5土壤空气和热量状况
第六章 土壤空气和热量状况

土壤通气性测定 土壤通气性造成的土壤剖面分异
第二节 土壤热状 况
一、土壤热量soil heat (一)土壤热量来源 太阳辐射、生物热、地球内热 (二)土壤热量消耗 土壤水分蒸发、给近地面空气升温、向地下传 递 热通量:单位面积单位时间内垂直通过的热量。 J/cm2.min
二、土壤热性质
土壤热性质包括土壤热容量、导热率和导温率,决定 着土壤热量和温度变化的程度、热量传导的速度和深度。 (一)土壤热容量soil heat capacity,分为质量热容量和容积 热容量 1、质量热容量mass heat capacity是指单位质量土壤的温度升高 1℃所需的热量(焦/克.度),也叫土壤比热 2、容积热容量volume heat capacity是指单位容积土壤的温度升 高1℃所需的热量(焦/厘米3.度) 土壤容积热容量=土壤重量热容量×容重 土壤矿物质的质量热容量为0.71-1.09焦/克.度,平均为0.84 水的热容量最大,容积热容量为空气的千倍 各种土壤组分的密度和热容量单位时间内,单位面积土壤上由土 壤扩散出来的CO2量。 2、氧气扩散率ODR(oxygen diffusion rate) 单位时间通过单位土壤截面扩散的氧的质量。 微克/厘米2.分钟
五、土壤通气性指标 3、土壤通气孔隙度soil air porosity 4、土壤氧化还原电位Eh 由土壤溶液中氧化态物质和还原态物质相 对比例变化而产生的电位。 Eh是土壤通气性指标。大于400mv为氧化 态,通气好。
O2(%) 20.94 18.0-20.03
CO2(%) 0.03 0.15-0.65
N2(%) 78.05 78.8-80.24
其他气体(%) 0.98 0.98
三、土壤空气的意义
1、土壤形成发育,二氧化碳溶于土壤溶液变为碳酸,使土壤中碳酸盐类 溶解,增加了土壤溶液中钙、镁、钾、钠、铁、锰,为植物增长提供了 养分,促进了他们的移动。 2、土壤空气影响着土壤微生物的活动,从而对土壤有机质的分解和植物 营养物质的转化及其生物有效性产生影响。 3、由于氧的作用,可氧化土壤中某些矿物,如硫铁矿变为溶解态的硫酸 铁,亚铁和亚锰变为高价铁锰化合物。 4、植物生长发育 植物从种子发芽到成熟都需要有足够的土壤空气,块茎类植物对土壤空 气要求高于一般植物,种子发芽需要土壤空气中氧的含量10%以上,低 于0.5%种子不发芽,对于ODR临界值要求15×18-8—25×18-8克/厘米2. 分的范围。
第四章土壤空气和热量

二、土壤通气性
• 土壤通气性泛指土壤空气与大气进行交换、 不同土层之间气体扩散或交换的能力。
(一)土壤通气性的重要意义
• 其重要性在于补充氧气。 • 如果没有大气氧气的补充,土壤中的氧气 将迅速被耗尽,缺氧将严重影响根系的正 常生长,影响好气微生物的活动,从而影 响土壤养分的有效化。一些有毒的还原性 物质的累积将毒害根系,严重时会使植物 死亡。 • 因此,土壤必须具有一定的通气性。
(二)土壤通气性的机制
1、气体扩散 指某种气体由于分压梯度而产生的移动。 这是土壤与大气进行气体交换的主要形式。 土壤呼吸: O2(大气) 土壤 CO2(土壤) 大气
2、气体整体流动
• 由于土壤空气与大气之间存在总压力梯度 而引起的气体运动,称为整体流动。 • 温度、气压、降水、灌溉水的挤压等都可 以引起气体的整体流动。
• R随时间而变(年、月、日、瞬间) • 当R为正值,地面辐射收入大于支出,地 面增温; • 当R为负值,地面辐射收入小于支出,地 面降温; • 一般白天R为正值,地面增温; • 夜间R为负值,地面降温。
(二)影响地面辐射平衡的因素
1、太阳辐射强度 ---太阳的总辐射强度取决于气候(天气)情 况。 ---晴天的辐射强度比阴天大; ---日照角越大,单位面积上接受的热量越多, 辐射强度越高(中午,垂直,最高) ---北半球的南坡,太阳入射角比平地大,土 温比平地高;南坡土温比北坡高。
