高中数学课时跟踪检测(九)简单随机抽样新人教B版必修3
人教版高中数学-必修3课时作业9 简单随机抽样

第8行:63016378591695556719981050717512867358074439523879
解析:因为从随机数表第8行第7列的数开始向右读取,所以第一个号785保留;第二个号916剔除,第三个号955剔除,第四个号567保留;第五个号199保留;第六个号810剔除,第七个号507保留;第八个号175保留.故最先检测的5袋牛奶的编号依次是785,567,199,507,175.
A. B.
C. D.N
解析:总体中带有标记的比例是 ,则抽取的m个个体中带有标记的个数估计为 .故选A.
答案:A
11.从一群游戏的小孩中随机抽出k人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m人,发现其中有n个小孩曾分过苹果,估计参加游戏的小孩的人数为()
A. B.k+m-n
C. D.不能估计
96 43 84 26 34 91 64 57 24 55 06 88 77
04 74 47 67 21 76 33 50 25 83 92 12 06
A.23 B.09
C.02 D.16
解析:从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字中小于34的编号依次为21,32,09,16,其中第4个为16,故选D.
C.253 D.007
解析:从第5行第6个数2的数开始向右读,第一个数为253,符合条件,第二个数为313,符合条件,第三个数为457,符合条件,以下依次为:860,736,253,007,328,其中860,736不符合条件且253与第一个重复了不能取,这样007是第四个数,第五个数应为328,故第五个数为328,故选B.
课时作业(九)简单随机抽样
A组 基础巩固
人教新课标版数学高一数学人教B版必修3学案 简单随机抽样

第二章统计§2.1随机抽样2.1.1简单随机抽样自主学习学习目标1.理解并掌握简单随机抽样的概念、特点和步骤.2.掌握简单随机抽样的两种方法.自学导引1.总体与个体一般把所考察对象的某一数值指标的________________看作总体,构成总体的____________作为个体,从总体中抽出若干个体所组成的集合叫做________.2.随机抽样在抽样时要保证每一个个体都____________,每一个个体被抽到的机会是________,满足这样的条件的抽样是随机抽样.3.简单随机抽样一般地,从元素个数为N的总体中____________抽取容量为n的样本,如果每一次抽取时总体中的各个个体有________的可能性被抽到,这种抽样方法叫做简单随机抽样,这样抽取的样本叫做________________.4.常用的简单随机抽样方法有________和____________.对点讲练知识点一简单随机抽样的概念例1下列抽取样本的方法是简单随机抽样吗?为什么?(1)从无限多个个体中抽取50个个体作为样本.(2)箱子里共有100个零件,今从中选取10个零件进行检验,在抽样操作时,从中任意地拿出一个零件进行质量检验后再把它放回箱子里.(3)从50个个体中一次性抽取5个个体作为样本.点评判定的依据是简单随机抽样的四个特点.“一次性”抽取和“逐个”抽取形式不同,但是不影响个体被抽到的可能性.而“一次性”抽取不符合简单随机抽样的定义,因而(3)不是简单随机抽样.变式迁移1下面的抽样方法是简单随机抽样吗?为什么?(1)某班有40名同学,指定个子最高的5名同学参加校篮球赛;(2)一儿童从玩具箱中的20件玩具中随意拿出一件来玩,玩后放回再拿出一件,连续玩了5件;(3)从一批2 000个灯泡中逐个抽取20个进行质量检查.知识点二抽签法的应用例2某单位支援西部开发,现从报名的18名志愿者中选取6名组成志愿小组到西藏工作3年.请用抽签法设计抽样方案.点评抽签法注意:一是编号;二是搅拌均匀;三是依次抽取.变式迁移2从20名学生中抽取5名进行问卷调查,写出抽取样本的过程.知识点三随机数表法的应用例3设某校共有100名教师,为了支援西部教育事业,现要从中随机抽出12名教师组成暑期西部讲师团,请写出利用随机数表法抽取该样本的步骤.点评利用随机数表法抽取个体时,关键是事先确定以表中的哪个数(哪行哪列)作为起点,以及读数的方向,向左、向右、向上或向下都可以,同时,读数时结合编号特点进行读取,编号为两位,则两位、两位地读取,编号为三位数,则三位、三位地读取,如果出现重号则跳过,接着读取.变式迁移3要从某汽车厂生产的3 000辆汽车中随机抽取10辆进行测试.请选择合适的抽样方法,并写出抽样过程.抽签法与随机数表法的相同点与不同点相同点:(1)抽签法和随机数表法都是简单随机抽样的方法,并且要求被抽取样本的总体的个体数有限;(2)抽签法和随机数表法都是从总体中逐个地进行抽取,都是不放回抽样.不同点:(1)抽签法相对于随机数表法简单,随机数表法较抽签法稍麻烦一点;(2)随机数表法更适用于总体中的个体数较多的时候,而抽签法适用于总体中的个体数相对较少的情况,所以当总体中的个体数较多时,应当选用随机数表法,这样可以节约大量的人力和制作号签的成本与精力.课时作业一、选择题1.我校期中考试后,为了分析高一年级1 220名学生的学习成绩,从中随机抽取了50名学生的成绩单,就这个问题来说,下面说法中正确的是()A.1 220名学生是总体B.每个学生是个体C.50名学生是所抽取的一个样本D.样本容量是502.在简单随机抽样中,某个个体被抽中的可能性是()A.与第几次抽样有关,第1次抽中的可能性要大些B.与第几次抽样无关,每次抽到的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不一样3.下列调查中属于抽样调查的是()①每隔10年进行一次人口普查②某商品的质量优劣③某报社对某个事情进行舆论调查④高考考生的查体A.②③B.①④C.③④D.①②4.下列抽样实验中,用抽签法方便的是()A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从某厂生产的3 000件产品中抽取10件进行质量检验D.从甲乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验5.用随机数表进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字.这些步骤的先后顺序应为()A.①②③B.①③②C.③②①D.③①②二、填空题6.福利彩票的中奖号码是从1~36中选出7个号码来按规则确定中奖情况,这种从36个中选出7个号码的抽样方法是________.7.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N为________.8.我班有50名学生,学号从01到50,数学老师在上统计课时,运用随机数表法选取5名学生提问.老师首先选定随机数表中的第21行第29个数2开始提问,然后向右走,到头后从下一行返回,即下一行是从左向右,再下一行从右开始,如果不在50以内则跳过去,那么被提问的5名学生是________________.