片检验
- 叶片测试
叶片检验的方法包括:
-目击检验(通过绳索和升降机)
-使用红外设备进行检验(差热分析)
-超声检验
-传动系统的震动测试
-状态监控
叶片检验不仅仅是目击检查,还包括超声探伤和差热分析。

由于叶片是风机的关键部件,所以对于新出
现的检验技术要求较高。

SGS拥有超过500支叶片的检验经验,可以提供借助上述手段进行叶片检验的
服务。

而且定期的叶片检验可以确保风机的安全性和可靠性。

以下情况应该着重考虑:
•早期的缺陷检查
•避免间接损坏和计划外停机
•选择有针对性的检验手段和检验次序
提高叶片质量的另一种途径为叶片测试。

通常按照标准IEC 61400-23(全尺寸叶片测试)进行试验。


是,叶片测试是定期进行质量检查的一部分,还可以用来表明调整制造工艺和引入新原材料后的叶片的
质量状况。

为缩短叶片测试周期和制定出接近真实使用状况的实验环境,一些新的测试方法正在被探讨。

SGS愿分
享方法改进的可能性和自己的经验总结。

2/2。

相关文档
最新文档