四、土壤热性质
一、土壤热容量(C) 土壤热容量指单位质量或容积的土壤每升 高(或降低)1º C所需要(或放出)的热容 量。 C = Cv*ρ ρ:土壤容重
• 水的热容量最大(4.184); • 气体的热容量最小(1.255*10-3); • 矿物质(2.163-2.435)和有机质(2.515)热 容量介于其中。 • 在固相组成物质中,腐殖质热容量大于 矿物质。 • 土壤热容量主要取决于水分含量的多少 和腐殖质含量。
第五章 土壤空气与土壤热状况

(二)合理灌排,控制水分,调节气热
(一)合理灌溉,节约用水 (二)排除积水、通气增温 (三)通过灌排、通气调温
(三)精耕细作,蓄水保墒,通气调温
耕作不仅可以蓄水保墒,而且可以改善 土壤的通气性和温热状况。经常采用的 耕作措施有: 中耕 深翻 镇压
(四)降低土表蒸发,调节土壤 水气热状况
露水的形成
老师:露水是怎样形成的?并说出理由来。
学生回答到:
地球旋转不停,热得出汗,这就
是露水。
露水的形成
晴朗无云的夜间,地面热量散失很快,地 面气温迅速下降。温度降低,空气含水汽的能 力减小,大气低层的水汽就附在草上、树叶上 等,并凝成细小的水珠,即露水。 增加近地面空气的温度,又使水汽扩散, 露水也很难形成。 露水对农作物很有好处, 露水像雨一样,能滋润土壤起到帮助植物生长 的作用。
三 土壤通气状况与作物生长
(一)影响根系发育
大多数作物在通气良好的土壤中,根系 长、颜色浅、根毛多;缺O2土壤中的根系 则短而粗,颜色暗,根毛大量减少。 根系生长需要氧:氧浓度<9~10%,生 长受阻;<5%时,发育停止。
(二)影响根系吸收功能
通气不良时,根系呼吸作用减弱,吸收养 分和水分的功能降低,特别是抑制对K的 吸收,依次为Ca、Mg、N、P等。
2、土壤空气O2含量
比大气低,主要是因为根系和微生物 的呼吸作用需要消耗O2,OM的分解也会 消耗掉O2。
3、土壤空气相对湿度
比大气高。除表层干燥土壤外,土壤 空气湿度一般都在99%以上,处于水汽 饱和状态,而大气只有在多雨季节才接 近饱和。
4、还原性气体
土壤水分、空气和热量

1cm
19 ℃
(2)导热率的物理意义
导热率大则传热快,得热后迅速下传(失热后迅速补 给),引起的变温小。
导热率小则传热慢,得热后不易下传(失热后补给缓 慢),引起的变温大。
J s-1
1cm2
20 ℃
21 ℃ 21 ℃
1cm
19 ℃
20 ℃ 19.2 ℃
Question:土壤的导热率大小取决于什么? Answer:取决于土壤中的基本组成物质。
固相 50% 矿物质45% 水20-30% 空气
30-20% 孔隙50%
有机质5%
不同土壤组分的热容量
土壤组成物质
粗石英砂 高岭石 石灰 腐殖质 Fe2O3 Al2O3
土壤空气 土壤水分
重量热容量 (Jg-1℃-1)
0.745 0.975 0.895 0.682 0.908 1.996 1.004 4.184
一般作物根系的吸水力平均为1.5MPa。
2、土壤膜状水
土壤膜状水:吸湿水达到最大后,土壤还有剩余的引力吸 附液态水, 在吸湿水的外围形成一层水膜。
膜 状 水 示 意 图
土壤膜状水的有效性:
土壤膜状水
3.1MPa (靠近土壤内层)(无效水)
受到的引力
0.625 MPa (靠近土壤外层)(有效水)
一般作物根系的吸水力平均为1.5MPa。
取容积为1的土壤,设它吸收(放出)的热量为 ⊿Q,引起的温度变化为⊿T ,则根据定义Cv=⊿Q/⊿T, 这就是容积热容量。
转换公式一下:⊿T=⊿Q/Cv, 当不同的物质吸收或放出相同热量时候,热容量越 大的物质,升、降温缓慢, 即温度变化小,反之亦然。
Question:土壤的热容量大小取决于什么?