附:随机数表的第21行第21个数开始到第22行的第10个数 (44227884260433460952)68079706577457256576…三、解答题9.现要在20名学生中抽取5名进行问卷调查,试写出抽取样本的过程.10.某个车间工人已加工一种轴100件,为了了解这种轴的直径,要从中抽出10件在同一条件下测量,如何采用简单随机抽样的方法抽取上述样本?第二章统计§2.1随机抽样2.1.1简单随机抽样自学导引1.全体构成的集合每一个元素样本2.可能被抽到均等的3.不放回地相同简单随机样本4.抽签法随机数表法对点讲练例1解(1)不是简单随机抽样,因为被抽取的样本的总体的个数是无限的而不是有限的.(2)不是简单随机抽样,因为它是有放回地抽样.(3)不是简单随机抽样,因为它是一次性抽取,而不是“逐个”抽取.变式迁移1解(1)不是简单随机抽样,因为这不是等可能抽样;(2)不是简单随机抽样,因为它是有放回抽样;(3)满足简单随机抽样的四个特点,故是简单随机抽样.例2解按抽签法的一般步骤进行设计.第一步:将18名志愿者编号,号码为1,2, (18)第二步:将号码分别写在一张纸条上,揉成团,制成号签;第三步:将所有号签放入一个箱子中,充分搅匀;第四步:依次取出6个号码,并记录其编号;第五步:将对应编号的志愿小组成员选出.变式迁移2解(1)先将20名学生进行编号,从1编到20;(2)把号码写在形状、大小均相同的号签上;(3)将号签放在某个箱子中进行充分搅拌,然后依次从箱子中取出5个号签,按这5个号签上的号码对应学生,即得样本.例3 解 其步骤如下:第一步:将100名教师进行编号:00,01,02, (99)第二步:给出的随机数表中是5个数一组,使用各个5位数组的前2位,从各数组中任选一个前2位小于或等于99的数作为起始号码、例如从第1行的第3组数开始.第三步:依次向右读可以得到40,48,60,16,29,61,43,27,26,84,78,39.第四步:以上号码对应的12名教师就是要抽取的对象.变式迁移3 解 第一步:将3 000辆汽车编号,号码是0000,0001,…,2999; 第二步:给出的随机数表中是5个数一组,使用各个5位数组中的前4位,从各数组中任选一个前4位小于或等于2999的数作为起始号码,例如从第二行的第4组数开始;第三步:依次向右读,可以得到2691,2778,2037,2104,1290,2881,1212,2298,1321,2624. 课时作业1.D2.B3.A4.B5.B6.抽签法7.120解析 ∵30N=0.25,∴N =120. 8.26 04 33 46 09解析 用随机数法进行抽样,关键是弄清所选定的起始数码和读数的方向,还要弄清编号的位数与随机数表的构成.9.解 (1)先将20名学生进行编号,编号为1,2, (20)(2)把号码写在形状、大小均相同的号签上;(3)将号签放在某个箱子中充分搅拌,使之均匀,然后依次从箱子中抽取5个号签,于是和这5个号签上的号码对应的5名学生就构成了一个样本.10.解 有两种方法:方法一 (抽签法)将100个轴进行编号1,2,…,100,并做好大小、形状相同的号签,分别写上这100个数,可将这些号签放在一起,并进行均匀搅拌,接着依次抽取10个号签,然后测量这10个号签对应的轴的直径.方法二 (随机数表法)将100个轴进行编号00,01,…,99,据课本上的随机数表,如取第6行第2组数开始选取10个,13,57,74,32,98,55,42,59,66,36,然后测量这10个编号对应的轴的直径.。
2019-2020学年人教B版数学必修3课时跟踪检测:第2章 2.1 2.1.2系统抽样 Word版含解析

第二章统计2.1随机抽样2.1.2系统抽样课时跟踪检测[A组基础过关]1.系统抽样适用的总体应是()A.容量较少的总体B.总体容量较多,个体差异不大C.个体数较多但均衡的总体D.任何总体解析:与简单随机抽样相比,系统抽样的适用范围应是总体中的个体数目较多且含有的个体均衡.答案:C2.用系统抽样的方法从个体数为1 003的总体中抽取一个容量为50的样本,在整个抽样过程中每个个体被抽到的可能性是()A.11 000B.11 003C.501 003D.120解析:系统抽样中,每个个体被抽到的可能性为nN,即501 003.答案:C3.为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体应随机剔除的个体数目为()A.2 B.4C.5 D.6解析:∵1 252=50×25+2,∴应从总体中随机剔除2个个体.答案:A4.为了了解某地参加计算机水平测试的5 000名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样方法抽取样本时,每组的容量为()A.24 B.25C .26D .28解析:每组的容量为5 000200=25. 答案:B 5.(2019·全国卷Ⅰ)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( )A .8号学生B .200号学生C .616号学生D .815号学生解析:由系统抽样可知,第一组学生的编号为1~10,第二组学生的编号为11~20,…,最后一组学生的编号为991~1 000.设第一组取到的学生编号为x ,则第二组取到的学生编号为x +10,以此类推,所取得的学生编号为10的倍数加x .因为46号学生被抽到,所以x =6,所以616号学生被抽到,故选C .答案:C6.某学校有学生4 022人,为调查学生对2017年国际乒乓球比赛的了解状况,现用系统抽样方法抽取一个容量为30的样本,则分段间隔为________.解析:∵4 02230不是整数,故应从4 022名学生中随机剔除2名,再确定分段间隔4 02030=134.答案:1347.一个总体的60个个体的编号为0,1,2,…,59,现从中抽取一个容量为10的样本,请根据号按被6除余3的方法取足样本,则抽取的样本号码是______________.解析:起始号码为3,将3加上6的整数倍得样本号码,故填3,9,15,21,27,33,39,45,51,57. 答案:3,9,15,21,27,33,39,45,51,578.为了调查某路口一个月的车流量情况,交警采用系统抽样的方法,样本距为7,从每周中随机抽取一天,他正好抽取的是星期日,经过调查后做出报告.你认为交警这样的抽样方法有什么问题?应当怎样改进?如果是调查一年的车流量情况呢?解:交警所统计的数据以及由此所推断出来的结论,只能代表星期日的交通流量.由于星期日是休息时间,很多人不上班,不能代表其他几天的情况.改进方法可以将所要调查的时间段的每一天先随机地编号,再用系统抽样方法来抽样,或者使用简单随机抽样来抽样亦可.如果是调查一年的交通流量,使用简单随机抽样法显然已不合适,比较简单可行的方法是把样本距改为8.[B 组 技能提升]1.总体容量为524,若采用系统抽样法抽样,当抽样间隔为多少时不需要剔除个体( )A .3B .4C .5D .6解析:∵524=4×131,∴抽样间隔为4时,不需要剔除个体.答案:B2.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽取的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C ,则抽到的人中,做问卷B 的人数为( )A .7B .9C .10D .15解析:由系统抽样规则可知,抽到的32人的编号为9,39,69,….落在[451,750]内的有459,489,…,729共10个,故选C .答案:C3.某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽取10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为________的学生.解析:由题可知,分段间隔为5010=5,又第三组中抽得的号码为12,∴抽取的号码依次为2,7,12,17,22,27,32,37,42,47,∴第八组中抽得的学生号码为37.答案:374.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 号码的个位数字相同,若m =6,则在第7组中抽取的号码是________.解析:根据题目中的规定,若m =6,第7组中抽取的号码个位数字与m +k =6+7=13的个位数字相同为3,又第7组的号码是60,61,62,63,64,…,69,其号码个位数字是3的仅有63,所以在第7组中抽取的号码是63.答案:635.要从1 002个学生中选取一个容量为20的样本.试用系统抽样的方法给出抽样过程. 解:第一步:将1 002名学生用随机方式编号;第二步:从总体中剔除2人(剔除方法可用随机数表法),将剩下的1 000名学生重新编号(编号分别为000,001,002,…,999),并分成20段;第三步:在第一段000,001,002,…,049这五十个编号中用简单随机抽样法抽出一个(如003)作为起始号码;第四步:将编号为003,053,103,…,953的个体抽出,组成样本.6.下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题:本村人口:1 200人,户数300,每户平均人口数4人;应抽户数:30户;抽样间隔:1 20030=40; 确定随机数字:取一张人民币,编码的后两位数为12;确定第一样本户:编号的后两位数为12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;…(1)该村委采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改;(3)何处是用简单随机抽样?解:(1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为30030=10,其他步骤相应改为确定随机数字:取一张人民币,编码的后两位数为12,确定第一样本户:编号为12的户为第一样本户;确定第二样本户:12+10=22,22号为第二样本户.(3)确定随机数字用的是简单随机抽样.取一张人民币,编码的后两位数为12.。
2019-2020年人教B版数学必修三课时分层作业9 简单随机抽样+Word版含解析

课时分层作业(九) 简单随机抽样(建议用时:60分钟)[合格基础练]一、选择题1.抽签法中确保样本代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回B[逐一抽取、抽取不放回是简单随机抽样的特点,但不是确保代表性的关键,一次抽取与有放回抽取也不影响样本的代表性,制签也一样,故选B.] 2.某班50名学生中有30名男生,20名女生,用简单随机抽样抽取1名学生参加某项活动,则抽到女生的可能性为()A.0.4 B.0.5C.0.6 D.2 3A[在简单随机抽样中每个个体被抽到的机会相等,故可能性为2050=0.4.]3.下列抽取样本的方式属于简单随机抽样的是()①从无限多个个体中抽取100个个体样本;②盒子中有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里;③从8台电脑中不放回地随机抽取2台进行质量检验(假设8台电脑已编好号,对编号随机抽取).A.①B.②C.③D.以上都不对C[分析简单随机抽样的4个特点:①总体中个数有限;②个体间差异较小并逐个抽取;③不放回抽样;④等可能抽样;只有③符合.]4.某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件检查,对100件产品采用下面的编号方法:①1,2,3,…,100;②001,002,…,100;③00,01,02,…,99;④01,02,03,…,100.其中正确的序号是()A.②③④B.③④C.②③D.①②C[用随机数表法时编号的位数要相同,符合条件的有②③.]5.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是()A.110,110 B.310,15C.15,310D.310,310A[根据简单随机抽样的定义知选A.]二、填空题6.用抽签法进行抽样有以下几个步骤:①制签;②抽签;③将签摇匀;④编号;⑤将抽取的号码对应的个体取出,组成样本.这些步骤的正确顺序为________.④①③②⑤[由抽签法的步骤知,正确顺序为④①③②⑤.]7.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有________.①2 000名运动员是总体;②每个运动员是个体;③所抽取的20名运动员是一个样本;④样本容量为20;⑤这个抽样方法可采用随机数表法抽样;⑥每个运动员被抽到的机会相等.④⑤⑥[①2 000名运动员不是总体,2 000名运动员的年龄才是总体;②每个运动员的年龄是个体;③20名运动员的年龄是一个样本.]8.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽到的可能性为25%,则N=_________________________.120 [30N =25%,因此N =120.]三、解答题9.现有一批编号为010,011,…,099,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?[解] 第一步,将元件的编号调整为010,011,012,…,099,100,…,600. 第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数3.第三步,从数3开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到321,273,279,600,552,254.第四步,与以上这6个号码对应的6个元件就是所要抽取的对象.10.某大学为了支持东亚运动会,从报名的60名大三学生中选10人组成志愿小组,请用抽签法和随机数表法设计抽样方案.[解] 抽签法:第一步:将60名大学生编号,编号为01,02,03, (60)第二步:将60个号码分别写在60张外形完全相同的纸条上,并揉成团,制成号签;第三步:将60个号签放入一个不透明的盒子中,充分搅匀;第四步:从盒子中逐个抽取10个号签,并记录上面的编号;第五步:所得号码对应的学生,就是志愿小组的成员.