土壤空气、土壤热量及水气热调节

式中:E0:标准氧化还原电位,即体系中氧化剂与 还原剂浓度相等时的电位。
n:反应中电子转移数
39/42
氧化还原 状况
氧化
弱度还原
中度还原 强度还原
表2-20 土壤氧化还原状况分级
Eh范围
>400mV
400~ 200mV 200~100mV
<-100mV
化学反应
对作物生长的 影响
O2占优势,各物质以 旱作有利,水稻
2.5.2.2 土壤导热率(soil thermal conductivity)
土壤导热率是评价土壤传导热量快慢的指标,它 是指在面积为1m2、相距1m的两截面上温度相差1K度 时,每秒中所通过该单元土体的热量焦耳数。其单位 为:J·(m•K•s)-1。
土壤导热率的大小主要与土壤矿物质和土壤空气 有关。与土壤容重呈正相关,与土壤孔隙度呈负相关。
土壤
水分
4.187
4.187 0.0054-0.0059
矿质
土粒
1.930
0.712 0.0167-0.0209
土壤 有机质
2.512
1.930 0.0084-0.0126
导温率 (cm2 ·s-1) 0.1615-0.1923 0.0013-0.0014 0.0087-0.0108 0.0033-0.0050
2.6 土壤水、气、热的调节与氧化还原性 2.6.1 土壤水、气、热的调节 2.6.2 土壤氧化还原性质
30/42
2.6.1 土壤水、气、热的调节 2.6.1.1 土壤水分的调节 (1)土壤水分平衡 土壤水分的收入以降雨和灌溉水为主,此外还有 地下水的补给和其它来源的水(如水气凝结、外来径流 等)。 土壤水的支出主要有土表蒸发、植物蒸腾、向下 渗漏及地表径流损失等。
土壤空气和热量答案1土壤空气组成有哪些特点土壤

第七章土壤空气和热量答案1. 土壤空气组成有哪些特点?(1)土壤空气中的CO2含量高于大气(2)土壤空气中的O2含量低于大气(3)土壤空气中水汽含量一般高于大气(4)土壤空气中含有较多的还原性气体(5)土壤空气的组成不是绝对不变的,它会受其他因素的影响而发生变化。
2. 土壤热量主要有哪些来源?影响土壤热量状况的因素包括哪些?土壤热量的来源主要包括太阳的辐射能、生物热、地球内热。
影响土壤热量状况的因素包括太阳的辐射强度、地面的反射率、地面有效辐射。
3 土壤热容量与导热率有何区别?土壤热容量是单位质量(重量)或容积的土壤每升高(或降低)1℃所需要(或放出的)的热量。
在土壤的固、液、气三相物质组成中,水的热容量最大,气体热容量最小,矿物质和有机质热容量介于两者之间。
土壤导热率是在单位厚度(1cm)土层,温差为1℃时,每秒钟经单位断面(1 cm2)通过的热量焦耳数。
固体部分导热率最大,空气导热率最小,水的导热率介于两者之间。
4 土壤温度的时空变化与气温有何不同?土温的四季变化与气温的变化类似,通常全年表土最低温度出现在1-2月份,最高温度出现在7-9月份。
随着土层深度的增加,土温的年变幅范围逐渐缩小,最高最低温度出现的时间亦逐渐推迟。
土壤温度的日变化随着气温的变化而变化,但与气温相比,土温最高最低温度存在滞后现象,土温的昼夜变幅随深度的增加而缩小,而且最高、最低温度出现时间亦逐渐推迟。