随机数表法:第一步:将60名学生编号,编号为01,02,03, (60)第二步:在随机数表中任选一数开始,按某一确定方向读数;第三步:凡不在01~60中的数或已读过的数,都跳过去不作记录,依次记录下10个得数;第四步:找出号码与记录的数相同的学生组成志愿小组.[等级过关练]1.从一群游戏的小孩中随机抽出k人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m人,发现其中有n个小孩曾分过苹果,估计参加游戏的小孩的人数为()A.knm B.k+m-nC.kmn D.不能估计C[设参加游戏的小孩有x人,则kx=nm,所以x=kmn.]2.用随机数表法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的可能性为()A.0.01 B.0.04C.0.2 D.0.25C[明确是简单随机抽样且每个个体被抽到的可能性是相等的,问题的突破口就找到了.因为样本容量为20,总体容量为100,所以总体中每一个个体被抽到的可能性为20100=0.2.]3.某中学高一年级有400人,高二年级有320人,高三年级有280人,每人被抽取的可能性均为0.2,从该中学抽取一个容量为n的样本,则n=________.200[∵n400+320+280=0.2,∴n=200.]4.一个布袋中有10个同样质地的小球,从中不放回地依次抽取3个小球,则某一特定小球被抽到的可能性是________,第三次抽取时,剩余每个小球被抽到的可能性是________.3 1018[因为简单随机抽样过程中每个个体被抽到的可能性均为nN,所以第一个空填310.因本题中的抽样是不放回抽样,所以第一次抽取时,每个小球被抽到的可能性为110,第二次抽取时,剩余9个小球,每个小球被抽到的可能性为19,第三次抽取时,剩余8个小球,每个小球被抽到的可能性为18.]5.某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.[解]第一步:先确定艺人.(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明小筒中摇匀,从中不放回的抽出10个号签,则相应编号的艺人参加演出;(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.第二步:确定演出顺序.确定了演出人员后,再用相同的纸条做成20个号签,上面写上01到20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.。
数学:2.1.1《简单随机抽样》课件(3)(新人教B版必修3)

阅读第44~ 页内容 页内容, 阅读第 ~48页内容,回答下列问题 :
(1)什么是简单随机抽样? )什么是简单随机抽样? (2)简单随机抽样有几种? )简单随机抽样有几种? (3)简单随机抽样的特点是什么? )简单随机抽样的特点是什么?
答(ቤተ መጻሕፍቲ ባይዱ)简单随机抽样 )
随机数表法设计方案的步骤
第一步:将总体中的所有个体编号( 第一步:将总体中的所有个体编号(每个号码位数 一致); 一致); 第二步:在随机数表中任选一个数作为开始; 第二步:在随机数表中任选一个数作为开始; 第三步:从选定的数开始按一定的方向读下去, 第三步:从选定的数开始按一定的方向读下去,得 到的数码若不在编号中,则跳过;若在编号中, 到的数码若不在编号中,则跳过;若在编号中,则 取出。得到的数码若在前面已经取出,则跳过。 取出。得到的数码若在前面已经取出,则跳过。如 此进行下去,直到取满为止; 此进行下去,直到取满为止; 第四步:根据选定的号码抽取样本。 第四步:根据选定的号码抽取样本。
一般地,用抽签法从容量为 的总体中抽取一个 一般地,用抽签法从容量为N的总体中抽取一个 容量为n的样本的步骤为 的样本的步骤为: 容量为 的样本的步骤为: 第一步:给总体中的所有个体编号( 第一步:给总体中的所有个体编号(号码可以从 1到N; 到 ; 第二步: 个号码写在形状、 第二步:将1~N这N个号码写在形状、大小相同的 这 个号码写在形状 号签上; 号签上; 第三步:将号签放到一个不透明的容器中, 第三步:将号签放到一个不透明的容器中,搅拌 均匀; 均匀; 第四步:从容器中每次抽取一个号签, 第四步:从容器中每次抽取一个号签,并记录其编 连续抽取n次 号,连续抽取 次; 第五步: 第五步:从总体中将与抽到的编号一致的个体取出
人教版高中数学必修三 2.1《随机抽样》知识梳理+跟踪检测

人教版高中数学必修三 第二章 统计2.1《随机抽样》知识梳理知识点一:简单随机抽样1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎨⎧随机数法抽签法 3.简单随机抽样的优点及适用类型简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.知识点二:系统抽样1.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k ,对编号进行分段.当N n(n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l(l ≤k);(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k),再加k 得到第3个个体编号(l +2k),依次进行下去,直到获取整个样本.知识点三:简单随机抽样1.分层抽样的概念 在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.人教版高中数学必修三第二章统计2.1《随机抽样》跟踪检测一、选择题1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况2.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量3.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是()A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则()A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是1 5B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同5.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .126.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,87.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法[答案] D[解析] 由分层抽样的定义可知,该抽样为按比例的抽样.8.