土壤温度的空间变化主要受纬度、海拔高度及地形等因子的影响。
随着维度增高,土壤温度和气温均逐渐降低。
随着海拔升高,土壤温度和气温均降低,但是高山上的土温比气温高。
地形对土壤温度的影响影响表现主要在坡向与坡度方面。
大体表现为北半球的南坡(即阳坡),土温比平地要高,北坡(即阴坡)的情况与南坡则相反。
坡度越陡,南、北坡向的温差就越大。
5 土壤水、气、热的主要调节措施包括哪些?(1)通过耕作和施肥,改善土壤的物理性质(2)灌溉和排水措施(3)混交、间种措施(4)采用人工覆盖物措施6 土壤水、气、热三者之间存在什么关系?土壤水、气、热是组成土壤肥力的重要因素,三者是互为矛盾,又互相制约的统一体。
第五章 土壤空气与热状况

4、对土壤热特性的影响因素:固、液、气三相物质比例 由下表可见,土壤水分热容量最大,土壤空气最小,而 矿质土粒和土壤有机质介于两者之间,而固体是相对稳 定的,则主要取决于土壤水分和土壤空气的含量。 所以,粘土:水分含量较高,早春季节解冻迟,土壤回 升慢,为冷性土; 砂土:水分含量低,早春土温回升快,为热性土。
三、土壤通气性(soil aeration) 土壤通气性(土壤透气性):指土壤空气与近地层大气进行气
体交换以及土体内部允许气体扩散和流动的性能。
土壤通气性影响多种生物的生命活动,各种有机物质转化的化
学过程,根际呼吸,种子萌发,土壤病虫害的发生。
土壤通气产生的机制:
(一)、土壤空气扩散(Soil air diffusion) 指某种气体成分由于分压梯度与大气不同而产生的移动。它是 土壤空气与大气间进行交换的主要因素,原理服从气体扩散 公式: F=-D· dc/dx F:单位时间气体扩散通过单位面积的数量; Dc/dx:气体浓度梯度或气体分压梯度; D:扩散系数,负号表示其从气体分压高向低扩散。
2、土壤水分调节:
减少土壤水分的损失;增加作物对降雨,灌溉水及土壤中 原有贮水的有效利用,同时包括对多余水分的排除等, 措施如下: (1)控制地表径流,增加土壤水分入渗;
合理耕翻:创造疏松的耕作层,保持土壤适当的透水性 以吸收更多的降雨和减少地表径流损失。 等高种植,建立水平梯田:改造地形,平整土地,减少 水土流失,梯田层层蓄水,坎地节节拦蓄 改良表土质地结构:增加土壤孔隙度,使蓄墒能力增强。
第二节
一、土壤热来源与平衡
土壤热状况
(一)土壤热来源
1、太阳辐射(solar radiation) 与所处的纬度有关,随纬度的提高,接受辐射减少;
第五章土壤水、热、气、肥及其相互关系

1.3.1.1吸湿水: 干燥的土粒由于分子引力和静电引力的 存在而从空气中吸收水份的性质称为吸 湿性,所紧密吸附的水分就称为吸湿水. 特点: <1>.吸湿水的数量与大气温、湿度有关, 大 气温度愈低、湿度愈大, 吸湿量愈大; 也与质地有关,质地愈重,吸湿性愈强,吸 湿量也愈大.
<2>.吸湿水受土粒引力极大{31~10000个大气 压},无溶解力,不导电,在土壤中不能自由运动, 与土粒作整体运动. 同时,植物根系的根吸力一般只有10~20个大 气压,所以吸湿水不能被一般植物吸收利用.