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A. 22,100x s +B. 22100,100x s ++C. 2,x sD. 2100,x s +9.对于简单随机抽样,下列说法中正确的命题为( )①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A.①②③B.①②④C.①③④D.①②③④10.下列抽样实验中,最适宜用系统抽样的是()A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93B.123C.137D.16712.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为()A.2个B.3个C.5个D.13个13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,614.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,5315.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是()A.7,4,6 B.9,5,6 C.6,4,9 D.4,5,916.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36二、填空题17.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________. 18.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.19.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.20.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.21.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.人.三、解答题22.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:60人进行更为详细的调查,应当怎样进行抽样?23.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?24.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?2.1《随机抽样》跟踪检测解答一、选择题1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况[答案] D2.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量[答案] C3.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是()A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对[答案] C[解析]按照一定的规律进行抽取为系统抽样.4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则()A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是15B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此 C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同[答案] A[解析] 无论采用哪种抽样,每个个体被抽到的概率相等.5.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .12[答案] A[解析] 运动员共计98人,抽取比例为2898=27,因此男运动员56人中抽取16人.6.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,8[答案] C[解析] 由题意得x =15,16.8=51(9+15+10+y +18+24) y =8,选C. 7.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法[答案] D[解析] 由分层抽样的定义可知,该抽样为按比例的抽样.8.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ) A. 22,100x s + B. 22100,100x s ++ C. 2,x s D. 2100,x s +[答案] D[解析] 设增加工资后10位员工下月工资均值为'x ,方差为2's , 则平均数()()()12101'10010010010x x x x =++++⋅⋅⋅++⎡⎤⎣⎦ ()1210110010010x x x x =++++=+; ()()()222212101'100'100'100'10s x x x x x x ⎡⎤=+-++-+⋅⋅⋅++-⎣⎦ ()()()22221210110x x x x x x s ⎡⎤=-+-+⋅⋅⋅+-=⎣⎦.故选D . 9.对于简单随机抽样,下列说法中正确的命题为( )①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A .①②③B .①②④C .①③④D .①②③④[答案] D10.下列抽样实验中,最适宜用系统抽样的是( )A .某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B .某厂生产的2 000个电子元件中随机抽取5个入样C .从某厂生产的2 000个电子元件中随机抽取200个入样D .从某厂生产的20个电子元件中随机抽取5个入样[答案] C[解析] A 中总体有明显层次,不适用系统抽样法;B 中样本容量很小,适宜用简单随机抽样法中的随机数法;D 中总体数很小,故适宜用抽签法,只有C 比较适用系统抽样法.11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.93B.123C.137D.167[答案] C[解析] 由图可知该校女教师的人数为()11070%150160%7760137⨯+⨯-=+= 故选C12.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为( )A .2个B .3个C .5个D .13个[答案] A[考点]分层抽样方法[分析]由题意,设抽取的进口的标志灯的数量为x 个,则30030=20x ,即可得出结论.解:由题意,设抽取的进口的标志灯的数量为x 个,则30030=20x , ∴x=2,故选A .