年变化 - (太阳辐射能的季节变化) 呈现两个阶段, 升温阶段, 2~7月; 降温阶段, 8~1月; 最高温7月, 最低温1月. 随土层加深年变幅也减小, 在5~20米处消 失.
影响土温的因素: 一切影响土壤热量收入或支出的因素最终都将 影响土壤温度的高低, 可分为环境因素和土壤 内部因素两大类. 环境因素: a. 土壤所处的纬度 随着纬度的增加, 太阳入射角减小, 单位面积土 壤得到的太阳辐射能减少, 故纬度越高, 土温越 低.
第 五 章 土壤水、热、气、 肥及其相互关系
土壤水、热、气、肥4大因素 :
各有其独立的运动发展变化规律 各自与环境状况息息相关 共存于土壤体系中,相互联系、相 互制约的。
第 一 节
土壤热性质
1- 土壤的热量来源 土壤热量主要来自4个方面,太阳辐射能、地热、 生物热和化学热。 1-1 太阳辐射: 任何物体,温度高于绝对零度 (-273 ℃) 时, 都要以电磁波的方式向外辐射能量。 太阳表面温度高达6000 ℃, 它要以电磁波 的方式向外辐射大量能量, 这种能量是土壤热 量的主要来源, 一般每cm2每分钟可得到1.9 卡 的热量.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)对流:土壤与大气间由总压力梯度推动的气体的整 体流动,也有人叫质流。
主要由于近地层环境因子剧烈变迁所引起的土壤中
所有空气成分沿同一个方向的流动。如:风、气压变化、 温度梯度变化、降水和灌溉的作用。 这是特定条件下的土壤气体更新过程。
(2)气体扩散:某种气体成分由于其分压梯度与 大气不同而产生的移动。
=
Q / AT ( t1 t 2 ) / d
或
Qd AT ( t 1 t 2 )
3、 土壤热扩散率 是指在标准状况下,在土 层垂直方向上每厘米距离内,在1℃的温度 梯度下,每秒流入1cm2土壤断面面积的热量, 使单位体积(1cm3)土壤所产生的温度变化 量。其大小等于土壤导热率/容积热容量之 比值。 2 D ( cm / s )
Cv
式中: 为土壤导热率 Cv为土壤容积热容量
土壤的热扩散率同样取决于土壤含水量: 干土土温易升降,湿土不易升降;土壤质地、 结构、孔隙特性对C和λ有不同的影响,其对 D的影响也就不同。
(三)土壤温度变化规律
1.土壤温度年变化:中纬度、高 纬度地区月平均最高温度出现在 7或8月,月平均最低温度出现在 1月或2月。年内1~7月升温阶段,
(3)地球的内热: 由地球内部的岩浆通过传导作用至土
壤表面的热量。
பைடு நூலகம்
2、土壤热量的散失
主要途径有地面长波辐射、土面蒸发、生物消耗等。
3、土壤热量平衡 土壤热量收支平衡可用下式表示:
S = Q P LE + R
S为土壤在单位时间内实际获得或失掉的热量;
Q为辐射平衡; LE为水分蒸发、蒸腾或水汽凝结而造成的热量损失或增加;
2.土壤空气中O2<<近地层大气中O2 原因:微生物和根系等土壤中生物呼吸消耗。 3.土壤空气中水汽压高于近地层大气中水汽压。 土壤空气几乎为水气饱和的,因为土壤湿度均在“最 大吸湿量“之上;而大气只有在多雨的季节才接近饱和。 4.土壤空气中有少量的还原性气体(痕量气体)。
土壤通气不良时,会产生CH4、H2S、H2、N2O等还原
土壤热容量主要影响因素:是土壤的三相组成,
但是,就具体土壤而言,它的有机物质和矿物
质所占组分相对稳定
∴ 影响土壤热容量的主要因素是活跃变化的水
分含量(Vw)
土壤热容量随土壤容重和含水量的增加而 增大。砂土含水量一般比粘土小,空气含量较 高,热容量一般较低。
2、土壤导热率
导热性:
土壤具有对所吸热量传导到邻近土层性质, 称为导热性。导热性大小用导热率表示。 导热率: 在单位厚度(1厘米)土层,温差为1℃时, 每秒钟经单位断面(1厘米2)通过的热量焦耳数 ()。其单位是J.cm-2.s-1.℃-1。
性气体和温室效应气体;大气中这些还原性气体少。
(二)土壤空气的更新
土壤通气性: 指土壤空气与大气进行交换使土壤空气组成 不断更新的性能。 有资料表明:如果土壤不具备通气性,那
么,土壤空气中O2仅能够供给作物根系呼吸消
耗12~40个小时,可见,土壤气体更新是多么重
要。土壤是如何通气的呢?
1、土壤通气的主要机制:
7~12月降温阶段。低纬度地区,
因为雨季早,月平均最高温度常 常出现在5月或6月。 2.土壤温度日变化特点: 日土壤最高温度出现在 13时左右,土壤最低温 度出现在次日日出之前。
3.影响土壤温度的因素
(1)环境因素
纬度、海拔高度、坡向与坡度、大气透明度、
地面覆盖
(2)土壤特性 土壤颜色、土壤质地、土壤结构性、松紧度
(3)通过各种耕作手段来调节土壤通气性
对旱作土壤,有中耕松土,深耙勤锄,打破
土表结壳,疏松耕层等措施。
对于水田土壤,可通过落水晒田、晒垡,搁 田及合理的下渗速率等措施。
二、土壤的热性质及土壤热量平衡
(一)土壤热量平衡 1、土壤热量的来源
(1)太阳辐射热: 是土壤热量的主要来源; (2)生物热: 有机物质分解产生的热量;
由于植物根系的呼吸及土壤微生物对有机残体 的好气分解,使土壤中CO2↑、O2↓,这样就分别产 生了土壤和大气之间CO2和O2分压差,在分压梯度 的作用下,土壤会排出CO2 吸收O2,这种现象也叫 “土壤呼吸”。 注意:气体扩散是土壤气体交换的主要机制!
2、土壤通气性的调节
(1)调节土壤水分含量
(2)改良土壤结构
第四章
土壤空气及热量状况
一、土壤空气及其更新 (一)土壤空气的组成 土壤空气与大气组成的比较(容积%)
组成特点:
1.土壤空气中CO2>>近地层大气中CO2
原因:(1)土壤有机物质的分解释放CO2 (2)土壤中根系、微生物、土壤动物的呼吸释放CO2 (3)无机碳酸盐的分解CO2
研究土壤中co2释放与固定问题成为当今土壤科学发展的 前沿领域!
P为土壤与大气层之间的湍流交换量;
R为土面与土壤下层之间的热交换量。
一般情况下,白天热量平衡方程计算出S为正值,即
土壤温度升高;夜晚S为负值,土表不断向外辐射损失热 量,温度降低。
(二)土壤的热性质
1、土壤热容量 是指单位质量(重量)或单位容积的土壤每升高(或 降低)1℃所需要(或放出的)热量。可分为: 质量热容量( C ) ,也叫比热,单位是J/(g℃) 容积热容量( Cv) ,单位是J/(cm3℃) 二者关系 Cv=C×ρb, ρb是土壤容重
(四)土壤热状况调节
1.深松深耕向阳垄作 2.耙地松土 3.排水散墒 4.灌溉 5.设置风障或防护林 寒冷多风地区设置风障能降低风速,减少地面乱流和 蒸发耗热的作用,可以有效地提高地温。
6.覆盖
是调节土壤温度最常用的手段之一。包括透明覆盖和 非透明覆盖。如秸秆、化学覆盖剂等,此外还有铺砂盖草 等,可以起到保墒增温的效果,塑料薄膜进行地表覆盖不 仅有明显的增温作用,也有一定的保墒效果。