[点评]本题考查分层抽样,抽样过程中每个个体被抽到的可能性相同,这是解决抽样问题的依据,样本容量、总体个数、每个个体被抽到的概率,这三者可以做到知二求一.13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,6[答案] D[解析]由题意,各种职称的人数比为160∶320∶200∶120=4∶8∶5∶3,所以抽取的具有高、中、初级职称的人数和其他人员的人数分别为40×4 20=8,40×820=16,40×520=10,40×320=6.14.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,53[答案] A[解析]样本中共有30个数据,中位数为4547462+=;显然样本中数据出现次数最多的为45,故众数为45;极差为68-12=56,故选A.15.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是()A.7,4,6 B.9,5,6 C.6,4,9 D.4,5,9[答案] B[解析]各年龄段所选分别为20100×45=9,20100×25=5,20100×30=6.16.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36[答案] B[解析]设该单位老年职工有x人,从中抽取y人.则160+3x=430⇒x=90,即老年职工有90人,则90160=y32⇒y=18.故选B.二、填空题17.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________. [答案]30[解析]由题意,知22+3+5×n=6,∴n=30.18.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.[答案]760[解析]设该校女生人数为x,则男生人数为(1 600-x).由已知,2001 600×(1 600-x)-2001 600·x=10,解得x=760.故该校的女生人数是760人.19.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.[答案] 5.7%[解析]∵990∶99 000=1∶100,∴普通家庭中拥有3套或3套以上住房的大约为50×100=5 000(户).又∵100∶1 000=1∶10,∴高收入家庭中拥有3套或3套以上住房的大约为70×10=700(户).∴3套或3套以上住房的家庭约有5 000+700=5 700(户).故5 700100 000=5.7%.20.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.[答案]3720[解析]由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.40岁以下的年龄段的职工数为200×0.5=100,则应抽取的人数为40200×100=20(人).21.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.生活能否自理人数性别男女能178 278不能23 21人.[答案]60[解析]由表知500人中生活不能自理的男性比女性多2人,所以该地区15 000位老人生活不能自理的男性比女性多2×15 000500=60(人).三、解答题22.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:很喜爱喜爱一般不喜爱2 435 4 5673 926 1 07260人进行更为详细的调查,应当怎样进行抽样?解:可用分层抽样方法,其总体容量为12 000.“很喜爱”占2 43512 000,应取60×2 43512 000≈12(人);“喜爱”占4 56712 000,应取60×4 56712 000≈23(人);“一般”占3 92612 000,应取60×3 92612 000≈20(人);“不喜爱”占1 07212 000,应取60×1 07212 000≈5(人).因此采用分层抽样在“很喜爱”、“喜爱”、“一般”和“不喜爱”的2 435人、4 567人、3 926人和1 072人中分别抽取12人、23人、20人和5人.23.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?解:(1)将624名职工用随机方式编号由000至623.(2)利用随机数法从总体中剔除4人.(3)将剩下的620名职工重新编号由000至619.(4)分段,取间隔k=62062=10,将总体分成62组,每组含10人.(5)从第一段,即为000到009号随机抽取一个号l.(6)按编号将l,10+l,20+l,…,610+l,共62个号码选出,这62个号码所对应的职工组成样本.24.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?解:学生A的方法得到的样本不能够反映不上网的居民情况,是一种方便样本,所得的结果代表性差,不能很准确地获得平均每户居民的月用水量;学生B 的方法实际上是普查,花费的人力物力要多一些,但是如果统计过程不出错,可以准确地得到平均每户居民的月用水量;在小区的每户居民都装有电话的情况下,学生C的方法是一种随机抽样方法,所得的样本具有代表性,可以比较准确地获得平均每户居民的月用水量.在小区的每户居民都装有电话的情况下,建议用随机抽样的方法获取数据,即用学生C的方法,以节省人力物力,并且可以得到比较精确的结果.5、已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数据算得的线性回归方程可能为( )A. 0.4.3ˆ2yx =+ B. 2 2.4ˆy x =- C. 9ˆ2.5yx =-+ D. 0.3 4.4ˆy x =-+ [答案] A[解析] 变量x 与y 正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.∵变量x 与y 正相关,∴可以排除C,D;样本平均数3x =, 3.5y =,代入A 符合,B 不符合,故选A.。
高中数学必修三(人教B版)练习:2.1随机抽样2.1.4含解析

第二章2.1A 级基础稳固一、选择题1.以下问题中切合检盘问卷要求的是导学号95064398 ( C )A.你们单位有几个大胡须?B.您对我们厂生产的电视机满意吗?C.您的体重是多少千克?D.好多顾客都以为该产品的质量很好,您不这么以为吗?[分析 ] A 中的“大胡须”观点不明确; B 对问题表达不详尽; D 指引答题者的答题方向.2.下边问题能够用普查的方式进行检查的是导学号95064399 ( C )A .查验一批钢材的抗拉强度B.查验海水中微生物的含量C.查验 10 件产品的质量D.查验一批汽车的使用寿命[分析 ] A 不可以用普查的方式检查,由于这类实验拥有损坏性; B 用普查的方式没法完成; C 能够用普查的方式进行检查; D 该实验拥有损坏性,且需要耗资大批的时间,在实质生产中没法应用.3.①您所购置的是名牌产品,您以为该产品的著名度A .很高B.一般C.很低②你们家有几个孩子?____________③你们班有几个大个子同学?____________.④你以为数学学习A .较困难B.较简单C.没感觉以上问题切合检盘问卷要求的是导学号 95064400 ( D )A .①B.②C.③D.④[分析 ]①不切合,由于问题有指引受检查者答题的偏向.②不切合,由于“孩子”一词意义含混 .③不切合,由于“ 大个子” 一词意义含混,故只有④切合,∴选D.4.为了认识某年级同学每日参加体育锻炼的时间,比较适合地采集数据的方法是导学号 95064401 ( B )A .查阅资料B.问卷检查C.做试验D.以上均不对[分析 ]问卷检查能达到目的,比较适合.二、填空题5.小明对本班同学做检查,提出问题“你考试舞弊吗?”这样的问法__不合理 __(填“合理”或“不合理”),原因是 __考试舞弊是一件不但彩的事,这样问很难获得真切答案__.导学号 95064402[分析 ]这样的问题没有站在回答者的立场考虑.6.做饭时为了知道饭煮熟了没有,从饭煲中舀出一勺饭尝尝,这类试验方法__适合__.(填“适合”或“不适合”) 导学号 95064403[分析 ]舀出的一勺是饭煲中搅拌均匀的所有饭的一部分,从中随意抽取一部分个体作为样本,它们含有与整体基真同样的信息.经过这一勺饭的生熟能够知道饭煲中饭的生熟.三、解答题7.请设计一份检盘问卷,就花费者对某型号洗衣机在外观、功能、价钱、耗电量、节约用水、售后服务等方面的满意程度进行检查. 导学号 95064404[分析 ]问卷设计以下:姓名 ____________工作单位 ____________地址 ____________联系电话 ____________为了认识您的要求,进一步提高我们的服务质量,请回答以下问题:8.设计一份学生食堂饭菜质量、饭菜价钱、服务质量、满意程度的检盘问卷. 导学号 95064405[分析 ]设计检盘问卷以下:B 级修养提高一、选择题1.某地第一季度应聘和招聘人数排行榜前 5 个行业的状况列表以下:行业计算机机械营销物流贸易应聘人数215 830200 250154 67674 57065 280行业计算机营销机械建筑化工招聘人数124 620102 93589 11576 51670 436若用同一行业中应聘人数与招聘人数比值的大小来权衡该行业的就业状况,则依据表中数据,就业局势必定是导学号 95064406 ( B )A.计算机行业好于化工行业B.建筑行业好于物流行业C.机械行业最紧张D.营销行业比贸易行业紧张[分析 ]从表中能够看出,计算机行业应聘和招聘人数都许多,但录取率约占60%. 化工行业招聘名额虽少,但应聘者也相应较少,且低于招聘人数,故A不正确.相对物流行业,机械行业可能不是最紧张的. 建筑行业应聘人数不多,明显好于物流行业.营销行业招聘比约为 1∶ 1.5,但贸易行业招聘数不详,没法比较.2.以下检查方式适合的是导学号95064407 ( D )A.要认识一批灯泡的使用寿命,采纳普查方式B.要认识收看中央电视台的“法制报导”栏目的状况,采纳普查方式C.为了保证“天宫”一号太空舱发射成功,对重要部件采纳抽查方式D.要认识外国人对“上海世博会”的关注度,可采纳抽查方式[分析 ]联合普查及抽查的观点及实质问题的需要可知 D 正确 .二、填空题3.经问卷检查,某班同学对拍照分别执“喜爱”、“不喜爱”和“一般”三种态度,此中执“一般”态度的比“不喜爱”的多12 人,按分层抽样方法从全班选出部分学生会谈拍照,假如选出的是 5 位“喜爱”拍照的同学、一位“不喜爱”拍照的同学和 3 位执“一般”态度的同学,那么全班学生中“喜爱”拍照的比全班人数的一半还多__3__人. 导学号 95064408[分析 ]由题意知,设三种态度的人数分别为5x、 x、3x,则 3x-x=12,∴x= 6,即人数分别为: 30,6,18.∴30- (30+ 6+ 18) 2÷= 3.4.以下试验适适用抽样检查方法获得数据的序号是__①③④ __. 导学号 95064409①观察一片草皮的均匀高度;②检查某食品单位员工的身体状况;③观察参加某次考试的 3 万考生的数学答题状况;④查验一个人的血液中白细胞的含量能否正常.[分析 ]①该问题用普查的方法很难实现,适适用抽样检查的方法获得数据;②体检,一定认识每个员工的身体状况,不适适用抽样检查的方法获得数据;③ 3 万考生的答题状况用普查的方法获得数据不适合,适适用抽样检查的方法获得数据;④该问题只好用抽样检查的方法获得数据.三、解答题5.请你设计一份对于中学生的课余活动状况的检盘问卷. 导学号 95064410[分析 ]检盘问卷设计以下:姓名: ____________班级:____________年纪: ____________性别:____________联系电话: ____________(1)你每日的课余时间约为()A.2 小时B.3 小时C.3 小时以上(2)你们的课余时间安排是()A .自由活动B.组织安排(3)你的主要娱乐方式是()A .踢足球B.打篮球C.打羽毛球D.做游戏 E.其余(4)你感觉课余活动时间()A .太少B.适中C.太多6.某地域公共卫生部门为了检查当地域中学生的抽烟状况,对随机抽出的200 名学生进行了检查,检查中使用了两个问题. 导学号 95064411问题 1:你的父亲公历诞辰日期能否是奇数?问题 2:你能否常常抽烟?请你设计检盘问卷进行检查.[分析 ]检盘问卷设计以下:姓名 ____________所在学校 ____________现有一个装有大小、形状和质量完整同样的50 个白球和50 个红球的袋子,每个被检查者随机从袋中摸取 1 个球 A(摸出的球再放回袋中),摸到白球的学生照实回答第一个问题,摸到红球的学生照实回答第二个问题,回答“ 是” 的人请在问题后边的方框内划“√” ,回答“ 否”的人不用作任何标志.C 级能力拔高请设计一份问卷检查你们班同学阅读课外书的状况. 导学号 95064412 [分析 ]检盘问卷设计以下:姓名 ____________所在班级____________请回答以下问题(1)你一般在什么时间阅读课外书?A .每日课间B.每日下学回家C.周末或假期D.老师安排的阅读课上(2)你喜爱读的课外书有:A .散文B.报告文学C.小说D.所学功课的指导资料E.其余的(3)你最喜爱哪一类课外书?____________(4)你的课外书的根源是A .同学介绍的B.老师介绍的C.在书店中有时发现的D.家长介绍的E.从宣传资料上看到的(5)你是如何阅读课外书的?A .大略阅读B.详尽阅读C.大多数是大略阅读的D.大多数是详尽阅读的(6)你以为课外阅读和学习的关系是A .能促使学习B.与学习没多大关系C.阻碍学习(7)你的家长对你阅读课外书持什么态度?A .支持B.反对C.从可是问(8)你在阅读课外书时碰到哪些困难?____________(9)你在这方面有什么打算?____________。
高中数学人教版必修三课时达标检测(九) 简单随机抽样 Word版含答案

课时达标检测(九) 简单随机抽样一、选择题.在简单随机抽样中,某一个个体被抽到的可能性( ).与第几次有关,第一次可能性最大.与第几次有关,第一次可能性最小.与第几次无关,与抽取的第几个样本有关.与第几次无关,每次可能性相等答案:.为了了解全校名学生的身高情况,从中抽取名学生进行测量,下列说法正确的是( ).总体是.个体是每名学生.样本是名学生.样本容量是答案:.某工厂的质检人员对生产的件产品,采用随机数法抽取件检查,对件产品采用下面的编号方法:①,…,;②,…,;③,…,;④,…,.其中正确的序号是( ).②③④.③④.②③.①②答案:.用简单随机抽样方法从含有个个体的总体中,抽取一个容量为的样本,其中某一个体“第一次被抽到”的可能性、“第二次被抽到”的可能性分别是( ) ,.,,.,答案:.从一群游戏的小孩中随机抽出人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任选人,发现其中有个小孩曾分过苹果,估计参加游戏的小孩的人数为( ).+-.不能估计答案:二、填空题.某种福利彩票是从~的号码中,选出个号码来按规则确定中奖情况,这种从个号码中选个号码的抽样方法是.解析:符合抽签法的特点:①个体数较少;②样本容量小.答案:抽签法.假设要检验某公司生产的克袋装牛奶的质量是否达标,现从袋牛奶中抽取袋进行检验,利用随机数表法抽取样本时,先将袋牛奶按,…,进行编号,如果从随机数表第行第列的数开始向右读,请你依次写出最先被检测的袋牛奶的编号.(下面摘取的是随机数表第行至第行.)解析:找到第行第列的数开始向右读,第一个符合条件的是,第二个数大于,要舍去,第三个数也要舍去,第四个数符合题意,这样依次读出结果.答案:.从个体数为的总体中抽出一个样本容量是的样本,每个个体被抽到的可能性是,则的值是.解析:从个体数为的总体中抽出一个样本容量是的样本,∴每个个体被抽取的可能性是.∵每个个体被抽取的可能性是,∴=,∴=.答案:三、解答题.要从某汽车厂生产的辆汽车中随机抽取辆进行测试,请选择合适的抽样方法,并写出抽样过程.解:利用抽签法:第一步,将辆汽车编号,号码是,,…,;第二步,将号码分别写在形状、大小相同的纸条上,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步,从袋子中依次不放回地抽取个号签,并记录上面的号码;第五步,所得号码对应的辆汽车就是要抽取的对象..某企业调查消费者对某产品的需求量,要从户居民中抽选户居民,请用随机数表法抽选样本.附部分随机数表:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(九)简单随机抽样
1.下列抽样方法是简单随机抽样的是( )
A.从50个零件中一次性抽取5个做质量检验
B.从50个零件中有放回地抽取5个做质量检验
C.从实数集中随机抽取10个分析奇偶性
D.运动员从8个跑道中随机选取一个跑道
解析:选D A不是,因为“一次性”抽取与“逐个”抽取含义不同;B不是,因为是有放回抽样;C不是,因为实数集是无限集.
2.抽签法中确保样本代表性的关键是( )
A.抽签B.搅拌均匀
C.逐一抽取D.抽取不放回
解析:选B 逐一抽取,抽取不放回是简单随机抽样的特点,但不是确保样本代表性的关键,一次抽取与有放回抽取(个体被重复取出可不算再放回)也不影响样本的代表性,抽签也一样.
3.某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件检查,对100件产品采用下面的编号方法
①1,2,3,...,100;②001,002,...,100;③00,01,02,...,99;④01,02,03, (100)
其中正确的序号是( )
A.②③④B.③④
C.②③D.①②
解析:选C 根据随机数表法的步骤可知,①④编号位数不统一,②③正确.
4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性和“第二次被抽到”的可能性分别是( )
A.1
10
,
1
10
B.
3
10
,
1
5
C.1
5
,
3
10
D.
3
10
,
3
10
解析:选A 简单随机抽样中每个个体被抽取的机会均等,都为1
10
.
5.高一(1)班有60名学生,学号从01到60,数学老师在上统计课时,利用随机数表法选5名学生提问,老师首先选定从随机数表的倒数第5行(下表为随机数表的最后5行)第6列的“4”开始,向右读依次选学号提问,则被提问的5个学生的学号为________.33021 44709 79262 33116 80907 77689 69696 48420
77713 32822 64679 94095 95735 84535 74703 82890
25853 30963 76729 87613 65538 68978 13157 78834
64145 71516 11716 58309 89501 59717 56086 37459
68585 22783 22621 54263 41128 12663 82362 61855
解析:依据选号规则,选取的5名学生的学号依次为:44,33,11,09,07,48.
答案:44,33,11,09,07,48
6.某校有50个班,每班50人,现抽查250名同学进行摸底考试,则每位同学被抽到的可能性为________.
解析:根据简单随机抽样的特征,总量为50×50=2 500人.∴每位同学被抽到的可能性为2502 500=110
. 答案:110
7.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有________.
①2 000名运动员是总体;
②每个运动员是个体;
③所抽取的20名运动员是一个样本;
④样本容量为20;
⑤这个抽样方法可采用随机数法抽样;
⑥采用随机数法抽样时,每个运动员被抽到的机会相等.
解析:①2 000名运动员不是总体,2 000名运动员的年龄才是总体;②每个运动员的年龄是个体;③20名运动员的年龄是一个样本.
答案:④⑤⑥
8.上海某中学从40名学生中选1人作为上海男篮拉拉队的成员,采用下面两种选法: 选法一 将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选;
选法二 将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,摸到红球的学生成为拉拉队成员.
试问这两种选法是否都是抽签法?为什么?
解:选法一满足抽签法的特征是抽签法,选法二不是抽签法,因为抽签法要求所有的号签编号互不相同,而选法二中39个白球无法相互区分.
9.某合资企业有150名职工,要从中随机抽出15人去参观学习.请用抽签法和随机数表法进行抽取,并写出过程.
解:(抽签法)先把150名职工编号:1,2,3,…,150,把编号分别写在相同的小纸片上,揉成小球,放入一个不透明的袋子中,充分搅拌均匀后,从中逐个不放回地抽取15个小球,这样就抽出了去参观学习的15名职工.
(随机数表法)第一步,先把150名职工编号:001,002,003, (150)
第二步,从随机数表中任选一个数,如第10行第4列数0.
第三步,从选定的数字开始向右读,每次读3个数字,组成一个三位数,把小于或等于150的三位数依次取出(凡不在001~150的数跳过不读,前面已读过也跳过去),直到取完15个号码,与这15个号码相应的职工去参观学习.。